1
|
Qi R, Huang X, Yang T, Luo P, Qi W, Zhang Y, Yuan H, Li H, Wang J, Liu B, Xie S. Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules 2024; 29:4610. [PMID: 39407540 PMCID: PMC11477776 DOI: 10.3390/molecules29194610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Tailoring the morphologies and optical properties of the 2D and hierarchical nanostructures self-assembled by the π-conjugated molecules is both interesting and challenging. Herein, a series of 2D ribbon-like nanostructures with single or multiple H-aggregated perylene bisimides (PBI) monolayer and hierarchical nanostructures (including straw-like, dumbbell-shaped, and rod-like nanostructures) are fabricated by solution self-assembly of three chiral alanine-decorated PBI. The influence of the solvent's dissolving capacity, the chirality of alanine, and the preparation methods on the morphologies and optical properties of the nanostructures were extensively studied. It was observed that the hierarchical nanostructures are formed by the reorganization of the 2D ribbon-like nanostructures. The size of the 2D ribbon-like nanostructures and the amount of the hierarchical nanostructures increase with the decrease in the solvent's dissolving capacity. The small chiral alanine moiety is unable to induce chirality in the nanostructures, owing to its low steric hindrance and the dominant strong π-π stacking interaction of the PBI skeleton. A weaker π-π stacking interaction and better H-aggregated arrangement of the PBI skeleton could reduce the low-wavelength fluorescence intensity. The process of heating, cooling, and aging promotes the formation of H-aggregation in the PBI skeleton. The region of spectral overlap of the PBI solutions increases with the decrease in the dissolving capacity of the solvent and the steric hindrance of the chiral alanine. This study supplies a view to tailor the morphologies and optical properties of the nanostructures, which could be used as sensors and photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (R.Q.); (X.H.); (T.Y.); (P.L.); (W.Q.); (Y.Z.); (H.Y.); (H.L.); (J.W.); (B.L.)
| |
Collapse
|
2
|
Gaur K, Kaur K, Bhardwaj G, Kaur N, Singh N. Benzimidazolium Salt Modified Microporous Silica-Coupled Iron Oxide Nanoparticles: Material Engineered for Nitrate Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49790-49800. [PMID: 39231029 DOI: 10.1021/acsami.4c10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Today's extensive use of inorganic fertilizers in agricultural techniques has increased the concentration of nitrate in drinking water beyond safety limits, causing serious health problems in humans such as thyroidism and methemoglobinemia. Therefore, the present work describes the synthesis of a benzimidazolium salt-based fluorescent chemosensor (KG3) via a multistep synthesis which detects nitrate ions in aqueous medium. This was validated using various analytical techniques such as fluorescence spectroscopy, UV-visible spectroscopy, and electrochemical studies with a detection limit of 0.032 μM without any interference from other active water pollutants. Subsequently, KG3 is further modified with the help of iron oxide nanoparticles (Fe3O4 NPs) and silica to obtain the SiO2@Fe3O4-KG3 nanocomposite, which was immobilized over a polyether sulfone membrane and evaluated for removal of nitrate ions from groundwater with a removal efficiency of 96%. Moreover, the engineered composite membrane can serve as a solid-state fluorescence sensor to detect NO3- ions, which was demonstrated through a portable mobile-based prototype employing a hue, saturation, and value parameter model.
