1
|
Liu H, Nail A, Meng D, Zhu L, Guo X, Li C, Li HJ. Recent progress in the 3D printing of microneedle patches for biomedical applications. Int J Pharm 2025; 668:124995. [PMID: 39586508 DOI: 10.1016/j.ijpharm.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
3D-printed microneedles (MNs) have emerged as a transformative technology in drug delivery, diagnostics, and cosmetics, providing a minimally invasive alternative to traditional methods. This review highlights the advancements in 3D printing technologies, including fused deposition modeling (FDM), digital light processing (DLP), and stereolithography (SLA), which enable the precise fabrication of MNs with customizable geometries and functionalities. The unique ability of MNs to penetrate the stratum corneum facilitates enhanced delivery of therapeutic agents, biosensing capabilities, and improved patient compliance. Recent innovations in MNs design, such as biomimetic structures and optimized geometries, have significantly improved their mechanical properties and drug delivery efficiency. Furthermore, integrating sensing elements within MNs enables real-time monitoring of biomarkers, paving the way for personalized medicine. Despite the promising applications, challenges remain, including regulatory considerations, material biocompatibility, and manufacturing scalability. This review discusses the current state of 3D-printed MNs, their diverse applications, and future directions. By addressing existing limitations and exploring novel materials and hybrid fabrication techniques, 3D-printed MNs have the potential to revolutionize healthcare delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Aminov Nail
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xiaohan Guo
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Cong Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Huan-Jun Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| |
Collapse
|
2
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
3
|
Lu H, Rakhymzhanov A, Buttner U, Alsulaiman D. Making Healthcare Accessible: A Rapid Clean-Room-Free Fabrication Strategy for Microfluidics-Driven Biosensors Based on Coupling Stereolithography and Hot Embossing. ACS OMEGA 2024; 9:38096-38106. [PMID: 39281898 PMCID: PMC11391438 DOI: 10.1021/acsomega.4c05196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
Microfluidics offers transformative potential in healthcare by enabling miniaturized, user-friendly, and cost-effective devices for disease diagnostics among other biomedical applications; however, their meaningful adoption is severely hindered, especially in developing countries and resource-limited settings, by the cost, time, and complexity of their fabrication. To overcome this barrier of access, this work develops a novel approach for highly efficient (<4 h), cost-effective, and clean-room-free fabrication of functional polydimethylsiloxane (PDMS)-based microfluidic devices based on coupling stereolithography three-dimensional (3D) printing with hot embossing. The strategy exhibits high fidelity between the digital design and final device, remarkable transfer accuracy between the 3D print and poly(methyl methacrylate) (PMMA) mold, in addition to highly smooth surfaces (R a < 1 μm). To establish the versatility of the approach and performance quality of the fabricated devices, three advanced microfluidics-driven biosensing platforms are developed: a microsphere droplet generator, a stop-flow lithography-based hydrogel microparticle synthesizer, and a hydrogel postembedded microfluidic device for multiplexed biomarker detection. As a proof-of-concept, the latter platform was applied to the multiplexed detection of microRNA, a highly promising class of liquid biopsy biomarkers for many diseases including cancer. Notably, the ability to demonstrate multiplexed sensing of disease biomarkers within devices made through a facile, rapid, and clean-room-free strategy demonstrates the immense potential of this fabrication approach to accelerate the adoption and advancement of biomedical microfluidic devices in practice and in resource-limited settings.
Collapse
Affiliation(s)
- Haoliang Lu
- Division of Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Almas Rakhymzhanov
- Nanofabrication Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Ulrich Buttner
- Nanofabrication Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Dana Alsulaiman
- Division of Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
5
|
Lei X, Ye W, Safdarin F, Baghaei S. Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture. Tissue Cell 2024; 87:102339. [PMID: 38432127 DOI: 10.1016/j.tice.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Microfluidics is an interdisciplinary field that combines knowledge from various disciplines, including biology, chemistry, sports medicine, fluid dynamics, kinetic biomechanics, and microelectronics, to manipulate and control fluids and particles in micron-scale channels and chambers. These channels and chambers can be fabricated using different materials and methods to achieve various geometries and shapes. Microfluidics has numerous biomedical applications, such as drug encapsulation, nanoparticle preparation, cell targeting, analysis, diagnosis, and treatment of sports injuries in both professional and non-professional athletes. It can also be used in other fields, such as biological analysis, chemical synthesis, optics, and acceleration in the treatment of critical sports injuries. The objective of this review is to provide a comprehensive overview of microfluidic technology, including its fabrication methods, current platform materials, and its applications in sports medicine. Biocompatible, biodegradable, and semi-crystalline polymers with unique mechanical and thermal properties are one of the promising materials in microfluidic technology. Despite the numerous advantages of microfluidic technology, further research and development are necessary. Although the technology offers benefits such as ease of operation and cost efficiency, it is still in its early stages. In conclusion, this review emphasizes the potential of microfluidic technology and highlights the need for continued research to fully exploit its potential in the biomedical field and sport applications.
