1
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Han SQ, Adam KM, Ha W, Shi YP. Glutathione-Conjugated Fluorometric Ratiometric NIR-Silicon Nanoparticles and Its Applications for In Vitro and In Vivo Imaging. ACS APPLIED BIO MATERIALS 2024; 7:6631-6640. [PMID: 39302025 DOI: 10.1021/acsabm.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glutathione (GSH), a tripeptide molecule, is the most abundant nonprotein biothiol in living cells, playing a crucial role in preventing oxidative damage to cellular components and maintaining intracellular redox homeostasis. As a thiol molecule, GSH contains a sulfhydryl (-SH) group that is vital for the body's response to reactive oxygen species (ROS). To confirm whether GSH can be used as a bioindicator or in the early diagnosis of cancers at the cellular level, it is essential to achieve highly selective detection and conjugation of GSH to silicon nanoparticles (SiNPs) under pathological conditions. We are herein excited to report a type of fluorescent ratiometric near-infrared silicon nanoparticle (NIR-SiNP) probe, that is, glutathione peptide conjugated (NIR-SiNPs-GSH), which simultaneously possess small pore sizes at an average of 6.7 nm, an emission of 670 nm, a bioimaging functionality of living cancer cells and animals, and favorable biocompatibility. Taking advantage of these virtues, we further manifest that such resulting NIR-SiNPs, NIR-SiNPs-GSH bioprobes are marvelously worthy for immunofluorescence imaging of cancer cells and living mice. Furthermore, it was shown that DAPI and probes could selectively stain malignant tumor cell nuclei, indicating the possibility for bioimaging and identification of cancer cells and animals. In summary, the suggested NIR-SiNPs-GSH probe has the potential to be a very effective chemical tool for early tumor detection in the future.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Khalid Mohammed Adam
- Department of Chemistry, Faculty of Education, University of Kordofan, El Obeid 51111, Sudan
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Han Y, Wang Y, Zhang H, Zhao L, Qiu H. Facile synthesis of yellow-green fluorescent silicon nanoparticles and their application in detection of nitrophenol isomers. Talanta 2023; 257:124347. [PMID: 36801561 DOI: 10.1016/j.talanta.2023.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
A clear formation mechanism is essential for the controllable synthesis of nanomaterials with different optical properties, which is also one of the challenges facing the preparation of fluorescent silicon nanomaterials. In this work, a one-step room temperature synthesis method was established to prepare yellow-green fluorescent silicon nanoparticles (SiNPs). The obtained SiNPs exhibited excellent pH stability, salt tolerance, anti-photobleaching ability and biocompatibility. Based on X-ray photoelectron spectroscopy, transmission electron microscopy, ultra high performance liquid chromatography tandem mass spectrometry and other characterization data, the formation mechanism of the SiNPs was proposed, which provided a theoretical basis and important reference for the controllable preparation of SiNPs and other fluorescent nanomaterials. In addition, the obtained SiNPs illustrated excellent sensitivity for nitrophenol isomers, the linear range of o-nitrophenol, m-nitrophenol, p-nitrophenol was 0.05-600 μM, 20-600 μM and 0.01-600 μM under the λex and λem were set as 440 nm and 549 nm, and related limit detection was 16.7 nM, 6.7 μM and 3.3 nM, respectively. The developed SiNP-based sensor achieved satisfactory recoveries in detecting nitrophenol isomers in a river water sample, showing great promise in practical applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Zhang Y, Cai N, Chan V. Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors. BIOSENSORS 2023; 13:311. [PMID: 36979523 PMCID: PMC10046568 DOI: 10.3390/bios13030311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
With the development of nanotechnology, fluorescent silicon nanomaterials have been synthesized and applied in various areas. Among them, silicon quantum dots (SiQDs) are a new class of zero-dimensional nanomaterials with outstanding optical properties, benign biocompatibility, and ultra-small size. In recent years, SiQDs have been gradually utilized for constructing high-performance fluorescent sensors for chemical or biological analytes. Herein, we focus on reviewing recent advances in SiQD-based fluorescent biosensors from a broad perspective and discussing possible future trends. First, the representative progress for synthesizing water-soluble SiQDs in the past decade is systematically summarized. Then, the latest achievement of the design and fabrication of SiQD-based fluorescent biosensors is introduced, with a particular focus on analyte-induced photoluminescence (fluorescence) changes, hybrids of SiQDs with other materials or molecules, and biological ligand-modification methods. Finally, the current challenges and prospects of this field are highlighted.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Chu B, Chen Z, Shi H, Wu X, Wang H, Dong F, He Y. Fluorescence, ultrasonic and photoacoustic imaging for analysis and diagnosis of diseases. Chem Commun (Camb) 2023; 59:2399-2412. [PMID: 36744435 DOI: 10.1039/d2cc06654h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biomedical imaging technology, which allows us to peer deeply within living subjects and visually explore the delivery and distribution of agents in living things, is producing tremendous opportunities for the early diagnosis and precise therapy of diseases. In this feature article, based on reviewing the latest representative examples of progress together with our recent efforts in the bioimaging field, we intend to introduce three typical kinds of non-invasive imaging technologies, i.e., fluorescence, ultrasonic and photoacoustic imaging, in which optical and/or acoustic signals are employed for analyzing various diseases. In particular, fluorescence imaging possesses a series of outstanding advantages, such as high temporal resolution, as well as rapid and sensitive feedback. Hence, in the first section, we will introduce the latest studies on developing novel fluorescence imaging methods for imaging bacterial infections, cancer and lymph node metastasis in a long-term and real-time manner. However, the issues of imaging penetration depth induced by photon scattering and light attenuation of biological tissue limit their widespread in vivo imaging applications. Taking advantage of the excellect penetration depth of acoustic signals, ultrasonic imaging has been widely applied for determining the location, size and shape of organs, identifying normal and abnormal tissues, as well as confirming the edges of lesions in hospitals. Thus, in the second section, we will briefly summarize recent advances in ultrasonic imaging techniques for diagnosing diseases in deep tissues. Nevertheless, the absence of lesion targeting and dependency on a professional technician may lead to the possibility of false-positive diagnosis. By combining the merits of both optical and acoustic signals, newly-developed photoacoustic imaging, simultaneously featuring higher temporal and spatial resolution with good sensitivity, as well as deeper penetration depth, is discussed in the third secretion. In the final part, we further discuss the major challenges and prospects for developing imaging technology for accurate disease diagnosis. We believe that these non-invasive imaging technologies will introduce a new perspective for the precise diagnosis of various diseases in the future.
