1
|
Luo J, Ranish J. Isobaric crosslinking mass spectrometry technology for studying conformational and structural changes in proteins and complexes. eLife 2024; 13:RP99809. [PMID: 39540830 DOI: 10.7554/elife.99809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems Biology, Seattle, United States
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, United States
| |
Collapse
|
2
|
Son A, Kim H, Diedrich JK, Bamberger C, McClatchy DB, Lipton SA, Yates JR. Using in vivo intact structure for system-wide quantitative analysis of changes in proteins. Nat Commun 2024; 15:9310. [PMID: 39468068 PMCID: PMC11519357 DOI: 10.1038/s41467-024-53582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Mass spectrometry-based methods can provide a global expression profile and structural readout of proteins in complex systems. Preserving the in vivo conformation of proteins in their innate state is challenging during proteomic experiments. Here, we introduce a whole animal in vivo protein footprinting method using perfusion of reagents to add dimethyl labels to exposed lysine residues on intact proteins which provides information about protein conformation. When this approach is used to measure dynamic structural changes during Alzheimer's disease (AD) progression in a mouse model, we detect 433 proteins that undergo structural changes attributed to AD, independent of aging, across 7 tissues. We identify structural changes of co-expressed proteins and link the communities of these proteins to their biological functions. Our findings show that structural alterations of proteins precede changes in expression, thereby demonstrating the value of in vivo protein conformation measurement. Our method represents a strategy for untangling mechanisms of proteostasis dysfunction caused by protein misfolding. In vivo whole-animal footprinting should have broad applicability for discovering conformational changes in systemic diseases and for the design of therapeutic interventions.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hyunsoo Kim
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences School of Medicine University of California, San Diego, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
3
|
Tobin L, Misra SK, Luo H, Jones LM, Sharp JS. Radical Protein Footprinting in Mammalian Whole Blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.615683. [PMID: 39386581 PMCID: PMC11463377 DOI: 10.1101/2024.09.29.615683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hydroxyl Radical Protein Footprinting (HRPF) is a powerful method to probe the solvent-accessible surface area of proteins. It is mostly used to study the higher-order structure of proteins, as well as protein-protein and protein-carbohydrate interactions. Hydroxyl radicals are generated by the photolysis of hydrogen peroxide and these radicals modify the surface amino acids. Bottom-up proteomics is then applied and peptide oxidation is calculated and correlated with solvent accessibility. It is mainly performed in vitro; however, it has been recently used in living systems, including live cells, live nematodes, and 3D cell cultures. Mammalian tissues are still out of reach as they absorb UV strongly, hindering radical generation. Here, we describe the first example of RPF in mammalian stabilized whole blood. Using photoactivation of persulfate with a commercially available FOX Photolysis System modified for sample handling and inline mixing, we demonstrate the first labeling of proteins in whole blood. We demonstrate that the RPF protocol does not alter the blood cell gross morphology outside of a moderate hypertonicity equivalent to sodium chloride exposure prior to labeling. We detail an improved quenching protocol to limit background labeling in persulfate RPF. We describe the labeling of the top ten most abundant proteins in the blood. We demonstrate the equivalence of ex vivo labeling in whole blood with labeling of the same structure in vitro using hemoglobin as a test system. Overall, these results now open the possibility of performing RPF-based structural proteomics in pre-clinical models and using readily available clinical samples.
Collapse
Affiliation(s)
- Lyle Tobin
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Haolin Luo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Lisa M Jones
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Joshua S Sharp
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
4
|
Borotto NB. The path forward for protein footprinting, covalent labeling, and mass spectrometry-based protein conformational analyses. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5064. [PMID: 38873895 PMCID: PMC11210343 DOI: 10.1002/jms.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Mass spectrometry-based approaches to assess protein conformation have become widely utilized due to their sensitivity, low sample requirements, and broad applicability to proteins regardless of size and environment. Their wide applicability and sensitivity also make these techniques suitable for the analysis of complex mixtures of proteins, and thus, they have been applied at the cell and even the simple organism levels. These works are impressive, but they predominately employ "bottom-up" workflows and require proteolytic digestion prior to analysis. Once digested, it is not possible to distinguish the proteoform from which any single peptide is derived and therefore, one cannot associate distal-in primary structure-concurrent post-translational modifications (PTMs) or covalent labels, as they would be found on separate peptides. Thus, analyses via bottom-up proteomics report the average PTM status and higher-order structure (HOS) of all existing proteoforms. Second, these works predominately employ promiscuous reagents to probe protein HOS. While this does lead to improved conformational resolution, the formation of many products can divide the signal associated with low-copy number proteins below signal-to-noise thresholds and complicate the bioinformatic analysis of these already challenging systems. In this perspective, I further detail these limitations and discuss the positives and negatives of top-down proteomics as an alternative.
Collapse
|
5
|
Lee C, Park M, Wijesinghe WCB, Na S, Lee CG, Hwang E, Yoon G, Lee JK, Roh DH, Kwon YH, Yang J, Hughes SA, Vince JE, Seo JK, Min D, Kwon TH. Oxidative photocatalysis on membranes triggers non-canonical pyroptosis. Nat Commun 2024; 15:4025. [PMID: 38740804 DOI: 10.1038/s41467-024-47634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.