Collapse
Affiliation(s)
- Xuehui Lei
- Graduate School of Wuhan Institute of Physical Education, Wuhan 430079, China
| | - Weiwu Ye
- National Traditional Sports College of Harbin Sports University, Harbin 150008, China.
| | - F Safdarin
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| | - Sh Baghaei
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| |
Collapse
|
6
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
7
|
Khan N, Sengupta P. Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming 'Sorbent Customization as per need'. Crit Rev Anal Chem 2024:1-21. [PMID: 38319592 DOI: 10.1080/10408347.2024.2305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inherent complexity of biological matrices and presence of several interfering substances in biological samples make them unsuitable for direct analysis. An effective sample preparation technique assists in analyte enrichment, improving selectivity and sensitivity of bioanalytical method. Because of several key benefits of employing 3D printed sorbent in sample extraction, it has recently gained popularity across a variety of industries. Applications for 3D printing in the field of bioanalytical research have grown recently, particularly in the areas of miniaturization, (bio)sensing, sample preparation, and separation sciences. Due to the high expense of the solid phase microextraction cartridge, researcher approaches in-lab production of sorbent material for the extraction of analyte from biological samples. Owing to its distinct advantages such as low costs, automation capabilities, capacity to produce products in a variety of shapes, and reduction of tedious steps of sample preparation, 3D printed sorbents are gaining increased attention in the field of bioanalysis. It is also reported to offer high selectivity and assist in achieving a much lower limit of detection. In this review, we have discussed current advancements in different types of 3D printed sorbents, production methods, and their applications in the field of bioanalytical sample preparation.
Collapse
Affiliation(s)
- Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
8
|
Roychoudhury A, Raj R. Role of 3D printing in microfluidics and applications. NEXT-GENERATION SMART BIOSENSING 2024:67-107. [DOI: 10.1016/b978-0-323-98805-6.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Salavatian S, Robbins EM, Kuwabara Y, Castagnola E, Cui XT, Mahajan A. Real-time in vivo thoracic spinal glutamate sensing during myocardial ischemia. Am J Physiol Heart Circ Physiol 2023; 325:H1304-H1317. [PMID: 37737733 PMCID: PMC10908408 DOI: 10.1152/ajpheart.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Zimphango C, Alimagham FC, Hutter T, Hutchinson PJ, Carpenter KL. Quantification of pyruvate in-vitro using mid-infrared spectroscopy: Developing a system for microdialysis monitoring in traumatic brain injury patients. BRAIN & SPINE 2023; 3:102686. [PMID: 38021004 PMCID: PMC10668092 DOI: 10.1016/j.bas.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Introduction Complex metabolic disruption is a major aspect of the pathophysiology of traumatic brain injury (TBI). Pyruvate is an intermediate in glucose metabolism and considered one of the most clinically informative metabolites during neurocritical care of TBI patients, especially in deducing the lactate/pyruvate ratio (LPR) - a widely-used metric for probing the brain's metabolic redox state. LPR is conventionally measured offline on a bedside analyzer, on hourly accumulations of brain microdialysate. However, there is increasing interest within the field to quantify microdialysate pyruvate and LPR continuously in near-real-time within its pathophysiological range. We have previously measured pure standard pyruvate in-vitro using mid-infrared transmission, employing a commercially available external cavity-quantum cascade laser (EC-QCL) and a microfluidic flow cell and reported a limit of detection (LOD) of 0.1 mM. Research question The present study was to test whether the current commercially available state-of-the-art mid-infrared transmission system, can detect pyruvate levels lower than previously reported. Materials and methods We measured pyruvate in perfusion fluid on the mid-infrared transmission system also equipped with an EC-QCL and microfluidic flow cells, tested at three pathlengths. Results We characterised the system to extract its relevant figures-of-merit and report the LOD of 0.07 mM. Discussion and conclusion The reported LOD of 0.07 mM represents a clinically recognised threshold and is the lowest value reported in the field for a sensor that can be coupled to microdialysis. While work is ongoing for a definitive evaluation of the system to measuring pyruvate, these preliminary results set a good benchmark and reference against which future developments can be examined.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Keri L.H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
11
|
Murray DS, Stickel L, Boutelle M. Computational Modeling as a Tool to Drive the Development of a Novel, Chemical Device for Monitoring the Injured Brain and Body. ACS Chem Neurosci 2023; 14:3599-3608. [PMID: 37737666 PMCID: PMC10557062 DOI: 10.1021/acschemneuro.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Real-time measurement of dynamic changes, occurring in the brain and other parts of the body, is useful for the detection and tracked progression of disease and injury. Chemical monitoring of such phenomena exists but is not commonplace, due to the penetrative nature of devices, the lack of continuous measurement, and the inflammatory responses that require pharmacological treatment to alleviate. Soft, flexible devices that more closely match the moduli and shape of monitored tissue and allow for surface microdialysis provide a viable alternative. Here, we show that computational modeling can be used to aid the development of such devices and highlight the considerations when developing a chemical monitoring probe in this way. These models pave the way for the development of a new class of chemical monitoring devices for monitoring neurotrauma, organs, and skin.