Collapse
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Zhiming Chen
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaofeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Fenglin Dong
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Yan R, Wen Z, Hu X, Wang W, Meng H, Song Y, Wang S, Tang Y. A sensitive sensing system based on fluorescence dipeptide nanoparticles for sulfadimethoxine determination. Food Chem 2022; 405:134963. [DOI: 10.1016/j.foodchem.2022.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
7
|
Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Singh G, Ddungu JLZ, Licciardello N, Bergmann R, De Cola L, Stephan H. Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging. Faraday Discuss 2021; 222:362-383. [PMID: 32108214 DOI: 10.1039/c9fd00091g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bimodal systems for nuclear and optical imaging are currently being intensively investigated due to their comparable detection sensitivity and the complementary information they provide. In this perspective, we have implemented both modalities on biocompatible ultrasmall silicon nanoparticles (Si NPs). Such nanoparticles are particularly interesting since they are highly biocompatible, have covalent surface functionalization and demonstrate very fast body clearance. We prepared monodisperse citrate-stabilized Si NPs (2.4 ± 0.5 nm) with more than 40 accessible terminal amino groups per particle and, for the first time, simultaneously, a near-infrared dye (IR800-CW) and a radiolabel (64Cu-NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid) have been covalently linked to the surface of such Si NPs. The obtained nanomaterials have been fully characterized using HR-TEM, XPS, UV-Vis and FT-IR spectroscopy. These dual-labelled particles do not exhibit any cytotoxicity in vitro. In vivo studies employing both positron emission tomography (PET) and optical imaging (OI) techniques revealed rapid renal clearance of dual-labelled Si NPs from mice.
Collapse
Affiliation(s)
- Garima Singh
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, D-01328, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Boaro A, Ageitos L, Torres M, Bartoloni FH, de la Fuente-Nunez C. Light-Emitting Probes for Labeling Peptides. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100257. [PMID: 34396352 PMCID: PMC8360326 DOI: 10.1016/j.xcrp.2020.100257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peptides are versatile biopolymers composed of 2-100 amino acid residues that present a wide range of biological functions and constitute potential therapies for numerous diseases, partly due to their ability to penetrate cell membranes. However, their mechanisms of action have not been fully elucidated due to the lack of appropriate tools. Existing light-emitting probes are limited by their cytotoxicity and large size, which can alter peptide structure and function. Here, we describe the available fluorescent, bioluminescent, and chemiluminescent probes for labeling peptides, with a focus on minimalistic options.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Calle de la Maestranza, 9, A Coruña 15071, Spain
| | - Marcelo Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Nayan V, Sinha ES, Onteru SK, Singh D. A proof-of-concept of lateral flow based luteinizing hormone detection in urine for ovulation prediction in buffaloes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3411-3424. [PMID: 32930230 DOI: 10.1039/d0ay00787k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a method for the detection of luteinizing hormone (LH) in buffalo urine by using gold nanoparticles (AuNPs) conjugated with novel anti-peptide antibodies against LH (anti LHP) in lateral flow assay format. Buffalo LH is an important reproductive hormone and is a chemically complex glycoprotein. Its surge release precedes ovulation and therefore detecting LH has implications in identifying the ovulation event. Any sensor thus developed for sensing LH may have the potential for predicting ovulation and hence can assist herd managers in making decisions on the timing of artificial insemination. Recombinant LH production is time consuming, difficult and costly. Hence, we identified an epitope peptide sequence in buffalo LH and raised antibodies against it. The chemically synthesized peptide and antibodies were used for developing the sensor. The gold nanoparticles and conjugates were characterized through physicochemical methods which confirmed the binding of peptides and antibodies to the gold nanoparticles. A qualitative ELISA for sensing LH was developed based on competitive binding of gold nanoparticles conjugated with the epitope peptide and LH towards the anti-peptide antibodies against LH. We also further explored the detection of LH in buffalo urine using the gold nanoparticle-LHP conjugate (AuNP-LHP) in dipstick format. These experiments provided a proof-of-concept towards applicability of the LH based sensor for ovulation prediction in buffaloes.
Collapse
Affiliation(s)
- Varij Nayan
- ICAR-National Dairy Research Institute, Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, Karnal, 132001, Haryana, India.
- ICAR-Central Institute for Research on Buffaloes, Molecular Endocrinology, Functional Genomics & Computational Biology Laboratory, Animal Biochemistry, APR Division, Hisar, 125001, Haryana, India.
| | - Eshu Singhal Sinha
- ICAR-National Dairy Research Institute, Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, Karnal, 132001, Haryana, India.
| | - Suneel Kumar Onteru
- ICAR-National Dairy Research Institute, Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, Karnal, 132001, Haryana, India.
| | - Dheer Singh
- ICAR-National Dairy Research Institute, Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, Karnal, 132001, Haryana, India.
| |
Collapse
|
11
|
Synthesis, characterization, and fluorescence study of tryptone-self-assembled and Zn(II)-coordinated nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Han Y, Lv W, Chen H, Li H, Chen J, Li Z, Qiu H. Chiral Fluorescent Silicon Nanoparticles for Aminopropanol Enantiomer: Fluorescence Discrimination and Mechanism Identification. Anal Chem 2020; 92:3949-3957. [DOI: 10.1021/acs.analchem.9b05442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjuan Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
13
|
Fu YJ, Shen SS, Guo XF, Wang H. A new strategy to improve the water solubility of an organic fluorescent probe using silicon nanodots and fabricate two-photon SiND-ANPA-N3 for visualizing hydrogen sulfide in living cells and onion tissues. J Mater Chem B 2020; 8:1422-1431. [DOI: 10.1039/c9tb02237f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble fluorescent probe based on SiNDs for H2S detection can be used in both fully aqueous media and living cells.