Collapse
Affiliation(s)
- Chaiheon Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Mingyu Park
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - W C Bhashini Wijesinghe
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seungjin Na
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Chae Gyu Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Eunhye Hwang
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Gwangsu Yoon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Jeong Kyeong Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Deok-Ho Roh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Yoon Hee Kwon
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Jihyeon Yang
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Sebastian A Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jeong Kon Seo
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- UNIST Central Research Facility, UNIST, Ulsan, Republic of Korea.
| | - Duyoung Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
| | - Tae-Hyuk Kwon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- Graduate School of Carbon Neutrality, UNIST, Ulsan, Republic of Korea.
- Graduate School of Semiconductor Materials and Device Engineering, UNIST, Ulsan, Republic of Korea.
| |
Collapse
|
6
|
Zheng Z, Zeng Y, Lai K, Liao B, Li P, Tan CSH. Protein painting for structural and binding site analysis via intracellular lysine reactivity profiling with o-phthalaldehyde. Chem Sci 2024; 15:6064-6075. [PMID: 38665522 PMCID: PMC11040650 DOI: 10.1039/d4sc00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The three-dimensional structure and the molecular interaction of proteins determine their roles in many cellular processes. Chemical protein painting with protein mass spectrometry can identify changes in structural conformations and molecular interactions of proteins including their binding sites. Nevertheless, most current protein painting techniques identify protein targets and binding sites of drugs in vitro using a cell lysate or purified protein. Here, we tested 11 membrane-permeable lysine-reactive chemical probes for intracellular covalent labeling of endogenous proteins, which reveals ortho-phthalaldehyde (OPA) as the most reactive probe in the intracellular environment. An MS workflow and a new data analysis strategy termed RAPID (Reactive Amino acid Profiling by Inverse Detection) was developed to enhance detection sensitivity. RAPID with OPA successfully identified structural changes induced by the allosteric drug TEPP-46 on its target protein PKM2 and was applied to profile the conformation change of the proteome occurring in cells during thermal denaturation. The application of RAPID-OPA on cells treated with geldanamycin, selumetinib, and staurosporine successfully revealed their binding sites on target proteins. Thus, RAPID-OPA for cellular protein painting enables the identification of ligand-binding sites and detection of protein structural changes occurring in cells.
Collapse
Affiliation(s)
- Zhenxiang Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Ya Zeng
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong PR China
| | - Kunjia Lai
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Bin Liao
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Chris Soon Heng Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
7
|
Rojas Ramírez C, Espino JA, Jones LM, Polasky DA, Nesvizhskii AI. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal Chem 2023; 95:16131-16137. [PMID: 37878603 DOI: 10.1021/acs.analchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Monitoring protein structure before and after environmental alterations (e.g., different cell states) can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows for monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent-accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and a lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP data sets. Our workflow, implemented as part of the FragPipe computational platform, combines the speed of the MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 150% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.
Collapse
Affiliation(s)
- Carolina Rojas Ramírez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica A Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| | - Lisa M Jones
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California 92093, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Ramírez CR, Espino JA, Jones LM, Polasky DA, Nesvizhskii AI. Efficient Analysis of Proteome-wide FPOP Data by FragPipe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543263. [PMID: 37333157 PMCID: PMC10274679 DOI: 10.1101/2023.06.01.543263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Monitoring protein structure before and after perturbations can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP datasets. Our workflow combines the speed of MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 50% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.
Collapse
Affiliation(s)
| | - Jessica Arlett Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, USA
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
9
|
Son A, Kim H, Diedrich JK, Bamberger C, McClatchy DB, Yates JR. In vivo Protein Footprinting Reveals the Dynamic Conformational Changes of Proteome of Multiple Tissues in Progressing Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542496. [PMID: 37397995 PMCID: PMC10312442 DOI: 10.1101/2023.05.29.542496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Numerous studies have investigated changes in protein expression at the system level using proteomic mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels exposed lysine, and have now extended the method to whole intact animals to measure surface accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, kidney, muscle, and spleen.
Collapse
|
10
|
Kirsch ZJ, Blake JM, Huynh U, Agrohia DK, Tremblay CY, Graban EM, Vaughan RC, Vachet RW. Membrane Protein Binding Interactions Studied in Live Cells via Diethylpyrocarbonate Covalent Labeling Mass Spectrometry. Anal Chem 2023; 95:7178-7185. [PMID: 37102678 PMCID: PMC10350911 DOI: 10.1021/acs.analchem.2c05616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.