Collapse
Affiliation(s)
- De-Shaine Murray
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
- School
of Engineering and Applied Sciences, Yale
University, 06520, New Haven, Connecticut United States
| | - Laure Stickel
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
- Laboratoire
Physico-Chimie Curie, Institut Curie, 26 rue d’Ulm, 75005, Paris, France
| | - Martyn Boutelle
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
| |
Collapse
|
12
|
Ma S, Zhao W, Zhang Q, Zhang K, Liang C, Wang D, Liu X, Zhan X. A portable microfluidic electrochemical sensing platform for rapid detection of hazardous metal Pb 2+ based on thermocapillary convection using 3D Ag-rGO-f-Ni(OH) 2/NF as a signal amplifying element. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130923. [PMID: 36738616 DOI: 10.1016/j.jhazmat.2023.130923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution is causing a great threat to ecological environment and public health, which needs an efficient strategy for monitoring. A portable microfluidic electrochemical sensing system was developed for the determination of heavy metal ions. Herein, the detection of Pb2+ was chosen as a model, and a microfluidic electrochemical sensing chip relying on a smartphone-based electrochemical workstation was proposed for rapid detection Pb2+ with the assistance of thermocapillary convection result from the formed temperature gradient. The 3D Ag-rGO-f-Ni(OH)2/NF composites, prepared by one-step hydrothermal method without any Ni precursor salt, were used to further amplify electrochemical signals under the synergistic effect of thermocapillary convection. The thermocapillary convection could accelerate the preconcentration process and shorten the detection time (save 300 s of preconcentration time). The fabricated system exhibited the exceptional competence for monitoring of Pb2+ range from 0.01 μg/L to 2100 μg/L with a low detection limit (LOD) of 0.00464 μg/L. Furthermore, this portable system has been successfully demonstrated for detecting Pb2+ (0.01 μg/L to 2100 μg/L) in river water (LOD = 0.00498 μg/L), fish (LOD = 0.00566 μg/L) and human serum samples (LOD = 0.00836 μg/L), and the results were consistent with inductively coupled plasma-mass spectrometry (ICP-MS). The proposed novel sensing platform provides a cost-effectiveness, rapidly responding and ease-to-use pathway for analysis of heavy metal ions in real samples and shows great potential in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China.
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Chong Liang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Dingkai Wang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
13
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Abstract
Flexible sweat sensors have found widespread potential applications for long-term wear and tracking and real-time monitoring of human health. However, the main substrate currently used in common flexible sweat sensors is thin film, which has disadvantages such as poor air permeability and the need for additional wearables. In this Review, the recent progress of sweat sensors has been systematically summarized by the types of monitoring methods of sweat sensors. In addition, this Review introduces and compares the performance of sweat sensors based on thin film and textile substrates such as fiber/yarn. Finally, opportunities and suggestions for the development of flexible sweat sensors are presented by summarizing the integration methods of sensors and human body monitoring sites.
Collapse
Affiliation(s)
- Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Haibo Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Qianqian Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Yin He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
15
|
Heuer C, Preuß J, Habib T, Enders A, Bahnemann J. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci 2022; 22:744-759. [PMID: 36514534 PMCID: PMC9731604 DOI: 10.1002/elsc.202100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems-which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D-printed objects in biotechnology-ranging from miniaturized cultivation chambers to microfluidic lab-on-a-chip devices for diagnostics-are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Taieb Habib
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Anton Enders
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Janina Bahnemann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Cell Culture TechnologyFaculty of TechnologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
16
|
Ramachandran B, Liao YC. Microfluidic wearable electrochemical sweat sensors for health monitoring. BIOMICROFLUIDICS 2022; 16:051501. [PMID: 36186757 PMCID: PMC9520469 DOI: 10.1063/5.0116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Research on remote health monitoring through wearable sensors has attained popularity in recent decades mainly due to aging population and expensive health care services. Microfluidic wearable sweat sensors provide economical, non-invasive mode of sample collection, important physiological information, and continuous tracking of human health. Recent advances in wearable sensors focus on electrochemical monitoring of biomarkers in sweat and can be applicable in various fields like fitness monitoring, nutrition, and medical diagnosis. This review focuses on the evolution of wearable devices from benchtop electrochemical systems to microfluidic-based wearable sensors. Major classification of wearable sensors like skin contact-based and biofluidic-based sensors are discussed. Furthermore, sweat chemistry and related biomarkers are explained in addition to integration of microfluidic systems in wearable sweat sensors. At last, recent advances in wearable electrochemical sweat sensors are discussed, which includes tattoo-based, paper microfluidics, patches, wrist band, and belt-based wearable sensors.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
18
|
Esene JE, Boaks M, Bickham AV, Nordin GP, Woolley AT. 3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers. Mikrochim Acta 2022; 189:204. [PMID: 35484354 PMCID: PMC10079432 DOI: 10.1007/s00604-022-05303-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300-350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50-400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.