Collapse
Affiliation(s)
- Yu-Jia Fu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - San-San Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| |
Collapse
|
14
|
Nsanzamahoro S, Cheng W, Mutuyimana FP, Li L, Wang W, Ren C, Yi T, Chen H, Chen X. Target triggered fluorescence "turn-off" of silicon nanoparticles for cobalt detection and cell imaging with high sensitivity and selectivity. Talanta 2019; 210:120636. [PMID: 31987169 DOI: 10.1016/j.talanta.2019.120636] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
Cobalt ions (Co2+) are among heavy metals ions which cause pollution in environment because of their toxicity and improper degradation. In this work, a new fluorescent approach based on silicon nanoparticles (Si NPs) was designed for Co2+ detection. The fluorescent Si NPs were prepared by mixing 3-aminopropyl trimethoxysilane (APTES) and basic fuchsin, and under the excitation of 400 nm, they emitted green fluorescence at 515 nm. The prepared Si NPs were highly soluble in water, stable to salt and pH, and their fluorescence emission was extremely constant, with the quantum yield of 2.28%. The detailed mechanism studies showed that Co2+ effectively quenched the fluorescence of Si NPs by forming static complex. After optimizing the reaction parameters, a good linear relationship for Co2+ was observed from 0.2 to 60 μM, and the limit of detection was 0.14 μM that is lower than the guideline announced by Department of Environmental Protection for drinking water (1.7 μM). The preparation method of Si NPs was cheap, rapid and simple, and the fluorescent approach was applied to determine Co2+ in Yellow river water, drinking water, and industrial wastewater. Moreover, the Si NPs has good response to exogenous Co2+ in HepG2 cell imaging.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Wei Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Félicité Pacifique Mutuyimana
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Ling Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Weifeng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, PR China.
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
15
|
Cui M, Liu S, Song B, Guo D, Wang J, Hu G, Su Y, He Y. Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. NANO-MICRO LETTERS 2019; 11:73. [PMID: 34138032 PMCID: PMC7770883 DOI: 10.1007/s40820-019-0306-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/25/2019] [Indexed: 05/20/2023]
Abstract
The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity. Herein, a kind of multifunctional silicon-based nanostructure, i.e., gold nanoparticles-decorated fluorescent silicon nanorods (Au@SiNRs), is fabricated and exploited for tumor-targeted multimodal imaging-guided photothermal therapy. In particular, the prepared Au@SiNRs feature high photothermal conversion efficiency (~ 43.9%) and strong photothermal stability (photothermal performance stays constant after five-cycle NIR laser irradiation), making them high-performance agents for simultaneously photoacoustic and infrared thermal imaging. The Au@SiNRs are readily modified with targeting peptide ligands, enabling an enhanced tumor accumulation with a high value of ~ 8.74% ID g-1. Taking advantages of these unique merits, the Au@SiNRs are superbly suitable for specifically ablating tumors in vivo without appreciable toxicity under the guidance of multimodal imaging. Typically, all the mice treated with the Au@SiNRs remain alive, and no distinct tumor recurrence is observed during 60-day investigation.
Collapse
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Sangmo Liu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Daoxia Guo
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Li Q, Hao X, Guo J, Ren X, Xia S, Zhang W, Feng Y. Multifunctional Gene Carriers Labeled by Perylene Diimide Derivative as Fluorescent Probe for Tracking Gene Delivery. Macromol Rapid Commun 2019; 40:e1800916. [DOI: 10.1002/marc.201800916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/24/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Qian Li
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Xuefang Hao
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Jintang Guo
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Xiang‐Kui Ren
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic MedicineAffiliated HospitalLogistics University of People's Armed Police Force 220 Chenglin Road Tianjin 300162 China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of Chinese People's Armed Police Force Tianjin 300309 China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| |
Collapse
|
17
|
Guo D, Ji X, Peng F, Zhong Y, Chu B, Su Y, He Y. Photostable and Biocompatible Fluorescent Silicon Nanoparticles for Imaging-Guided Co-Delivery of siRNA and Doxorubicin to Drug-Resistant Cancer Cells. NANO-MICRO LETTERS 2019; 11:27. [PMID: 34137971 PMCID: PMC7770907 DOI: 10.1007/s40820-019-0257-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 05/06/2023]
Abstract
The development of effective and safe vehicles to deliver small interfering RNA (siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics, which has emerged as a powerful platform to treat drug-resistant cancer cells. Herein, we describe the development of novel all-in-one fluorescent silicon nanoparticles (SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin (DOX). This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells (i.e., MCF-7/ADR cells). Typically, the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment (i.e., medium or RNase A) and imparted the responsive release behavior of siRNA, resulting in approximately 80% down-regulation of P-glycoprotein expression. Co-delivery of P-glycoprotein siRNA and DOX led to > 35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX, indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells. The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs. These data provide valuable information for designing effective RNA interference-based co-delivery carriers.