Collapse
Affiliation(s)
- Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jeanna M. Blake
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Catherine Y. Tremblay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Eric M. Graban
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Robert C. Vaughan
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Shortt R, Wang Y, Hummon AB, Jones LM. Development of Spheroid-FPOP: An In-Cell Protein Footprinting Method for 3D Tumor Spheroids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:417-425. [PMID: 36700916 PMCID: PMC9983004 DOI: 10.1021/jasms.2c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Many cancer drugs fail at treating solid epithelial tumors with hypoxia and insufficient drug penetration thought to be contributing factors to the observed chemoresistance. Owing to this, it is imperative to evaluate potential cancer drugs in conditions as close to in vivo as possible, which is not always done. To address this, we developed a mass spectrometry-based protein footprinting method for exploring the impact of hypoxia on protein in 3D colorectal cancer cells. Our group has previously extended the protein footprinting method fast photochemical oxidation of proteins (FPOP) for live cell analysis (IC-FPOP); however, this is the first application of IC-FPOP in a 3D cancer model. In this study, we perform IC-FPOP on intact spheroids (Spheroid-FPOP) using a modified version of the static platform incubator with an XY movable stage (PIXY) FPOP platform. We detected modification in each of three spheroid layers, even the hypoxic core. Pathway analysis revealed protein modifications in over 10 distinct protein pathways, including some involved in protein ubiquitination; a process modulated in cancer pathologies. These results demonstrate the feasibility of Spheroid-FPOP to be utilized as a tool to interrogate protein interactions within a native tumor microenvironment.
Collapse
Affiliation(s)
- Raquel
L. Shortt
- Department
of Pharmaceutical Sciences, University of
Maryland, Baltimore, Maryland 21201, United States
| | - Yijia Wang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Lisa M. Jones
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Son A, Pankow S, Bamberger TC, Yates JR. Quantitative structural proteomics in living cells by covalent protein painting. Methods Enzymol 2023; 679:33-63. [PMID: 36682868 PMCID: PMC10262296 DOI: 10.1016/bs.mie.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fold and conformation of proteins are key to successful cellular function, but all techniques for protein structure determination are performed in an artificial environment with highly purified proteins. While protein conformations have been solved to atomic resolution and modern protein structure prediction tools rapidly generate near accurate models of proteins, there is an unmet need to uncover the conformations of proteins in living cells. Here, we describe Covalent Protein Painting (CPP), a simple and fast method to infer structural information on protein conformation in cells with a quantitative protein footprinting technology. CPP monitors the conformational landscape of the 3D proteome in cells with high sensitivity and throughput. A key advantage of CPP is its' ability to quantitatively compare the 3D proteomes between different experimental conditions and to discover significant changes in the protein conformations. We detail how to perform a successful CPP experiment, the factors to consider before performing the experiment, and how to interpret the results.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Tom Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
13
|
Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies (Basel) 2022; 11:antib11040071. [PMID: 36412837 PMCID: PMC9680451 DOI: 10.3390/antib11040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Collapse
|
14
|
Jeckel AM, Beran F, Züst T, Younkin G, Petschenka G, Pokharel P, Dreisbach D, Ganal-Vonarburg SC, Robert CAM. Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches. Front Physiol 2022; 13:1001032. [PMID: 36237530 PMCID: PMC9552321 DOI: 10.3389/fphys.2022.1001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.
Collapse
Affiliation(s)
- Adriana Moriguchi Jeckel
- Laboratory of Chemical Ecology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Franziska Beran
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Gordon Younkin
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stephanie Christine Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
15
|
Cornwell O, Ault JR. Fast photochemical oxidation of proteins coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140829. [PMID: 35933084 DOI: 10.1016/j.bbapap.2022.140829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.
Collapse
Affiliation(s)
- Owen Cornwell
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
16
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem 2022; 94:1003-1010. [PMID: 34962759 PMCID: PMC8787799 DOI: 10.1021/acs.analchem.1c03902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, we use diethylpyrocarbonate (DEPC)-based covalent labeling together with LC-MS/MS analysis to distinguish the two sidechain tautomers of histidine residues in peptides and proteins. From labeling experiments on model peptides, we demonstrate that DEPC reacts equally with both tautomeric forms to produce chemically different products with distinct dissociation patterns and LC retention times, allowing the ratios of the two tautomers to be determined in peptides and proteins. Upon measuring the tautomer ratios of several histidine residues in myoglobin, we find good agreement with previous 2D NMR data on this protein. Because our DEPC labeling/MS approach is simpler, faster, and more precise than 2D NMR, our method will be a valuable way to determine how protein structure enforces histidine sidechain tautomerization. Because the tautomeric state of histidine residues is often important for protein structure and function, the ability of DEPC labeling/MS to distinguish histidine tautomers should equip researchers with a tool to understand the histidine residue structure and function more deeply in proteins.