Collapse
Affiliation(s)
- Kostubh Gaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Kamalpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India
| | - Geetika Bhardwaj
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Navneet Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Li H, Li J, Zu B, Du Y, Su Y, Dou X. Precise counter anion modulation of the self-assembly behavior-endowed ultrasensitive and specific dual-mode visualization of nitrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135014. [PMID: 38941839 DOI: 10.1016/j.jhazmat.2024.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Pt(II) polypyridine complex-based probe exhibits promising performance in anion detection by the change of the absorption and emission properties based on supramolecular self-assembly. However, whether one can develop a modulation strategy of the counter anion to boost the detection sensitivity and anti-interference capability of the Pt(II) complex-based probe remains a big challenge. Here, an effective modulation strategy was proposed by precisely regulating the interaction energy through adjusting the type of the counter anions, and a series of probes have been synthesized by counter anion (X = Cl-, ClO4-, PF6-) exchange in [Pt(tpy)Cl]·X (tpy=2,2':6',2''-terpyridine), and thus the colorimetric-luminescence dual-mode detection toward nitrate was achieved. The optimal [Pt(tpy)Cl]·Cl probe shows superior nitrate detection performance including a limit of detection (LOD) (8.68 nM), rapid response (<0.5 s), an excellent selectivity and anti-interference capability even facing 14 common anions. Moreover, a polyvinyl alcohol (PVA) sponge-based sensing chip loaded with the probe enables the ultra-sensitive detection of nitrate particles with an ultralow detection limit of 7.6 pg, and it was further integrated into a detection pen for the accurate recognition of nitrate particles in real scenarios. The proposed counter-anion modulation strategy is expected to start a new frontier for the exploration of novel Pt(II) complex-based probes.
Collapse
Affiliation(s)
- Honghong Li
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Shenbagapushpam M, Ashwin BCMA, Mareeswaran PM, Yuvaraj P, Kodirajan S. Active Hydrogen Free, Z-Isomer Selective Isatin Derived "Turn on" Fluorescent Dual Anions Sensor. J Fluoresc 2024:10.1007/s10895-024-03762-1. [PMID: 38896304 DOI: 10.1007/s10895-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
An efficient and anions fluorescence "on-off" sensor of 1-(prop-2-yn-1-yl)-3-(quinolin-3-ylimino)indolin-2-one (PQI) has been developed for the selective sensing of dual anions of F- and NO3- ions in aqueous medium. Active hydrogen and Lewis acidic binding sites free, Z- isomer of isatin based π-conjugated quinoline exhibited excellent sensing activity against F- and NO3- ions in UV light. The fluorescence turns on the process accomplished via the PET "on-off" mechanism. The interaction between probe molecule and anions is thought to be a non-covalent interaction of the low electron density covalently bonded N-methylene moiety of propargyl isatin (-N-CH2-) of probe molecule with F- ion and the terminal acidic proton of propargyl group of isatin (-C≡C-H) with NO3- ions. The modes of anions binding with PQI and plausible mechanisms are proposed by 1H and 13C NMR titrations. The selectivity of anions sensing may be offered by the bucked structure of the Z-isomer. The calculated association constant values for PQI and F- and NO3- are ions 2.5 × 104 M-1 and 2.2 × 103 M-1, respectively, indicating strong binding interaction between the PQI and anions. The association nature of anions and probes was analyzed by a Jobs plot and the finding indicates both F- and NO3- ions are in 1:1 complexation with PQI. The limit of detection (LOD) of the probe with F- and NO3- ions is calculated and is to be 6.91 × 10-7 M and 9.93 × 10-7 M, respectively. The proposed PQI fluorophore possesses a low limit of detection (LOD) for both F- and NO3- ions which is within the WHO prescribed detection limit.
Collapse
Affiliation(s)
- Muthumanickam Shenbagapushpam
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
- Department of Chemistry, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India
| | | | | | - Paneerselvam Yuvaraj
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Selvakumar Kodirajan
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhou X, Wang X, Zhang TY, Shen L, Yang XJ, Zhang QL, Xu H, Redshaw C, Feng X. Pyrene-Based Cationic Fluorophores with High Affinity for BF 4-, PF 6-, and ClO 4- Anions: Detection and Removal. J Org Chem 2023; 88:13520-13527. [PMID: 37677077 DOI: 10.1021/acs.joc.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Anions play an indispensable role in the balance and regulation of the ecological environment and human health; however, excess anions can cause serious ecological and environment problems. Therefore, the detection and removal of excess anions in aqueous solution is not only a technological problem but also crucial for environmental protection. Herein, a set of water-soluble pyrene-based cationic fluorophores were synthesized, which exhibit high sensitivity for the detection of the anions BF4-, PF6-, and ClO4- via electrostatic interactions. Such fluorescent probes exhibit "turn-on" emission characteristics even at low concentrations of anions due to anion-π+ interactions. Moreover, these fluorescence probes act as efficient precipitating agents for the removal of the BF4-, PF6-, and ClO4- anions from an aqueous environment. This work opens up new avenues for future research on pyrene-based fluorophores as turn-on fluorescence probes for anion detection and as excellent precipitating agents in environmental settings.