Collapse
Affiliation(s)
- Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Anna V Bickham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
19
|
Zimphango C, Alimagham FC, Carpenter KLH, Hutchinson PJ, Hutter T. Monitoring Neurochemistry in Traumatic Brain Injury Patients Using Microdialysis Integrated with Biosensors: A Review. Metabolites 2022; 12:metabo12050393. [PMID: 35629896 PMCID: PMC9146878 DOI: 10.3390/metabo12050393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain’s extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain’s energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Correspondence:
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Del Rosario M, Heil HS, Mendes A, Saggiomo V, Henriques R. The Field Guide to 3D Printing in Optical Microscopy for Life Sciences. Adv Biol (Weinh) 2022; 6:e2100994. [PMID: 34693666 DOI: 10.1002/adbi.202100994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Indexed: 01/27/2023]
Abstract
The maker movement has reached the optics labs, empowering researchers to create and modify microscope designs and imaging accessories. 3D printing has a disruptive impact on the field, improving accessibility to fabrication technologies in additive manufacturing. This approach is particularly useful for rapid, low-cost prototyping, allowing unprecedented levels of productivity and accessibility. From inexpensive microscopes for education such as the FlyPi to the highly complex robotic microscope OpenFlexure, 3D printing is paving the way for the democratization of technology, promoting collaborative environments between researchers, as 3D designs are easily shared. This holds the unique possibility of extending the open-access concept from knowledge to technology, allowing researchers everywhere to use and extend model structures. Here, it is presented a review of additive manufacturing applications in optical microscopy for life sciences, guiding the user through this new and exciting technology and providing a starting point to anyone willing to employ this versatile and powerful new tool.
Collapse
Affiliation(s)
- Mario Del Rosario
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Hannah S Heil
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Afonso Mendes
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University and Research, Wageningen, 6708WG, The Netherlands
| | - Ricardo Henriques
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
- Quantitative Imaging and Nanobiophysics, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
21
|
Miniaturized 3D printed solid-phase extraction cartridges with integrated porous frits. Anal Chim Acta 2022; 1208:339790. [DOI: 10.1016/j.aca.2022.339790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/23/2023]
|
22
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
23
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
24
|
Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue Han
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Tiange Wu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| |
Collapse
|
25
|
Gifford EK, Robbins EM, Jaquins-Gerstl A, Rerick MT, Nwachuku EL, Weber SG, Boutelle MG, Okonkwo DO, Puccio AM, Michael AC. Validation of Dexamethasone-Enhanced Continuous-Online Microdialysis for Monitoring Glucose for 10 Days after Brain Injury. ACS Chem Neurosci 2021; 12:3588-3597. [PMID: 34506125 DOI: 10.1021/acschemneuro.1c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces a pathophysiologic state that can be worsened by secondary injury. Monitoring brain metabolism with intracranial microdialysis can provide clinical insights to limit secondary injury in the days following TBI. Recent enhancements to microdialysis include the implementation of continuously operating electrochemical biosensors for monitoring the dialysate sample stream in real time and dexamethasone retrodialysis to mitigate the tissue response to probe insertion. Dexamethasone-enhanced continuous-online microdialysis (Dex-enhanced coMD) records long-lasting declines of glucose after controlled cortical impact in rats and TBI in patients. The present study employed retrodialysis and fluorescence microscopy to investigate the mechanism responsible for the decline of dialysate glucose after injury of the rat cortex. Findings confirm the long-term functionality of Dex-enhanced coMD for monitoring brain glucose after injury, demonstrate that intracranial glucose microdialysis is coupled to glucose utilization in the tissues surrounding the probes, and validate the conclusion that aberrant glucose utilization drives the postinjury glucose decline.
Collapse
Affiliation(s)
- Emily K. Gifford
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael T. Rerick
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
26
|
Monitoring of Lactate in Interstitial Fluid, Saliva and Sweat by Electrochemical Biosensor: The Uncertainties of Biological Interpretation. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactate electrochemical biosensors were fabricated using Pediococcus sp lactate oxidase (E.C. 1.1.3.2), an external polyurethane membrane laminate diffusion barrier and an internal ionomeric polymer barrier (sulphonated polyether ether sulphone polyether sulphone, SPEES PES). In a needle embodiment, a Pt wire working electrode was retained within stainless steel tubing serving as pseudoreference. The construct gave linearity to at least 25 mM lactate with 0.17 nA/mM lactate sensitivity. A low permeability inner membrane was also unexpectedly able to increase linearity. Responses were oxygen dependent at pO2 < 70 mmHg, irrespective of the inclusion of an external diffusion barrier membrane. Subcutaneous tissue was monitored in Sprague Dawley rats, and saliva and sweat during exercise in human subjects. The tissue sensors registered no response to intravenous Na lactate, indicating a blood-tissue lactate barrier. Salivary lactate allowed tracking of blood lactate during exercise, but lactate levels were substantially lower than those in blood (0–3.5 mM vs. 1.6–12.1 mM), with variable degrees of lactate partitioning from blood, evident both between subjects and at different exercise time points. Sweat lactate during exercise measured up to 23 mM but showed highly inconsistent change as exercise progressed. We conclude that neither tissue interstitial fluid nor sweat are usable as surrogates for blood lactate, and that major reappraisal of lactate sensor use is indicated for any extravascular monitoring strategy for lactate.