Collapse
|
21
|
Pan X, Vachet RW. MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:51-69. [PMID: 33145813 PMCID: PMC8093322 DOI: 10.1002/mas.21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Membrane proteins are incredibly important biomolecules because they mediate interactions between a cell's external and internal environment. Obtaining information about membrane protein structure and interactions is thus important for understanding these essential biomolecules. Compared with the analyses of water-soluble proteins, the structural analysis of membrane proteins is more challenging owing to their unique chemical properties and the presence of lipid components that are necessary to solubilize them. The combination of covalent labeling (CL) and mass spectrometry (MS) has recently been applied with great success to study membrane protein structure and interactions. These studies have demonstrated the many advantages that CL-MS methods have over other traditional biophysical techniques. In this review, we discuss both amino acid-specific and non-specific labeling approaches and the special considerations needed to address the unique challenges associated with interrogating membrane proteins. This review highlights the aspects of this approach that require special care to be applied correctly and provides a comprehensive review of the membrane protein systems that have been studied by CL-MS. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
|
22
|
Luo P, Liu Z, Zhang T, Wang X, Liu J, Liu Y, Zhou X, Chen Y, Dong W, Xiao C, Jin Y, Yang X, Wang F. Chloride-Mediated Peroxide-Free Photochemical Oxidation of Proteins (PPOP) in Mass Spectrometry-Based Structural Analysis. Anal Chem 2021; 94:1135-1142. [PMID: 34965100 DOI: 10.1021/acs.analchem.1c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet (UV) laser photolysis of hydrogen peroxide (H2O2) for the in situ generation of hydroxyl radicals (•OH) is a widely utilized strategy in the oxidation footprinting of native proteins and mass spectrometry (MS)-based structural analysis. However, it remains challenging to realize peroxide-free photochemical oxidation footprinting. Herein, we describe the footprinting of native proteins by chloride-mediated peroxide-free photochemical oxidation of proteins (PPOP). The protein samples are prepared within biocompatible phosphate-buffered saline (PBS) containing 10 mM Gln as radical scavengers and oxidized in a capillary flow reactor directly under a single-pulse (10 ns) irradiation of a 193 nm ArF UV laser. The main oxidized protein residues are CMYWFHLI. We demonstrate that the PPOP-MS strategy is highly sensitive to the protein high-order structures and can be applied to monitor the protein-drug interfaces, which provides a promising footprinting alternative for protein structure-function explorations.
Collapse
Affiliation(s)
- Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yiqiang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohu Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
24
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
25
|
Kristensen LG, Holton JM, Rad B, Chen Y, Petzold CJ, Gupta S, Ralston CY. Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1333-1342. [PMID: 34475282 PMCID: PMC8415330 DOI: 10.1107/s1600577521004744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
27
|
McKenzie-Coe AA, Johnson DT, Peacock RB, Zhang Z, Jones LM. Evaluating the Sulfate Radical Anion as a New Reagent for In-Cell Fast Photochemical Oxidation of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1644-1647. [PMID: 34170666 DOI: 10.1021/jasms.1c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) has demonstrated the ability to inform on the higher order structure of proteins. Recent technological advances have extended FPOP to live cells (IC-FPOP) using multiple cell lines and in vivo (IV-FPOP) using C. elegans. These innovations allow proteins to be studied in their native cellular environment. Hydroxyl radicals are generated via the photoloysis of hydrogen peroxide. Hydrogen peroxide is a signaling molecule that can induce changes to some proteins in the cell limiting the proteins that can be studied by IC-FPOP. Here, we evaluate the sulfate radical anion as a footprinting label in IC-FPOP with sodium persulfate as the precursor. Our findings show a 1.5-fold increase in the number of modified proteins compared to IC-FPOP using hydroxyl radicals at the same precursor concentration demonstrating the amenability of this radical with IC-FPOP.
Collapse
Affiliation(s)
- Alan A McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore Maryland 21201, United States
| | - Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore Maryland 21201, United States
| | - Riley B Peacock
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore Maryland 21201, United States
| | - Zhihui Zhang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore Maryland 21201, United States
| |
Collapse
|
28
|
Bamberger C, Pankow S, Martínez-Bartolomé S, Ma M, Diedrich J, Rissman RA, Yates JR. Protein Footprinting via Covalent Protein Painting Reveals Structural Changes of the Proteome in Alzheimer's Disease. J Proteome Res 2021; 20:2762-2771. [PMID: 33872013 PMCID: PMC8477671 DOI: 10.1021/acs.jproteome.0c00912] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of amyloid-β peptide and hyperphosphorylated tau are molecular markers of Alzheimer's disease (AD), and although the 3D structures of these aberrantly folded proteins have been visualized in exquisite detail, no method has been able to survey protein folding across the proteome in AD. Here, we present covalent protein painting (CPP), a mass spectrometry-based protein footprinting approach to quantify the accessibility of lysine ε-amines for covalent modification at the surface of natively folded proteins. We used CPP to survey the reactivity of 2645 lysine residues and therewith the structural proteome of HEK293T cells and found that reactivity increased upon mild heat shock. CPP revealed that the accessibility of lysine residues for covalent modification in tubulin-β (TUBB), in succinate dehydrogenase (SHDB), and in amyloid-β peptide (Aβ) is altered in human postmortem brain samples of patients with neurodegenerative diseases. The structural alterations of TUBB and SHDB in patients with AD, dementia with Lewy bodies (DLB), or both point to broader perturbations of the 3D proteome beyond Aβ and hyperphosphorylated tau.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michelle Ma
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