Collapse
Affiliation(s)
- Daoxia Guo
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Peng
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yiling Zhong
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Li M, Liu J, Deng M, Ge Z, Afshan N, Zuo X, Li Q. Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes. Chempluschem 2019; 84:323-327. [DOI: 10.1002/cplu.201900025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Min Li
- Institute of Molecular Medicine Renji Hospital School of MedicineShanghai Jiao Tong University Shanghai 200127 P. R. China
| | - Jiangbo Liu
- Division of Physical Biology and Bioimaging Center CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Mengying Deng
- Division of Physical Biology and Bioimaging Center CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Zhilei Ge
- School of Medicine School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 20024 P. R. China
| | - Noshin Afshan
- Institute of Molecular Medicine Renji Hospital School of MedicineShanghai Jiao Tong University Shanghai 200127 P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Renji Hospital School of MedicineShanghai Jiao Tong University Shanghai 200127 P. R. China
- School of Medicine School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 20024 P. R. China
| | - Qian Li
- School of Medicine School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 20024 P. R. China
| |
Collapse
|
19
|
Xiao F, Xiao Y, Chen F, Liu X, Lin C, Chen J, Wu Y. Facile synthesis of Silicon quantum dot-Gadolinium: A potential fluorescent/T1-T2 multimodal imaging agent. Talanta 2019; 199:336-346. [PMID: 30952268 DOI: 10.1016/j.talanta.2019.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/03/2019] [Accepted: 02/09/2019] [Indexed: 11/28/2022]
Abstract
Highly stable and multifunctional fluorescent quantum dots are particularly attractive in practical applications. Here, a new kind of ultra-small-sized silicon quantum dot-gadolinium (SiQD-Gd) was successfully fabricated by a newly-designed facile hydrothermal growth and chelating method. The obtained SiQD-Gd exhibited outstanding water dispersibility, stability and good fluorescent property with the quantum yield of 11.6%. SiQD-Gd displayed a low cytotoxicity in normal cell lines (HELF, HEK293F) and tumor cell lines (H1299, A549). Meanwhile, SiQD-Gd showed excellent magnetic resonance response with r1 relaxation rate of 10.5 mmol L-1·s-1 and r2 relaxation rate of 47.5 mmol L-1·s-1, which are 2.5 and 7.4 times enhanced comparing to that of the commercial MR agent Magnevist. In vivo studies showed significant contrast enhancement effect of its T1- and T2-weighted MR imaging. In addition, in vivo fluorescent imaging for mice and zebrafish indicated its potential applications in fluorescent tracking. Thus, the excellent multimodal imaging capacity and biocompatibility of SiQD-Gd make it a potential imaging agent for clinic applications.
Collapse
Affiliation(s)
- Fangnan Xiao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350119, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Yue Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; School of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangman Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; School of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chentao Lin
- Department of Immunology, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350119, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
20
|
Xing K, Ge J, Wang WX, Geng X, Shen XP, Tang JL, Qu LB, Sun YQ, Li ZH. A turn-on fluorescent probe for sensitive detection of ascorbic acid based on SiNP–MnO2nanocomposites. NEW J CHEM 2019. [DOI: 10.1039/c9nj02106j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoprobe prepared by coupling nanoparticles (SiNPs) with BSA templated-MnO2nanosheets was constructed for ascorbic acid analysis.
Collapse
Affiliation(s)
- Ke Xing
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Wei-Xia Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xin Geng
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xue-Ping Shen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jin-Lu Tang
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuan-Qiang Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhao-Hui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
21
|
Phan LMT, Baek SH, Nguyen TP, Park KY, Ha S, Rafique R, Kailasa SK, Park TJ. Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr(VI) ion and biomonitoring of cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:429-436. [DOI: 10.1016/j.msec.2018.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/12/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
|
22
|
McVey BFP, König D, Cheng X, O'Mara PB, Seal P, Tan X, Tahini HA, Smith SC, Gooding JJ, Tilley RD. Synthesis, optical properties and theoretical modelling of discrete emitting states in doped silicon nanocrystals for bioimaging. NANOSCALE 2018; 10:15600-15607. [PMID: 30090899 DOI: 10.1039/c8nr05071f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The creation of multiple emission pathways in quantum dots (QDs) is an exciting prospect with fundamental interest and optoelectronic potential. For the first time, we report multiple emission pathways in semiconductor nanocrystals (NCs) where the number of emission pathways desired is controlled by the number of dopant atoms per quantum dot. The origin of additional emission pathways is explained by interactions between dopant states and NC energy levels. Density functional theory (DFT) calculations of undoped 2.3 nm silicon (Si NCs) and the same NCs doped with 2 interstitial Cu atoms show good agreement to experiment. Such calculations provide valuable data to explain the changes in optical transitions due to the Cu dopant in terms of transition energies, quantum yield and dopant position as a function of dopants per NC. Changes in the optical properties of Si NCs induced by dopant concentration include extended excitation range and enhanced absorption coefficients, emission redshifts of up to 60 nm, and a two-fold increase in quantum yields up to 22%. The optical properties of doped NCs lead to significant bioimaging improvements illustrated by in vitro cell imaging, including redshifted excitation wavelengths away from natural autofluorescence and enhanced fluorescent signals.
Collapse
Affiliation(s)
- B F P McVey
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Geng X, Li Z, Hu Y, Liu H, Sun Y, Meng H, Wang Y, Qu L, Lin Y. One-Pot Green Synthesis of Ultrabright N-Doped Fluorescent Silicon Nanoparticles for Cellular Imaging by Using Ethylenediaminetetraacetic Acid Disodium Salt as an Effective Reductant. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27979-27986. [PMID: 30058796 DOI: 10.1021/acsami.8b09242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of excellent photoluminescence properties, robust chemical inertness, and low cytotoxicity of silicon nanoparticles (Si NPs), exploration of their applications in bioimaging is of great interest. Up to date, a method to synthesis Si NPs with high fluorescence quantum yield (QY) is still challenging. This situation limits the further applications of Si NPs. In this work, we report a mild, simple, and green one-pot method to synthesis N-doped fluorescent Si NPs with an ultrahigh QY up to 62%, using ethylenediaminetetraacetic acid disodium salt as an effective reductant. The obtained ultrabright Si NPs have properties such as relative small size (about 2 nm), water dispersibility, robust stability, and biocompatibility. The as-prepared Si NPs were further applied for cellular imaging with satisfactory results, indicating their great potential in bioimaging applications.