Collapse
Affiliation(s)
- Xu Zhou
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tian-Yu Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Lingyi Shen
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Xian-Jiong Yang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Qi-Long Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Hong Xu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent Imaging Probe Targeting Mitochondria Based on Supramolecular Host-Guest Assembly and Disassembly. ACS OMEGA 2022; 7:34268-34277. [PMID: 36188319 PMCID: PMC9520549 DOI: 10.1021/acsomega.2c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent dyes and probes play an indispensable role in bioimaging. The mitochondrion is one of the crucial organelles which takes charge of energy production and is the primary site of aerobic respiration in the cell. To illuminate mitochondria, a series of supramolecular fluorescent imaging probes were developed based on the host-guest assembly of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene (BPEB) derivatives and cucurbituril[6] (CB[6]). These host-guest conjugates can be efficiently internalized into cells due to their water solubility and target mitochondria according to their positive charges. In response to the intracellular microenvironments, these conjugates start dynamic disassembly. The released BPEBs show a highly hydrophobic feature, which can crystallize to form fluorescent solids that illuminate the mitochondria. The intracellular disassembly of the host-guest probes was evidenced by fluorescence lifetime imaging in situ. These smart mitochondrion-targeting fluorescent imaging probes can be available to investigate the structures and functions of mitochondria, which are of great significance in the intracellular dynamic transformation of supramolecular assemblies.
Collapse
Affiliation(s)
- Ning Chu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lili Cong
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jing Yue
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- College
of Chemical Engineering, Huanggang Normal
University, Huanggang, Hubei, 438000, P. R. China
| | - Weiqing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center
for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R.
China
| |
Collapse
|
7
|
Zhang X, Su SY, Chen XT, Shen LY, Zhang QL, Ni XL, Xu H, Wang ZY, Redshaw C. A New Cationic Fluorescent Probe for HSO 3- Based on Bisulfite Induced Aggregation Self-Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082378. [PMID: 35458575 PMCID: PMC9033099 DOI: 10.3390/molecules27082378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
In comparison with the numerous studies that have centered on developing molecular frameworks for the functionalization of fluorescent materials, less research has addressed the influence of the side chains, despite such appendages contributing significantly to the properties and applications of fluorescent materials. In this work, a new series of cationic fluorescent probes with AIE characteristics have been developed, which exhibit unique sensitivity for charge-diffusion anions, namely HSO3−, via the interactions of ions and the cooperation of the controllable hydrophobicity. The impact of the alkyl chain length attached at the cationic probes suggested that the fluorescent intensity and sensitivity of the probes could be partially enhanced by adjusting their aggregation tendency through the action of the hydrophobic effect under aqueous conditions. DLS and SEM images indicated that different particle sizes and new morphologies of the probes were formed in the anion-recognition-triggered self-assembly process, which could be attributed to the composite effect of electrostatic actions, Van der Waals forces and π-π stacking.