McKenzie-Coe A, Shortt R, Jones LM. THE MAKING OF A FOOTPRINT IN PROTEIN FOOTPRINTING: A REVIEW IN HONOR OF MICHAEL L. GROSS. MASS SPECTROMETRY REVIEWS 2021; 40:177-200. [PMID: 32400038 PMCID: PMC7849054 DOI: 10.1002/mas.21632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Within the past decade protein footprinting in conjunction with mass spectrometry has become a powerful and versatile means to unravel the higher order structure of proteins. Footprinting-based approaches has demonstrated the capacity to inform on interaction sites and dynamic regions that participate in conformational changes. These findings when set in a biological perspective inform on protein folding/unfolding, protein-protein interactions, and protein-ligand interactions. In this review, we will look at the contribution of Dr. Michael L. Gross to protein footprinting approaches such as hydrogen deuterium exchange mass spectrometry and hydroxyl radical protein footprinting. This review details the development of novel footprinting methods as well as their applications to study higher order protein structure. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Raquel Shortt
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| |
Collapse
|
30
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Tian Y, Bao Q, Wang N, Wan N, Lv L, Hao H, He C, Ye H. Time-Resolved Acetaldehyde-Based Accessibility Profiling Maps Ligand-Target Interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:519-530. [PMID: 33382614 DOI: 10.1021/jasms.0c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elucidating ligand-protein interactions is important in understanding the biochemical machinery for given proteins. Previously, formaldehyde (FH)-based labeling has been employed to obtain such structural knowledge, since reactive residues that participate in ligand-target interactions display reduced accessibility to FH-labeling reagents, and thus can be identified by quantitative proteomics. Although being rapid and efficient for probing proteinaceous lysine accessibility, here, we report an acetaldehyde (AcH)-labeling approach that complements with FH for probing ligand-target interactions. AcH labeling examines lysine accessibility at a more moderate reaction speed and hence delivers a cleaner reaction when compared to that of FH. The subsequent application of AcH to label RNase A without and with ligands has assisted to assign lysines involved in ligand-RNase A binding by detecting the time-dependent changes in accessibility profiles. We further employed multiple reaction monitoring (MRM) to quantify these ligand-binding-responsive sites when a variety of potential ligands were queried. We noted that the time-resolved abundance changes of these peptides can sensitively determine the ligand-binding sites and differentiate binding affinities among these ligands, which was confirmed by native mass spectrometry (MS) and molecular docking. Lastly, we demonstrated that the binding sites can be recognized by monitoring the chemical accessibility of these responsive peptides in cell lysates. Together, we believe that the proposed combined use of AcH-based lysine accessibility profiling, native MS, and MRM screening is a powerful toolbox in characterizing ligand-target interactions, mapping topography, and interrogating affinities and holds promise for future applications in a complex cellular environment.
Collapse
Affiliation(s)
- Yang Tian
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Qiuyu Bao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Nian Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Ning Wan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Langlang Lv
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Chaoyong He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| |
Collapse
|
32
|
Liu XR, Rempel DL, Gross ML. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nat Protoc 2020; 15:3942-3970. [PMID: 33169002 PMCID: PMC10476649 DOI: 10.1038/s41596-020-0396-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022]
Abstract
The higher-order structure (HOS) of proteins plays a critical role in their function; therefore, it is important to our understanding of their function that we have as much information as possible about their three-dimensional structure and how it changes with time. Mass spectrometry (MS) has become an important tool for determining protein HOS owing to its high throughput, mid-to-high spatial resolution, low sample amount requirement and broad compatibility with various protein systems. Modern MS-based protein HOS analysis relies, in part, on footprinting, where a reagent reacts 'to mark' the solvent-accessible surface of the protein, and MS-enabled proteomic analysis locates the modifications to afford a footprint. Fast photochemical oxidation of proteins (FPOP), first introduced in 2005, has become a powerful approach for protein footprinting. Laser-induced hydrogen peroxide photolysis generates hydroxyl radicals that react with solvent-accessible side chains (14 out of 20 amino acid side chains) to fulfill the footprinting. The reaction takes place at sub-milliseconds, faster than most of labeling-induced protein conformational changes, thus enabling a 'snapshot' of protein HOS in solution. As a result, FPOP has been employed in solving several important problems, including mapping epitopes, following protein aggregation, locating small molecule binding, measuring ligand-binding affinity, monitoring protein folding and unfolding and determining hidden conformational changes invisible to other methods. Broader adoption will be promoted by dissemination of the technical details for assembling the FPOP platform and for dealing with the complexities of analyzing FPOP data. In this protocol, we describe the FPOP platform, the conditions for successful footprinting and its examination by mass measurements of the intact protein, the post-labeling sample handling and digestion, the liquid chromatography-tandem MS analysis of the digested sample and the data analysis with Protein Metrics Suite. This protocol is intended not only as a guide for investigators trying to establish an FPOP platform in their own lab but also for those willing to incorporate FPOP as an additional tool in addressing their questions of interest.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Kaur U, Johnson DT, Jones LM. Validation of the Applicability of In-Cell Fast Photochemical Oxidation of Proteins across Multiple Eukaryotic Cell Lines. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1372-1379. [PMID: 32142260 DOI: 10.1021/jasms.0c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP), a hydroxyl radical-based protein footprinting method, coupled to mass spectrometry has been extensively used to study protein structure and protein-protein interactions in vitro. This method utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids and has recently been demonstrated to modify proteins within live cells (IC-FPOP) and Caenorhabditis elegans. Here, we have expanded the application of IC-FPOP into a variety of commonly used cell lines to verify the applicability of the method across various cellular systems. IC-FPOP was able to successfully modify proteins in five different cell lines (Vero, HEK 293T, CHO, MCF-10A, and MCF-7). To increase the number of oxidatively modified proteins identified, we have also employed the use of offline high pH reversed-phase liquid chromatography (RPLC) followed by concatenation and online low-pH RPLC. The coupling of IC-FPOP to 2D-LC MS/MS resulted in a 1.7-fold increase in total identifications of oxidatively modified proteins, which expanded the dynamic range of the method. This work demonstrates the efficacy of using IC-FPOP to study protein-protein interactions in cells.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
34
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
35
|
Espino JA, King CD, Jones LM, Robinson RAS. In Vivo Fast Photochemical Oxidation of Proteins Using Enhanced Multiplexing Proteomics. Anal Chem 2020; 92:7596-7603. [PMID: 32383586 PMCID: PMC7815197 DOI: 10.1021/acs.analchem.0c00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
In vivo fast photochemical oxidation of proteins
(IV-FPOP) is a hydroxyl radical protein footprinting method used to
study protein structure and protein–protein interactions. Oxidatively
modified proteins by IV-FPOP are analyzed by mass spectrometry (MS),
and the extent of oxidation is quantified by label-free MS. Peptide
oxidation changes yield useful information about protein structure,
due to changes in solvent accessibility. However, the sample size
necessary for animal studies requires increased sample preparation
and instrument time. Here, we report the combined application of IV-FPOP
and the enhanced multiplexing strategy combined precursor isotopic
labeling and isobaric tagging (cPILOT) for higher-throughput analysis
of oxidative modifications in C. elegans. Key differences
in the performance of label-free MS and cPILOT were identified. The
addition of oxygen (+16) was the most abundant modification identified
among all known possible FPOP modifications. This study presents IV-FPOP
coupled with enhanced multiplexing strategies such as cPILOT to increase
throughput of studies seeking to examine oxidative protein modifications.
Collapse
Affiliation(s)
- Jessica A Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Christina D King
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
36
|
Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochem Soc Trans 2020; 48:945-954. [DOI: 10.1042/bst20190794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022]
Abstract
Mass spectrometry (MS) has long been used to study proteins mainly via sequence identification and quantitation of expression abundance. In recent years, MS has emerged as a tool for structural biology. Intact protein structural analysis has been enabled by the development of methods such as native MS, top-down proteomics, and ion mobility MS. Other MS-based structural methods include affinity purification MS, chemical cross-linking, and protein footprinting. These methods have enabled the study of protein–protein and protein–ligand interactions and regions of conformational change. The coupling of MS with liquid chromatography has permitted the analysis of complex samples. This bottom-up proteomics workflow enables the study of protein structure in the native cellular environment and provides structural information across the proteome. It has been demonstrated that the crowded environment of the cell affects protein binding interactions and affinities. Performing studies in this complex environment is essential for understanding the functional roles of proteins. MS-based structural methods permit analysis of samples such as cell lysates, intact cells, and tissue to provide a more physiological view of protein structure. This mini-review discusses the various MS-based methods that can be used for proteome-wide structural studies and highlights some of their application.
Collapse
|
37
|
Cheng M, Guo C, Gross ML. The Application of Fluorine-Containing Reagents in Structural Proteomics. Angew Chem Int Ed Engl 2020; 59:5880-5889. [PMID: 31588625 PMCID: PMC7485648 DOI: 10.1002/anie.201907662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Structural proteomics refers to large-scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass-spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high-order structure. Fluorine, well-known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine-containing reagents that can be applied in structural proteomics. We organize their applications around four MS-based techniques: a) affinity labeling, b) activity-based protein profiling (ABPP), c) protein footprinting, and d) protein cross-linking. Our aim is to provide an overview of the research, development, and application of fluorine-containing reagents in protein structural studies.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Chunyang Guo
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| |
Collapse
|
38
|
Espino JA, Jones LM. In Vivo Hydroxyl Radical Protein Footprinting for the Study of Protein Interactions in Caenorhabditis elegans. J Vis Exp 2020. [PMID: 32310230 DOI: 10.3791/60910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fast oxidation of proteins (FPOP) is a hydroxyl radical protein footprinting (HRPF) method used to study protein structure, protein-ligand interactions, and protein-protein interactions. FPOP utilizes a KrF excimer laser at 248 nm for photolysis of hydrogen peroxide to generate hydroxyl radicals which in turn oxidatively modify solvent-accessible amino acid side chains. Recently, we expanded the use of FPOP of in vivo oxidative labeling in Caenorhabditis elegans (C. elegans), entitled IV-FPOP. The transparent nematodes have been used as model systems for many human diseases. Structural studies in C. elegans by IV-FPOP is feasible because of the animal's ability to uptake hydrogen peroxide, their transparency to laser irradiation at 248 nm, and the irreversible nature of the modification. The assembly of a microfluidic flow system for IV-FPOP labeling, IV-FPOP parameters, protein extraction, and LC-MS/MS optimized parameters are described herein.