Collapse
Affiliation(s)
- Xin Geng
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Yalei Hu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Haifang Liu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Yuanqiang Sun
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Hongmin Meng
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Yingwen Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Lingbo Qu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
- The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| |
Collapse
|
24
|
Ji X, Wang C, Tang M, Guo D, Peng F, Zhong Y, Song B, Su Y, He Y. Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence. NANOSCALE 2018; 10:14455-14463. [PMID: 30022196 DOI: 10.1039/c8nr03107j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of biocompatible and fluorescent gene carriers is of particular importance in the gene-delivery field. Taking advantage of the unique optical properties (e.g., strong and robust fluorescence) of silicon nanoparticles (SiNPs), as well as the excellent biocompatibility of silicon and protamine sulfate (PS, approved by the U.S. Food and Drug Administration (FDA) for clinical use), we herein present a type of PS-modified SiNP (PS@SiNP)-based gene carrier. Plasmid DNA (pDNA) with negative charges can be effectively bound onto the surface of the as-prepared fluorescent PS@SiNP-based gene carriers via electrostatic interactions. In particular, such resultant gene carriers possess stable and high fluorescence (photoluminescent quantum yield (PLQY): ∼25%). In addition, the PS@SiNP-based gene carriers show minimal toxic effects on normal mitochondrial metabolic activity (e.g., human retinal pigment epithelial (ARPE-19) cells preserve ∼90% of their cell viability after a 48 h incubation with the resultant carriers). Based on tracking the strong and stable fluorescence signals of SiNPs, the dynamic behavior of the PS@SiNP-based gene carriers in live cells (e.g., clathrin-mediated endocytosis, lysosomal escape, pDNA release, etc.) is investigated in a long-term manner, providing valuable information for understanding the intracellular behavior of gene vectors and designing high-efficacy gene carriers.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marcelo G, Ariana-Machado J, Enea M, Carmo H, Rodríguez-González B, Luis Capelo J, Lodeiro C, Oliveira E. Toxicological Evaluation of Luminescent Silica Nanoparticles as New Drug Nanocarriers in Different Cancer Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1310. [PMID: 30060598 PMCID: PMC6117648 DOI: 10.3390/ma11081310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 01/26/2023]
Abstract
Luminescent mesoporous silica nanoparticles, CdTeQDs@MNs@PEG1, SiQDs@Isoc@MNs and SiQDs@Isoc@MNs@PEG2, were successfully synthetized and characterized by SEM, TEM, XRD, N₂ nitrogen isotherms, ¹H NMR, IR, absorption, and emission spectroscopy. Cytotoxic evaluation of these nanoparticles was performed in relevant in vitro cell models, such as human hepatoma HepG2, human brain endothelial (hCMEC/D3), and human epithelial colorectal adenocarcinoma (Caco-2) cell lines. None of the tested nanoparticles showed significant cytotoxicity in any of the three performed assays (MTT/NR/ LDH) compared with the respective solvent and/or coating controls, excepting for CdTeQDs@MNs@PEG1 nanoparticles, where significant toxicity was noticed in hCMEC/D3 cells. The results presented reveal that SiQDs-based mesoporous silica nanoparticles are promising nanoplatforms for cancer treatment, with a pH-responsive drug release profile and the ability to load 80% of doxorubicin.
Collapse
Affiliation(s)
- Gonçalo Marcelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Jessica Ariana-Machado
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Maria Enea
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal.
| | - Benito Rodríguez-González
- Scientific and Technological Research Assistance Centre (CACTI), University of Vigo, 36310 Vigo, Spain.
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| |
Collapse
|
26
|
Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, Zhang M. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun 2018; 9:2605. [PMID: 29973582 PMCID: PMC6031624 DOI: 10.1038/s41467-018-04763-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Various types of nanoparticles have been proposed for targeted drug delivering, imaging, and tracking of therapeutic agents. However, highly biocompatible nanoparticles with structure-induced fluorescence and capability to conjugate with biomarkers and drugs remain lacking. This research proposes and synthesizes fluorescent nanoparticles (f-PNPs) assembled by cyclic peptides to combine imaging and drug delivering for esophageal cancer (EC). To achieve tumor targeting, f-PNPs are first conjugated with RGD moieties to selectively target EC cells via αvβ3 integrin; the nanoparticles are then embedded with epirubicin (EPI). Cell viability assays and analysis of tissue histology reveal that EPI-loaded RGD-f-PNPs (RGD-f-PNPs/EPI) led to significantly reduced cardiotoxicity and improved anti-tumor activity compared to EPI alone. Moreover, the drug delivery to tumor sites and therapeutic responses could be monitored with near-infrared fluorescence using RGD-f-PNPs/EPI. This unique nanoparticle system may lead to potential approaches for bioorganic fluorescence-based delivering, imaging, and drug release tracking.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Institute for Advanced Study, Tongji University, Shanghai, 200092, China
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, OH, 43210, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Chaochu Cui
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 453003, Xinxiang, Henan, China
| | - Leming Sun
- School of Life Sciences, Northwestern Polytechnical University, 710065, Xi'an, China
| | - David H Wang
- Department of Internal Medicine, Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- VA North Texas Health Care System, Dallas, TX, 75216, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, OH, 43210, Columbus, Ohio, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Tang M, Ji X, Xu H, Zhang L, Jiang A, Song B, Su Y, He Y. Photostable and Biocompatible Fluorescent Silicon Nanoparticles-Based Theranostic Probes for Simultaneous Imaging and Treatment of Ocular Neovascularization. Anal Chem 2018; 90:8188-8195. [PMID: 29874038 DOI: 10.1021/acs.analchem.8b01580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ocular neovascularization can result in devastating diseases that lead to marked vision impairment and eventual visual loss. In clinical implementation, neovascular eye diseases are first diagnosed by fluorescein angiography and then treated by multiple intravitreal injections, which nevertheless involves vision-threatening complications, as well as lack of real-time monitoring disease progression and timely assessment of therapeutic outcomes. To address this critical issue, we herein present a kind of theranostic agents made of peptide-functionalized silicon nanoparticles (SiNPs), suitable for simultaneous ocular neovascularization imaging and therapy. Typically, in addition to negligible toxicity and high specific binding ability to human retinal microvascular endothelial cells tube formation, the cyclo-(Arg-Gly-Asp-d-Tyr-Cys) ( c-(RGDyC))-conjugated SiNPs (SiNPs-RGD) features efficacious antiangiogenic ability in wound healing migration, transwell migration, transwell invasion, and tube formation assays. Taking advantage of these unique merits, we further employ the SiNPs-RGD for labeling angiogenic blood vessels and neovascularization suppression, demonstrating obvious inhibition of new blood vessels formation in mouse corneas. These results suggest the SiNPs-RGD as a novel class of high-quality theranostic probes is suitable for simultaneous diagnosis and treatment in ocular neovascular diseases.