Collapse
Affiliation(s)
- Xing Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Shao-Yuan Su
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China;
| | - Xuan-Ting Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Ling-Yi Shen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Qi-Long Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China;
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Hong Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Zhi-Yong Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| |
Collapse
|
8
|
Singh S, Anil AG, Kumar V, Kapoor D, Subramanian S, Singh J, Ramamurthy PC. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. CHEMOSPHERE 2022; 287:131996. [PMID: 34455120 DOI: 10.1016/j.chemosphere.2021.131996] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate pollution is eminent in almost all the developing nations as a result of increased natural activities apart from anthropogenic pollution. The release of nitrates in more than critical quantities into the water bodies causes accretion impacts on living creatures, environmental receptors, and human vigour by accumulation through the food chain. Nitrates have recently acquired researchers' huge attention and extend their roots in environmental contamination of surface and groundwater systems. The presence of nitrate in high concentrations in surface and groundwater triggers several health problems, for instance, methemoglobinemia, diabetes, eruption of infectious disorders, harmfully influence aquatic organisms. Sensing nitrate is an alternate option for monitoring the distribution of nitrate in different water bodies. Here we review electrochemical, spectroscopic, and electrical modes of nitrate sensing. It is concluded that, among the various sensors discussed in this review, FET sensors are the most desirable choice. Their sensitivity, ease of use and scope for miniaturisation are exceptional. Advanced functional materials need to be designed to satiate the growing need for environmental monitoring. Different sources of nitrate contamination in ground and surface water can be estimated using different techniques such as nitrate isotopic composition, co contaminants, water tracers, and other specialized techniques. This review intends to explore the research work on remediation of nitrate from wastewater and soil using different processes such as reverse osmosis, chemical denitrification, biological denitrification, ion exchange, electrodialysis, and adsorption. Denitrification proves as a promising alternative over previously reported techniques in terms of their nitrate removal because of its high cost-effectiveness.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Amith G Anil
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute, Jhansi, U.P. , India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| |
Collapse
|
9
|
Chu N, Li AS, Xu SP, Xu WQ. Thermochromism of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene derivatives. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2008135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ning Chu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ai-sen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Shu-ping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei-qing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Ji S, Qian H, Yang C, Zhao X, Yan X. Cationic Surfactant‐Modified Covalent Organic Frameworks for Nitrate Removal from Aqueous Solution: Synthesis by Free‐Radical Polymerization. Chempluschem 2020; 85:828-831. [DOI: 10.1002/cplu.202000104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Shi‐Lei Ji
- College of Chemistry Research Center for Analytical Sciences Tianjin Key Laboratory of Molecular Recognition and Biosensing State Key Laboratory of Medicinal Chemical BiologyNankai University Tianjin 300071 P. R. China
| | - Hai‐Long Qian
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Cheng‐Xiong Yang
- College of Chemistry Research Center for Analytical Sciences Tianjin Key Laboratory of Molecular Recognition and Biosensing State Key Laboratory of Medicinal Chemical BiologyNankai University Tianjin 300071 P. R. China
| | - Xu Zhao
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Xiu‐Ping Yan
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Institute of Analytical Food Safety School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
11
|
trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide@cyclopentanocucurbit[6]uril as a fluorescent probe for anion recognition. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01762-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Neupane LN, Mehta PK, Kwon JU, Park SH, Lee KH. Selective red-emission detection for mercuric ions in aqueous solution and cells using a fluorescent probe based on an unnatural peptide receptor. Org Biomol Chem 2019; 17:3590-3598. [DOI: 10.1039/c8ob03224f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The selective ratiometric red-emission detection of Hg2+ions in aqueous buffered solutions and live cells is still a significant challenge.