Collapse
Affiliation(s)
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland;
| |
Collapse
|
39
|
|
40
|
Lu G, Xu X, Li G, Sun H, Wang N, Zhu Y, Wan N, Shi Y, Wang G, Li L, Hao H, Ye H. Subresidue-Resolution Footprinting of Ligand-Protein Interactions by Carbene Chemistry and Ion Mobility-Mass Spectrometry. Anal Chem 2020; 92:947-956. [PMID: 31769969 PMCID: PMC7394559 DOI: 10.1021/acs.analchem.9b03827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The knowledge of ligand-protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand-protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand-protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)-MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a "real-world" application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM-MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Xiaowei Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Huiyong Sun
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Nian Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Yinxue Zhu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| |
Collapse
|
41
|
Johnson DT, Punshon-Smith B, Espino JA, Gershenson A, Jones LM. Implementing In-Cell Fast Photochemical Oxidation of Proteins in a Platform Incubator with a Movable XY Stage. Anal Chem 2020; 92:1691-1696. [PMID: 31860269 PMCID: PMC7944481 DOI: 10.1021/acs.analchem.9b04933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Fast
photochemical oxidation of proteins (FPOP) is a protein footprinting
technique that is being increasingly used in MS-based proteomics.
FPOP is utilized to study protein–protein interactions, protein–ligand
interactions, and protein conformational dynamics. This method has
recently been extended to protein labeling in live cells (IC-FPOP),
allowing the study of protein conformations in the complex cellular
environment. Traditionally, IC-FPOP has been executed using a single
cell flow system, in which hydrodynamic focusing drives cells along
in a single file line, keeping the cells from clumping and thus ensuring
equal exposure to the laser irradiation required for photochemical
oxidation. Here, we introduce a novel platform that allows IC-FPOP
to occur in a sterile incubation system complete with a mobile stage
for XY movement, peristaltic pumps equipped with perfusion lines for
chemical transport, and mirrors for laser beam guidance. This new
system, called Platform Incubator with movable XY stage (PIXY), also
utilizes software enabling automated communication between equipment
and execution of the entire system. Further, comparison with a standard
IC-FPOP flow system results reveal that this platform can successfully
be used in lieu of the flow system while also decreasing the time
to complete analysis of a single sample.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Benjamin Punshon-Smith
- Technology Research Center , University of Maryland Baltimore County , Catonsville , Maryland 21250 , United States
| | - Jessica A Espino
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
42
|
Dülfer J, Kadek A, Kopicki JD, Krichel B, Uetrecht C. Structural mass spectrometry goes viral. Adv Virus Res 2019; 105:189-238. [PMID: 31522705 DOI: 10.1016/bs.aivir.2019.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last 20 years, mass spectrometry (MS), with its ability to analyze small sample amounts with high speed and sensitivity, has more and more entered the field of structural virology, aiming to investigate the structure and dynamics of viral proteins as close to their native environment as possible. The use of non-perturbing labels in hydrogen-deuterium exchange MS allows for the analysis of interactions between viral proteins and host cell factors as well as their dynamic responses to the environment. Cross-linking MS, on the other hand, can analyze interactions in viral protein complexes and identify virus-host interactions in cells. Native MS allows transferring viral proteins, complexes and capsids into the gas phase and has broken boundaries to overcome size limitations, so that now even the analysis of intact virions is possible. Different MS approaches not only inform about size, stability, interactions and dynamics of virus assemblies, but also bridge the gap to other biophysical techniques, providing valuable constraints for integrative structural modeling of viral complex assemblies that are often inaccessible by single technique approaches. In this review, recent advances are highlighted, clearly showing that structural MS approaches in virology are moving towards systems biology and ever more experiments are performed on cellular level.