Collapse
Affiliation(s)
- Miaomiao Tang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Hua Xu
- Department of Ophthalmology , Children's Hospital of Soochow University, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Lu Zhang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Airui Jiang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
28
|
Abstract
Biochemical analysis in reliable, low-toxicity, and real-time manners are essentially important for exploring and unraveling biological events and related mechanisms. Silicon nanomaterial-based sensors and probes have potentiality to satisfy the above-mentioned requirements. Herein, we present an overview of the recent significant improvement in large-scale and facile synthesis of high-quality silicon nanomaterials and the research progress of biosensing and bioimaging analysis based on silicon nanomaterials. We especially illustrate the advanced applications of silicon nanomaterials in the field of ultrasensitive biomolecular detection and dynamic biological imaging analysis, with a focus on real-time and long-term detection. In the final section of this review, we discuss the major challenges and promising development in this domain.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Ganguly BN, Maity B, Maity TK, Manna J, Roy M, Mukherjee M, Debnath S, Saha P, Shilpa N, Rana RK. l-Cysteine-Conjugated Ruthenium Hydrous Oxide Nanomaterials with Anticancer Active Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1447-1456. [PMID: 29281292 DOI: 10.1021/acs.langmuir.7b01408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioactive nanomaterials, namely: ruthenium hydrous oxide (or ruthenium oxy-hydroxide), RuOx(OH)y and also a surface-conjugated novel material of the same within the template of an amino acid molecule, l-cysteine, have been studied. These compounds have been prepared through a simple wet chemical route, under physiological conditions, such that they could be suitably used in anticancer applications. Several physical methods were used for the nanomaterial characterization, e.g.: thermal analysis of the as prepared ruthenium hydrous oxide by differential scanning calorimetry (DSC) followed by thermal gravimetric analysis (TGA). This confirms that the material is a precursor for anhydrous nanocrystalline ruthenium oxide (RuO2), as is affirmed by powder X-ray diffraction pattern. Also, optical spectroscopic absorption (UV-vis and FT-IR) study of these nanoparticles (NPs) to ascertain their surface conjugation with l-cysteine have been performed. Besides these, surface morphology of the NPs were studied by field emission scanning electron microscopy (FE-SEM) along with their elemental purity check through energy dispersive X-ray analysis (EDX). Their surface chemical microenvironments were examined by X-ray photo electron spectroscopy (XPS). The hydrodynamic size of the prepared NPs were measured through dynamic light scattering (DLS) studies. Further, biological consequences of these NPs on cancerous HeLa cells and their cytotoxicity effects have been reported with MTT assay, such an application has not been reported so far.
Collapse
Affiliation(s)
| | - Buddhadeb Maity
- Department of Chemistry, Mahishadal Raj College , Mahishadal, East Midnapur, West Bengal-721628, India
| | - Tapan Kumar Maity
- Department of Chemistry, Mahishadal Raj College , Mahishadal, East Midnapur, West Bengal-721628, India
| | - Joydeb Manna
- Department of Chemistry, Mahishadal Raj College , Mahishadal, East Midnapur, West Bengal-721628, India
| | - Modhusudan Roy
- Saha Institute of Nuclear Physics , Kolkata-700064, India
| | | | | | - Partha Saha
- Saha Institute of Nuclear Physics , Kolkata-700064, India
- Homi Bhaba National Institute , Mumbai-700094, India
| | - Nagaraju Shilpa
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology , Hyderabad-500007, India
| | - Rohit Kumar Rana
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology , Hyderabad-500007, India
| |
Collapse
|
30
|
Zhang Y, Luo Q, Zheng W, Wang Z, Lin Y, Zhang E, Lü S, Xiang J, Zhao Y, Wang F. Luminescent cyclometallated platinum(ii) complexes: highly promising EGFR/DNA probes and dual-targeting anticancer agents. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00346c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclometallated platinum complexes bearing 4-anilinoquinazolines exhibit high potential as luminescent probes for EGFR/DNA in living cells and dual-targeting anticancer agents.
Collapse
|
31
|
Cheng X, McVey BFP, Robinson AB, Longatte G, O'Mara PB, Tan VTG, Thordarson P, Tilley RD, Gaus K, Justin Gooding J. Protease sensing using nontoxic silicon quantum dots. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-7. [PMID: 28836415 DOI: 10.1117/1.jbo.22.8.087002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Herein is presented a proof-of-concept study of protease sensing that combines nontoxic silicon quantum dots (SiQDs) with Förster resonance energy transfer (FRET). The SiQDs serve as the donor and an organic dye as the acceptor. The dye is covalently attached to the SiQDs using a peptide linker. Enzymatic cleavage of the peptide leads to changes in FRET efficiency. The combination of interfacial design and optical imaging presented in this work opens opportunities for use of nontoxic SiQDs relevant to intracellular sensing and imaging.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
- University of New South Wales, EMBL Australia Node in Single Molecule Science, School of Medical Sci, Australia
| | - Benjamin F P McVey
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Andrew B Robinson
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Guillaume Longatte
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Peter B O'Mara
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Vincent T G Tan
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Pall Thordarson
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Richard D Tilley
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| | - Katharina Gaus
- University of New South Wales, EMBL Australia Node in Single Molecule Science, School of Medical Sci, Australia
| | - John Justin Gooding
- University of New South Wales, School of Chemistry, Australian Centre for NanoMedicine, ARC Centre o, Australia
| |
Collapse
|
32
|
Li Z, Zhang Q, Huang H, Ren C, Ouyang S, Zhao Q. L-noradrenaline functionalized near-infrared fluorescence CdSeTe probe for the determination of urea and bioimaging of HepG2 Cells. Talanta 2017; 171:16-24. [DOI: 10.1016/j.talanta.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
|
33
|
Cao Z, Peng F, Hu Z, Chu B, Zhong Y, Su Y, He S, He Y. In vitro cellular behaviors and toxicity assays of small-sized fluorescent silicon nanoparticles. NANOSCALE 2017; 9:7602-7611. [PMID: 28540373 DOI: 10.1039/c7nr00530j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extensive investigations have been carried out for evaluating the toxicology of various nanomaterials (e.g., carbon- and metal-based nanomaterials), which offer invaluable information for assessing the feasibility of nanomaterial-based wide-ranging applications. In recent years, sufficient efforts have been made to develop fluorescent small-sized silicon nanoparticles (SiNPs) as a novel optical material simultaneously featuring strong fluorescence and ultrahigh photostability, providing high promise for a myriad of biological, biomedical and electronic applications. It is worth pointing out that, despite the non- or low-toxicity of silicon, sufficient and objective toxicology evaluation of SiNPs is urgently required at both the in vitro and in vivo levels. However, there currently exists scanty information about the intracellular behaviors of the SiNPs, particularly the underlying mechanism of entry into cells and intracellular fate. Herein, we present a report aimed at determining the uptake and intracellular transport of SiNPs of ca. 4 nm diameter. Taking advantage of the strong and stable fluorescent signals of SiNPs, we reveal that these small-sized SiNPs accumulate in the plasma membrane prior to internalization, and are further internalized predominantly by clathrin-mediated and caveolae-dependent endocytosis. After endocytosis, the SiNPs are localized in early endosomes within a short time (∼1 h), while in up to 24 h of incubation the SiNPs are mainly transported to lysosomes in a microtubule-dependent way; and interestingly, to a smaller extent are sorted to the Golgi apparatus. Moreover, we demonstrate that there are no toxic effects of SiNPs on the cell metabolic activity and integrity of the plasma membrane.