Collapse
|
27
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
28
|
Prabhakar P, Sen RK, Dwivedi N, Khan R, Solanki PR, Srivastava AK, Dhand C. 3D-Printed Microfluidics and Potential Biomedical Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.609355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
3D printing is a smart additive manufacturing technique that allows the engineering of biomedical devices that are usually difficult to design using conventional methodologies such as machining or molding. Nowadays, 3D-printed microfluidics has gained enormous attention due to their various advantages including fast production, cost-effectiveness, and accurate designing of a range of products even geometrically complex devices. In this review, we focused on the recent significant findings in the field of 3D-printed microfluidic devices for biomedical applications. 3D printers are used as fabrication tools for a broad variety of systems for a range of applications like diagnostic microfluidic chips to detect different analytes, for example, glucose, lactate, and glutamate and the biomarkers related to different clinically relevant diseases, for example, malaria, prostate cancer, and breast cancer. 3D printers can print various materials (inorganic and polymers) with varying density, strength, and chemical properties that provide users with a broad variety of strategic options. In this article, we have discussed potential 3D printing techniques for the fabrication of microfluidic devices that are suitable for biomedical applications. Emerging diagnostic technologies using 3D printing as a method for integrating living cells or biomaterials into 3D printing are also reviewed.
Collapse
|
29
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
30
|
Research and Application Progress of Intelligent Wearable Devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60076-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021; 26:748. [PMID: 33535493 PMCID: PMC7867046 DOI: 10.3390/molecules26030748] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.
Collapse
Affiliation(s)
- Atul Sharma
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana 122505, India
| | - Mihaela Badea
- Fundamental, Prophylactic and Clinical Specialties Department, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, CHATTISGARH 492010, India;
| | - Jean Louis Marty
- University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
32
|
Theyagarajan K, Elancheziyan M, Aayushi PS, Thenmozhi K. Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing. Int J Biol Macromol 2020; 163:358-365. [PMID: 32634514 DOI: 10.1016/j.ijbiomac.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Facile yet simple platforms for the immobilization of biomolecules have always been a substantial requirement for the fabrication of proficient biosensors. In this study, we report a naphthyl substituted acetate functionalized ionic liquid (NpAc-IL) for the covalent anchoring of horseradish peroxidase (HRP), using which the direct electrochemistry of HRP was successfully accomplished and a H2O2 biosensor was developed. The naphthyl substitution on the NpAc-IL was utilized for the π-π stacking with the MWCNT modified GCE and the terminal -OCH3 group of NpAc-IL was used for the covalent attachment with the free -NH2 group of HRP via amide bond formation. High conducting nature of the newly designed ionic liquid (NpAc-IL), facilitated an improved communication with the deeply buried redox centre of the HRP, while the covalent bonding provided enhanced stability to the fabricated biosensor by stably holding the water soluble HRP enzyme on the electrode surface. Furthermore, incorporation of MWCNT on the sensor setup synergistically enhanced the sensitivity of the developed biosensor. Under optimized conditions, the fabricated biosensor showed an enhanced electrocatalytic reduction of H2O2 in the range of 0.01 to 2.07 mM with a limit of detection and sensitivity of 2.7 μM and 55.98 μA mM-1 cm-2 respectively. Further, the proposed biosensor was utilized for the sensing of H2O2 spiked in real samples. Moreover, the newly fabricated biosensor demonstrated excellent stability with improved sensitivity and selectivity towards H2O2 reduction. The superior analytical characteristics are attributed to the facile fabrication strategy using this newly developed acetate functionalized ionic liquid platform.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mari Elancheziyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Prakash Sinha Aayushi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
33
|
Tageldeen MK, Gowers SAN, Leong CL, Boutelle MG, Drakakis EM. Traumatic brain injury neuroelectrochemical monitoring: behind-the-ear micro-instrument and cloud application. J Neuroeng Rehabil 2020; 17:114. [PMID: 32825829 PMCID: PMC7441655 DOI: 10.1186/s12984-020-00742-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury outside the ICU. Methods We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support variable gain programming to automatically tune the input dynamic range and address biosensors’ falling sensitivity. The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE) receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored, processed and visualised in real-time. Bench testing has been used to validate device performance. Results The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to +1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents. Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25 ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud. Conclusion The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data recorded in the cloud application could be used to help diagnosis and guide rehabilitation.
Collapse
Affiliation(s)
- Momen K Tageldeen
- Bioinspired VLSI Circuits and Systems Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Sally A N Gowers
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Chi L Leong
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Martyn G Boutelle
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Emmanuel M Drakakis
- Bioinspired VLSI Circuits and Systems Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
34
|
Monitoring with In Vivo Electrochemical Sensors: Navigating the Complexities of Blood and Tissue Reactivity. SENSORS 2020; 20:s20113149. [PMID: 32498360 PMCID: PMC7308849 DOI: 10.3390/s20113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
The disruptive action of an acute or critical illness is frequently manifest through rapid biochemical changes that may require continuous monitoring. Within these changes, resides trend information of predictive value, including responsiveness to therapy. In contrast to physical variables, biochemical parameters monitored on a continuous basis are a largely untapped resource because of the lack of clinically usable monitoring systems. This is despite the huge testing repertoire opening up in recent years in relation to discrete biochemical measurements. Electrochemical sensors offer one of the few routes to obtaining continuous readout and, moreover, as implantable devices information referable to specific tissue locations. This review focuses on new biological insights that have been secured through in vivo electrochemical sensors. In addition, the challenges of operating in a reactive, biological, sample matrix are highlighted. Specific attention is given to the choreographed host rejection response, as evidenced in blood and tissue, and how this limits both sensor life time and reliability of operation. Examples will be based around ion, O2, glucose, and lactate sensors, because of the fundamental importance of this group to acute health care.