Collapse
Affiliation(s)
- Lok Nath Neupane
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
- South Korea
| | - Pramod Kumar Mehta
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
- South Korea
| | - Joon-Uk Kwon
- Geomire
- Engineering & Construction Co. Ltd
- Seoul
- Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering
- Hongik University
- Sejong 30016
- South Korea
| | - Keun-Hyeung Lee
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
- South Korea
| |
Collapse
|
13
|
Li N, Liu YY, Li Y, Zhuang JB, Cui RR, Gong Q, Zhao N, Tang BZ. Fine Tuning of Emission Behavior, Self-Assembly, Anion Sensing, and Mitochondria Targeting of Pyridinium-Functionalized Tetraphenylethene by Alkyl Chain Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24249-24257. [PMID: 29939714 DOI: 10.1021/acsami.8b04113] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compared to the many studies that focus on the development of novel molecular frameworks pertaining to functionalized fluorescent materials, there is lesser emphasis on side chains even though they have a significant impact on the properties and applications of fluorescent materials. In this study, a series of pyridinium-functionalized tetraphenylethene salts (TPEPy-1 to TPEPy-4) possessing different alkyl chains are synthesized, and the influence of chain length on their optical performance and applications is thoroughly investigated. By changing the alkyl chain, the fluorogens exhibit opposite emission behavior in aqueous media because of their distinct hydrophobic nature, and their solid-state emission can be fine-tuned from green to red owing to their distinct molecular configuration. In addition, by increasing the chain length, the microstructure of the self-assembled fluorogens converts from microplates to microrods with various emission colors. Moreover, TPEPy-1 exhibits dual-mode fluorescence "turn-on" response toward NO3- and ClO4- in aqueous media because the anions induce the self-assembly of fluorogens. Furthermore, the fluorogens display cellular uptake selectivity while the proper alkyl chain impels the fluorogens to penetrate the cell membrane and accumulate in the mitochondria with high specificity.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Yan Yan Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Yan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jia Bao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Rong Rong Cui
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Qian Gong
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, and School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong 999077 , China
| |
Collapse
|
14
|
Bai Q, Zhang S, Chen H, Sun T, Redshaw C, Zhang J, Ni X, Wei G, Tao Z. Alkyl Substituted Cucurbit[6]uril Assisted Competitive Fluorescence Recognition of Lysine and Methionine in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qinghong Bai
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Shaowei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Hongrong Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Tao Sun
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Carl Redshaw
- Department of ChemistryUniversity of Hull Hull HU6 7RX UK
| | - Jian‐Xin Zhang
- Key Laboratory of Chemistry for Natural Products of Guizhou Province Guiyang 550002 China
| | - Xin‐Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Gang Wei
- CSIRO Manufacturing, P.O. Box 218 Lindfield, NSW 2070 Australia
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| |
Collapse
|
15
|
Neupane LN, Oh ET, Park HJ, Lee KH. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission. Anal Chem 2016; 88:3333-40. [PMID: 26872241 DOI: 10.1021/acs.analchem.5b04892] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.
Collapse
Affiliation(s)
- Lok Nath Neupane
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, Inha University College of Medicine , Incheon 402-751, South Korea.,Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea.,Department of Microbiology, Inha Research Institute for Medical Science, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| |
Collapse
|
16
|
Chen S, Ni XL. Development of an AIE based fluorescent probe for the detection of nitrate anions in aqueous solution over a wide pH range. RSC Adv 2016. [DOI: 10.1039/c5ra23369k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new type of AIE-based turn-on fluorescent probe 1 was reported to highly selective detection of NO3− anion in aqueous solution and living cells by virtue of ionic interaction.
Collapse
Affiliation(s)
- Shiyan Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
17
|
The Synthesis and Anion Recognition Property of Symmetrical Chemosensors Involving Thiourea Groups: Theory and Experiments. SENSORS 2015; 15:28166-76. [PMID: 26561816 PMCID: PMC4701274 DOI: 10.3390/s151128166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
The synthesis of four symmetrical compounds containing urea/thiourea and anthracene/nitrobenzene groups was optimized. N,N’-Di((anthracen-9-yl)-methylene)thio-carbonohydrazide showed sensitive and selective binding ability for acetate ion among the studied anions. The presence of other competitive anions including F−, H2PO4−, Cl−, Br− and I− did not interfere with the strong binding ability. The mechanism of the host-guest interaction was through multiple hydrogen bonds due to the conformational complementarity and higher basicity. A theoretical investigation explained that intra-molecular hydrogen bonds existed in the compound which could strengthen the anion binding ability. In addition, molecular frontier orbitals in molecular interplay were introduced in order to explain the red-shift phenomenon in the host-guest interaction process. Compounds based on thiourea and anthracene derivatives can thus be used as a chemosensor for detecting acetate ion in environmental and pharmaceutical samples.
Collapse
|