Collapse
Affiliation(s)
- Zhaohui Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
35
|
Zhao Q, Zhang R, Ye D, Zhang S, Chen H, Kong J. Ratiometric Fluorescent Silicon Quantum Dots-Ce6 Complex Probe for the Live Cell Imaging of Highly Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2052-2058. [PMID: 28026159 DOI: 10.1021/acsami.6b12047] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The monitoring of reactive oxygen species (ROS) in living cells remains challenging because of the complexity, short half-life, and autofluorescence of biological samples. In this work, we designed a ratiometric fluorescent probe for the detection and imaging of ROS, which was constructed from silicon quantum dots (Si QDs) with chlorin e6 (Ce6) through electrostatic attraction and showed well-resolved dual fluorescence emission signals (490 and 660 nm). Sensitive and selective biosensing of hydroxyl radical (•OH) was demonstrated on the basis of fluorescence quenching of the Si QDs and Ce6 as an internal reference to avoid environmental interference, with a detection limit of ∼0.97 μM. The endogenous release of •OH was also monitored and imaged in living cells.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| | - Ren Zhang
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| | - Daixin Ye
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| | - Song Zhang
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| | - Hui Chen
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry, Fudan University , Shanghai 200433, P. R. China
| |
Collapse
|
36
|
Zhang TT, Yang F, Li XL, Zhao W, Xu JJ, Chen HY. A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging. Chem Commun (Camb) 2017; 53:5614-5617. [DOI: 10.1039/c7cc02834b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multifunctional silver nanoparticle based nanocomposite for specific cancer cell therapy andin situimaging.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Fan Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xiang-ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
37
|
Su Y, Ji X, He Y. Water-Dispersible Fluorescent Silicon Nanoparticles and their Optical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10567-10574. [PMID: 27529602 DOI: 10.1002/adma.201601173] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/15/2016] [Indexed: 05/07/2023]
Abstract
Fluorescent silicon nanoparticles (SiNPs) attract considerable attention owing to their intrinsic advantages, including relatively strong fluorescence coupled with robust photostability, rich resource support and relatively low cost, industrial maturity, and good biocompatibility. Extensive efforts are devoted to developing effective methods for the synthesis of hydrogen or halogen-terminated SiNPs, which nevertheless need further surface modification to improve their stability and solubility for wide-ranging applications. Notably, recent years have witnessed the development of various aqueous synthetic strategies for direct preparation of highly fluorescent and photostable SiNPs in the aqueous phase, facilitating the promotion of this promising material for myriad optical applications. Here, a concise discussion of the latest exciting research progress of the preparation of SiNPs is given, with a focus on water-dispersible SiNPs synthesized in the aqueous phase. In addition, representative optical applications of SiNPs in bioimaging and sensing are also summarized. Finally, the opportunities and challenges of fluorescent-SiNP-based optical applications are discussed.
Collapse
Affiliation(s)
- Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
38
|
Ye HL, Cai SJ, Li S, He XW, Li WY, Li YH, Zhang YK. One-Pot Microwave Synthesis of Water-Dispersible, High Fluorescence Silicon Nanoparticles and Their Imaging Applications in Vitro and in Vivo. Anal Chem 2016; 88:11631-11638. [PMID: 27797177 DOI: 10.1021/acs.analchem.6b03209] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silicon nanoparticles (SiNPs) have been reported to be synthesized by microwave-assisted methods under high pressure. However, there is still a lack of knowledge about the synthesis of SiNPs via microwave-assisted methods under normal pressure. Here we developed a new, facile, one-pot microwave-assisted method for the synthesis SiNPs (∼4.2 nm) with excellent water solubility under normal pressure by employing glycerol as the solvent. Furthermore, glycerol might be responsible for the photoluminescence quantum yield (PLQY) value up to 47% for the resultant SiNPs. The use of organic solvent could afford less nanoparticle surface defects compared with those prepared in aqueous solution, thus improving the fluorescent efficiency. The as-prepared SiNPs simultaneously featured bright blue-green fluorescence, long lifetime (∼12.8 ns), obvious up-conversion luminescence originating from two-photon absorption, superbly strong photostability, and favorable low toxicity. As a satisfactory probe, the as-synthesized SiNPs were successfully applied in fluorescence imaging of human cervical carcinoma cell lines (HeLa) and zebrafish.