Collapse
|
35
|
Sreenivasan P, Wilson J, Nair PD, Thomas LV. Polycaprolactone solution–based ink for designing microfluidic channels on paper via 3D printing platform for biosensing application. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priyadarsini Sreenivasan
- Division of Tissue Engineering and Regenerative Technologies, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and Technology Thiruvananthapuram Kerala India
| | - Jijo Wilson
- Division of Tissue Engineering and Regenerative Technologies, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and Technology Thiruvananthapuram Kerala India
| | - Prabha Damodaran Nair
- Division of Tissue Engineering and Regenerative Technologies, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and Technology Thiruvananthapuram Kerala India
| | - Lynda Velutheril Thomas
- Division of Tissue Engineering and Regenerative Technologies, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and Technology Thiruvananthapuram Kerala India
| |
Collapse
|
36
|
Hayter EA, Castiaux AD, Martin RS. 3D-Printed Microfluidic Device with In-line Amperometric Detection that Also Enables Multi-Modal Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2046-2051. [PMID: 32849919 PMCID: PMC7444025 DOI: 10.1039/d0ay00368a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic amperometric detectors often include a reservoir to house auxiliary and reference electrodes, making subsequent detection downstream challenging. Here, we present an in-line microfluidic device with amperometric detection that incorporates a three-electrode set-up, made possible by threading electrodes into a 3D-printed flow cell. The electrodes consist of a commercially available threaded reference electrode and electrodes fabricated in commercially available fittings. This approach centers the working electrode in the fluidic channel enabling the use of a pillar working electrode that is shown to increase sensitivity, as compared to a traditional thin-layer electrode. In addition, the working and auxiliary electrodes can be directly opposed, with this configuration leading to a more uniform potential being applied to the working electrode as well as fewer issues with any iR drop. To demonstrate the ability to incorporate a separate mode of detection downstream from the electrochemical flow cell, the device is modified to include a mixing T for introduction of reagents for chemiluminescent detection of ATP (via the luciferin-luciferase reaction), leading to a single 3D-printed device that can be used to detect norepinephrine and ATP, nearly simultaneously, by amperometry and chemiluminescence, respectively. This approach opens numerous possibilities, where microfluidics with in-line amperometry can be used in continuous circulation studies or in conjunction with other downstream detection events to study complex systems.
Collapse
|
37
|
|
38
|
Gowers SAN, Samper IC, Murray DSRK, Smith GK, Jeyaprakash S, Rogers ML, Karlsson M, Olsen MH, Møller K, Boutelle MG. Real-time neurochemical measurement of dynamic metabolic events during cardiac arrest and resuscitation in a porcine model. Analyst 2020; 145:1894-1902. [DOI: 10.1039/c9an01950b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work describes a fully-integrated portable microfluidic analysis system for real-time monitoring of dynamic changes in glucose and lactate occurring in the brain as a result of cardiac arrest and resuscitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kirsten Møller
- Department of Neuroanaesthesiology
- Rigshospitalet
- Copenhagen
- Denmark
| | | |
Collapse
|
39
|
Björnmalm M, Wong LM, Wojciechowski JP, Penders J, Horgan CC, Booth MA, Martin NG, Sattler S, Stevens MM. In vivo biocompatibility and immunogenicity of metal-phenolic gelation. Chem Sci 2019; 10:10179-10194. [PMID: 31700596 PMCID: PMC6837883 DOI: 10.1039/c9sc03325d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo forming hydrogels are of interest for diverse biomedical applications due to their ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled using metal-phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. TiIV or ZrIV) provide a versatile and robust platform for engineering such materials. However, the in situ formation and in vivo response to this new class of materials has not yet been reported. Here, we demonstrate that metal-phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. The TiIV-tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivo gelation), TiIV-tannic acid materials show a substantially improved in vitro drug release profile for the corticosteroid dexamethasone (from <1 day to >10 days). These results provide essential in vivo characterization for this new class of metal-phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Mattias Björnmalm
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Lok Man Wong
- National Heart and Lung Institute
, Imperial College London
,
London W12 0NN
, UK
.
| | - Jonathan P. Wojciechowski
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Jelle Penders
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Conor C. Horgan
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Marsilea A. Booth
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Nicholas G. Martin
- Trace Element Laboratory
, North West London Pathology
,
Charing Cross Hospital
, London W6 8RF
, UK
| | - Susanne Sattler
- National Heart and Lung Institute
, Imperial College London
,
London W12 0NN
, UK
.
| | - Molly M. Stevens
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| |
Collapse
|
40
|
Abstract
We explore here the application of modern computer hardware and software to the collection and analysis of behavioral data. We discuss the issues of ecological validity, storage and processing, data permanence, automation, validity, and algorithmic determinism. Taking the modern landscape into account, we demonstrate several varying projects we have recently undertaken as proofs of concept of the viability and utility of this approach. In particular, we describe four research projects, which involve work on child-directed speech; the application of automatic methods to clinical populations, including children with hearing loss; quality control and the assessment of validity; and the sharing of data in a public database. We conclude by pointing out how the methodology described here can be extended to a wide variety of interdisciplinary and detailed projects that are likely to lead to better science and improved outcomes for populations served by the behavioral, social, and health sciences.
Collapse
|
41
|
Samper IC, Gowers SAN, Booth MA, Wang C, Watts T, Phairatana T, Vallant N, Sandhu B, Papalois V, Boutelle MG. Portable Microfluidic Biosensing System for Real-Time Analysis of Microdialysate in Transplant Kidneys. Anal Chem 2019; 91:14631-14638. [PMID: 31647870 PMCID: PMC7110273 DOI: 10.1021/acs.analchem.9b03774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Currently, there is a severe shortage of donor kidneys that are fit for transplantation, due in part to a lack of adequate viability assessment tools for transplant organs. This work presents the integration of a novel wireless two-channel amperometric potentiostat with microneedle-based glucose and lactate biosensors housed in a 3D printed chip to create a microfluidic biosensing system that is genuinely portable. The wireless potentiostat transmits data via Bluetooth to an Android app running on a tablet. The whole miniaturized system is fully enclosed and can be integrated with microdialysis to allow continuous monitoring of tissue metabolite levels in real time. We have also developed a wireless portable automated calibration platform so that biosensors can be calibrated away from the laboratory and in transit. As a proof of concept, we have demonstrated the use of this portable analysis system to monitor porcine kidneys for the first time from organ retrieval, through warm ischemia, transportation on ice, right through to cold preservation and reperfusion. The portable system is robust and reliable in the challenging conditions of the abattoir and during kidney transportation and can detect clear physiological changes in the organ associated with clinical interventions.
Collapse
Affiliation(s)
- Isabelle C Samper
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| | - Sally A N Gowers
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| | - Marsilea A Booth
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| | - Chu Wang
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| | - Thomas Watts
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| | - Tonghathai Phairatana
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K.,Institute of Biomedical Engineering, Faculty of Medicine , Prince of Songkla University , Hat Yai 90110 , Thailand
| | - Natalie Vallant
- Department of Surgery and Cancer , Imperial College London , London SW7 2AZ , U.K
| | - Bynvant Sandhu
- Department of Surgery and Cancer , Imperial College London , London SW7 2AZ , U.K
| | - Vassilios Papalois
- Department of Surgery and Cancer , Imperial College London , London SW7 2AZ , U.K
| | - Martyn G Boutelle
- Department of Bioengineering , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
42
|
|
43
|
Bettermann S, Stuhr R, Moritz HU, Pauer W. Customizable 3D-printed stirrers for investigation, optimization and scale-up processes of batch emulsion copolymerizations. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Abstract
Recent advances in bioprinting technologies have enabled rapid manufacturing of organ-on-chip models along with biomimetic tissue microarchitectures. Bioprinting techniques can be used to integrate microfluidic channels and flow connections in organ-on-chip models. We review bioprinters in two categories of nozzle-based and optical-based methods, and then discuss their fabrication parameters such as resolution, replication fidelity, fabrication time, and cost for micro-tissue models and microfluidic applications. The use of bioprinters has shown successful replicates of functional engineered tissue models integrated within a desired microfluidic system, which facilitates the observation of metabolism or secretion of models and sophisticated control of a dynamic environment. This may provide a wider order of tissue engineering fabrication in mimicking physiological conditions for enhancing further applications such as drug development and pathological studies.
Collapse
Affiliation(s)
- Amir K. Miri
- Department of Mechanical Engineering Rowan University, 401 North Campus Drive, Glassboro, NJ 08028, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115
| | - Danial Khorsandi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Shu-Kai Hu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Malpica
- Department of Mechanical Engineering Rowan University, 401 North Campus Drive, Glassboro, NJ 08028, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Ruzgas T, Larpant N, Shafaat A, Sotres J. Wireless, Battery‐Less Biosensors Based on Direct Electron Transfer Reactions. ChemElectroChem 2019. [DOI: 10.1002/celc.201901015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tautgirdas Ruzgas
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| | - Nutcha Larpant
- Graduate Program in Clinical Biochemistry and Molecular Medicine Faculty of Allied Health SciencesChulalongkorn University Patumwan Bangkok 10330 Thailand
| | - Atefeh Shafaat
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| | - Javier Sotres
- Department of Biomedical Science Faculty of Health and SocietyMalmö University 205 06 Malmö Sweden
- Biofilms – Research Center for BiointerfacesMalmö University 205 06 Malmö Sweden
| |
Collapse
|
46
|
Wu D, Zhao Z, Zhang Q, Qi HJ, Fang D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. SOFT MATTER 2019; 15:6151-6159. [PMID: 31317163 DOI: 10.1039/c9sm00725c] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Digital light processing (DLP) three-dimensional (3D) printing technology has advantages of fast printing speed and high printing precision. It can print objects with small and complex geometrical features and has been widely used in jewelry manufacturing and dentistry. In DLP printing, it is common to use post-treatment with UV light irradiation to improve the final mechanical properties. However, it was found that the UV post-curing process can lead to shape distortion and thus reduction of dimension accuracy. In this paper, we combined photopolymerization reaction kinetics and Euler-Bernoulli beam theory to study UV post-curing induced shape distortion of thin structures prepared by DLP 3D printing. Experiments were conducted to characterize the evolution of mechanical behavior of printed samples during the post-printing process, which was correlated to printing parameters (printing time of single-layer, height of single-layer and printing UV intensity), post-curing UV light intensity and the thickness of the strip. Moreover, post-curing induced distortion was used for the fabrication of 3D structures.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory for Turbulence and Complex Systems & Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Zeang Zhao