Collapse
Affiliation(s)
- Hong-Li Ye
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Shi-Jiao Cai
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine , Tianjin 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yu-Hao Li
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine , Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China.,National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
39
|
Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles for Selective Heparin Sensing and Cell Imaging. Anal Chem 2016; 88:10474-10481. [DOI: 10.1021/acs.analchem.6b02448] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Su-dai Ma
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yong-lei Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Juan-juan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xian-wei Zuo
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xing-guo Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
40
|
Rational design and functional evolution of targeted peptides for bioanalytical applications. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0186-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Chu B, Wang H, Song B, Peng F, Su Y, He Y. Fluorescent and Photostable Silicon Nanoparticles Sensors for Real-Time and Long-Term Intracellular pH Measurement in Live Cells. Anal Chem 2016; 88:9235-42. [PMID: 27539306 DOI: 10.1021/acs.analchem.6b02488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluorescent sensors suitable for dynamic measurement of intracellular pH (pHi) fluctuations should feature the following properties: feeble cytotoxicity, wide-pH range response, and strong fluorescence coupled with good photostability, which are still remaining scanty to date. Herein, by functionalizing fluorescent silicon nanoparticles (SiNPs) with pH-sensitive dopamine (DA) and pH-insensitive rhodamine B isothiocyanate (RBITC), we present the first demonstration of fluorescent SiNPs-based sensors, simultaneously exhibiting minimal toxicity (cell viability of treated cells remains above 95% during 24-h treatment), sensitive fluorescent response to a broad pH range (∼4-10), and bright fluorescence coupled with robust photostability (∼9% loss of fluorescence intensity after 40 min continuous excitation; in contrast, fluorescence of Lyso-tracker is rapidly quenched in 5 min under the same experiment conditions). Taking advantage of these merits, we further employ the resultant fluorescent SiNPs sensors for the detection of lysosomal pH change mediated by nigericin in live HeLa and MCF-7 cells in long-term (e.g., 30 min) manners. Interestingly, two consecutive stages, i.e., alkalization lag phase and logarithmic growth phase, are observed based on recording the whole process of pH change, offering important information for understanding the dynamic process of pHi fluctuations.
Collapse
Affiliation(s)
- Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Bin Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Fei Peng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
42
|
|
43
|
McVey BFP, Prabakar S, Gooding JJ, Tilley RD. Solution Synthesis, Surface Passivation, Optical Properties, Biomedical Applications, and Cytotoxicity of Silicon and Germanium Nanocrystals. Chempluschem 2016; 82:60-73. [DOI: 10.1002/cplu.201600207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin F. P. McVey
- School of Chemistry and Electron Microscopy Unit; of the Mark Wainwright Analytical Centre; University of New South Wales; Sydney NSW 2052 Australia
| | - Sujay Prabakar
- Leather&Shoe Research Association of New Zealand; and the MacDiarmid Institute for Advanced Materials and Nanotechnology; Palmerston North 4446 New Zealand
| | - Justin J. Gooding
- School of Chemistry and Electron Microscopy Unit; of the Mark Wainwright Analytical Centre; University of New South Wales; Sydney NSW 2052 Australia
- Australian Centre for Nanomedicine; University of New South Wales; Sydney NSW 2052 Australia
| | - Richard D. Tilley
- School of Chemistry and Electron Microscopy Unit; of the Mark Wainwright Analytical Centre; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
44
|
Chandra S, Ghosh B, Beaune G, Nagarajan U, Yasui T, Nakamura J, Tsuruoka T, Baba Y, Shirahata N, Winnik FM. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning. NANOSCALE 2016; 8:9009-19. [PMID: 27076260 DOI: 10.1039/c6nr01437b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles.
Collapse
Affiliation(s)
- Sourov Chandra
- WPI International Centre for Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
46
|
Wang H, Jiang X, He Y. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications. Analyst 2016; 141:5010-9. [DOI: 10.1039/c6an01251e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the past few decades, thanks to silicon nanomaterials’ outstanding properties, different dimensional silicon nanostructures have been employed for designing and fabricating high-performance surface-enhanced Raman scattering (SERS) sensors for chemical and biological detection.
Collapse
Affiliation(s)
- Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou 215123
- China
| | - Xiangxu Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou 215123
- China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
47
|
Zhang XY, Zheng Y, Liu CH, Wang PH, Zhu YY. Facile and large scale in situ synthesis of the thermal responsive fluorescent SiNPs/PNIPAM hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra09534h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new type of F-SiNPs/poly(N-isopropylacrylamide) (F-SiNPs/PNIPAM) hydrogel was prepared byin situpolymerization. The composite hydrogels display visible thermal-sensitive phase transition properties.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yan Zheng
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Ping-Hua Wang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| |
Collapse
|
48
|
Abstract
Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.
Collapse
Affiliation(s)
- Adita Das
- Department of Chemistry, The University of Illinois at Chicago, 845 W. Taylor St. Rm. 4500, Chicago, IL, 60607, USA
| | - Preston T Snee
- Department of Chemistry, The University of Illinois at Chicago, 845 W. Taylor St. Rm. 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
49
|
Kim DW, Lee OJ, Kim SW, Ki CS, Chao JR, Yoo H, Yoon SI, Lee JE, Park YR, Kweon H, Lee KG, Kaplan DL, Park CH. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 2015; 70:48-56. [DOI: 10.1016/j.biomaterials.2015.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022]
|
50
|
Mansur AAP, de Carvalho SM, Mansur HS. Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells. Int J Biol Macromol 2015; 82:780-9. [PMID: 26499085 DOI: 10.1016/j.ijbiomac.2015.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
Abstract
Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular level for diagnostic and therapeutic purposes. In this work, we report the synthesis of novel multifunctional nanoconjugates composed of fluorescent inorganic semiconductor quantum dot (QD) cores and tripeptide-modified polysaccharide organic shells. These structures were designed for targeting and imaging the αvβ3 integrin receptors of cancer cells. Initially, chitosan was covalently bound with the RGD peptide using a crosslinker to form bioconjugates (RGD-chitosan), which were later utilized as capping ligands for the production of surface-functionalized CdS QDs via a single-step process in aqueous media at room temperature. These core-shell nanostructures were extensively characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential (ZP) and dynamic light scattering (DLS). The TEM images and the UV-vis absorption results indicated the formation of ultra-small CdS QD nanocrystals with average diameters between 2.0 and 3.0 nm. In addition, the PL results demonstrated that the nanobioconjugates exhibited intense green fluorescence under excitation. The CdS-RGD-chitosan systems were effective at specific targeting integrin when assayed in vitro using two model cell cultures, HEK 293 (non-cancerous human embryonic kidney cell) and SAOS (cancerous sarcoma osteogenic-derived cells) imaged using fluorescence microscopy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil
| | - Sandhra M de Carvalho
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil.
| |
Collapse
|