- State Key Laboratory for Turbulence and Complex Systems & Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China. and The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qiang Zhang
- State Key Laboratory for Turbulence and Complex Systems & Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China. and The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Daining Fang
- State Key Laboratory for Turbulence and Complex Systems & Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China. and Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
47
|
Gowers SAN, Rogers ML, Booth MA, Leong CL, Samper IC, Phairatana T, Jewell SL, Pahl C, Strong AJ, Boutelle MG. Clinical translation of microfluidic sensor devices: focus on calibration and analytical robustness. LAB ON A CHIP 2019; 19:2537-2548. [PMID: 31290529 PMCID: PMC7321805 DOI: 10.1039/c9lc00400a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present approaches to facilitate the use of microfluidics outside of the laboratory, in our case within a clinical setting and monitoring from human subjects, where the complexity of microfluidic devices requires high skill and expertise and would otherwise limit translation. Microfluidic devices show great potential for converting complex laboratory protocols into on-chip processes. We demonstrate a flexible microfluidic platform can be coupled to microfluidic biosensors and used in conjunction with clinical microdialysis. The versatility is demonstrated through a series of examples of increasing complexity including analytical processes relevant to a clinical environment such as automatic calibration, standard addition, and more general processes including system optimisation, reagent addition and homogenous enzyme reactions. The precision and control offered by this set-up enables the use of microfluidics by non-experts in clinical settings, increasing uptake and usage in real-world scenarios. We demonstrate how this type of system is helpful in guiding physicians in real-time clinical decision-making.
Collapse
Affiliation(s)
| | | | | | - Chi L Leong
- Department of Bioengineering, Imperial College London, UK.
| | | | - Tonghathai Phairatana
- Department of Bioengineering, Imperial College London, UK. and Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | | | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, Kings College London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Kings College London, UK
| | | |
Collapse
|
48
|
Nightingale AM, Leong CL, Burnish RA, Hassan SU, Zhang Y, Clough GF, Boutelle MG, Voegeli D, Niu X. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor. Nat Commun 2019; 10:2741. [PMID: 31227695 PMCID: PMC6588579 DOI: 10.1038/s41467-019-10401-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
Knowing how biomarker levels vary within biological fluids over time can produce valuable insight into tissue physiology and pathology, and could inform personalised clinical treatment. We describe here a wearable sensor for monitoring biomolecule levels that combines continuous fluid sampling with in situ analysis using wet-chemical assays (with the specific assay interchangeable depending on the target biomolecule). The microfluidic device employs a droplet flow regime to maximise the temporal response of the device, using a screw-driven push-pull peristaltic micropump to robustly produce nanolitre-sized droplets. The fully integrated sensor is contained within a small (palm-sized) footprint, is fully autonomous, and features high measurement frequency (a measurement every few seconds) meaning deviations from steady-state levels are quickly detected. We demonstrate how the sensor can track perturbed glucose and lactate levels in dermal tissue with results in close agreement with standard off-line analysis and consistent with changes in peripheral blood levels.
Collapse
Affiliation(s)
- Adrian M Nightingale
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Chi Leng Leong
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rachel A Burnish
- Critical Care/ Anaesthesia and Perioperative Medicine Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Sammer-Ul Hassan
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yu Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Geraldine F Clough
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - David Voegeli
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Now at Department of Sport, Exercise & Health, University of Winchester, Winchester, SO22 4NR, UK
| | - Xize Niu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
49
|
Yang B, Kong J, Fang X. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 2019; 204:685-692. [PMID: 31357353 DOI: 10.1016/j.talanta.2019.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
With the development of flexible advanced materials and microfluidic technology, wearable biosensors provide a new strategy for the continuous monitoring of health. In this study, a novel bandage-like wearable flexible microfluidic recombinase polymerase amplification (RPA) sensor was constructed for the rapid and visual detection of nucleic acids. This wearable sensor is triggered by human body heat (30°C-37 °C) and allows for visual nucleic acid (a conserved nucleic acid fragments of zika virus) detection within 10 min. The sensor displays good sensitivity and selectivity, with a detection limit of 10 copies/μL. The wearable sensor has exhibited well-defined accuracy when applied to testing clinical serum samples. In addition, the wearable RPA sensor was proved to be feasible by human trials under different daily activities. This wearable sensor of nucleic acids will probably be of great significance in the field of online pathogen detection for wounds, for tumour biomarker diagnosis, and for the detection of epidermal cell molecular lesions.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
50
|
Samper IC, Gowers SAN, Rogers ML, Murray DSRK, Jewell SL, Pahl C, Strong AJ, Boutelle MG. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. LAB ON A CHIP 2019; 19:2038-2048. [PMID: 31094398 PMCID: PMC9209945 DOI: 10.1039/c9lc00044e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | | |
Collapse
|