Collapse
Affiliation(s)
- Jasmin Dülfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alan Kadek
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
| |
Collapse
|
43
|
Liu XR, Zhang MM, Zhang B, Rempel DL, Gross ML. Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by 18O Isotopic Labeling. Anal Chem 2019; 91:9238-9245. [PMID: 31241913 PMCID: PMC6635036 DOI: 10.1021/acs.analchem.9b02134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fast photochemical oxidation of protein (FPOP) has become an important mass spectrometry-based protein footprinting approach. Although the hydroxyl radical (•OH) generated by photolysis of hydrogen peroxide (H2O2) is most commonly used, the pathways for its reaction with amino-acid side chains remain unclear. Here, we report a systematic study of •OH oxidative modification of 13 amino acid residues by using 18O isotopic labeling. The results differentiate three classes of residues on the basis of their oxygen uptake preference toward different oxygen sources. Histidine, arginine, tyrosine, and phenylalanine residues preferentially take oxygen from H2O2. Methionine residues competitively take oxygen from H2O2 and dissolved oxygen (O2), whereas the remaining residues take oxygen exclusively from O2. Results reported in this work deepen the understanding of •OH labeling pathway on a FPOP platform, opening new possibilities for tailoring FPOP conditions in addressing many biological questions in a profound way.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Mengru Mira Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| |
Collapse
|
44
|
Johnson DT, Di Stefano LH, Jones LM. Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool. J Biol Chem 2019; 294:11969-11979. [PMID: 31262727 DOI: 10.1074/jbc.rev119.006218] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a MS-based method that has proved useful in studies of protein structures, interactions, conformations, and protein folding. The success of this method relies on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. FPOP generates these radicals through laser-induced photolysis of hydrogen peroxide. The data obtained provide residue-level resolution of protein structures and interactions on the microsecond timescale, enabling investigations of fast processes such as protein folding and weak protein-protein interactions. An extensive comparison between FPOP and other footprinting techniques gives insight on their complementarity as well as the robustness of FPOP to provide unique structural information once unattainable. The versatility of this method is evidenced by both the heterogeneity of samples that can be analyzed by FPOP and the myriad of applications for which the method has been successfully used: from proteins of varying size to intact cells. This review discusses the wide applications of this technique and highlights its high potential. Applications including, but not limited to, protein folding, membrane proteins, structure elucidation, and epitope mapping are showcased. Furthermore, the use of FPOP has been extended to probing proteins in cells and in vivo These promising developments are also presented herein.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Luciano H Di Stefano
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
45
|
Protein profiling and pseudo-parallel reaction monitoring to monitor a fusion-associated conformational change in hemagglutinin. Anal Bioanal Chem 2019; 411:4987-4998. [PMID: 31254054 DOI: 10.1007/s00216-019-01921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
Influenza infection requires viral escape from early endosomes into the cytosol, which is enabled by an acid-induced irreversible conformational transformation in the viral protein hemagglutinin. Despite the direct relationship between this conformational change and infectivity, label-free methods for characterizing this and other protein conformational changes in biological mixtures are limited. While the chemical reactivity of the protein backbone and side-chain residues is a proxy for protein conformation, coupling this reactivity to quantitative mass spectrometry is a challenge in complex environments. Herein, we evaluate whether electrophilic amidination coupled with pseudo-parallel reaction monitoring is an effective label-free approach to detect the fusion-associated conformational transformation in recombinant hemagglutinin (rHA). We identified rHA peptides that are differentially amidinated between the pre- and post-fusion states, and validated that this difference relies upon the fusion-associated conformational switch. We further demonstrate that we can distinguish the fusion profile in a matrix of digested cellular lysate. This fusion assay can be used to evaluate fusion competence for modified HA. Graphical abstract.
Collapse
|
46
|
Abstract
![]()
Protein
footprinting coupled with mass spectrometry is being increasingly
used for the study of protein interactions and conformations. The
hydroxyl radical footprinting method, fast photochemical oxidation
of proteins (FPOP), utilizes hydroxyl radicals to oxidatively modify
solvent accessible amino acids. Here, we describe the further development
of FPOP for protein structural analysis in vivo (IV-FPOP) with Caenorhabditis elegans. C. elegans, part
of the nematode family, are used as model systems for many human diseases.
The ability to perform structural studies in these worms would provide
insight into the role of structure in disease pathogenesis. Many parameters
were optimized for labeling within the worms including the microfluidic
flow system and hydrogen peroxide concentration. IV-FPOP was able
to modify several hundred proteins in various organs within the worms.
The method successfully probed solvent accessibility similarily to
in vitro FPOP, demonstrating its potential for use as a structural
technique in a multiorgan system. The coupling of the method with
mass spectrometry allows for amino-acid-residue-level structural information,
a higher resolution than currently available in vivo methods.
Collapse
Affiliation(s)
- Jessica A Espino
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
47
|
Shi L, Gross ML. Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry. Protein Pept Lett 2019; 26:27-34. [PMID: 30484399 DOI: 10.2174/0929866526666181128124554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Determination of the composition and some structural features of macromolecules can be achieved by using structural proteomics approaches coupled with mass spectrometry (MS). One approach is hydroxyl radical protein footprinting whereby amino-acid side chains are modified with reactive reagents to modify irreversibly a protein side chain. The outcomes, when deciphered with mass-spectrometry-based proteomics, can increase our knowledge of structure, assembly, and conformational dynamics of macromolecules in solution. Generating the hydroxyl radicals by laser irradiation, Hambly and Gross developed the approach of Fast Photochemical Oxidation of Proteins (FPOP), which labels proteins on the sub millisecond time scale and provides, with MS analysis, deeper understanding of protein structure and protein-ligand and protein- protein interactions. This review highlights the fundamentals of FPOP and provides descriptions of hydroxyl-radical and other radical and carbene generation, of the hydroxyl labeling of proteins, and of determination of protein modification sites. We also summarize some recent applications of FPOP coupled with MS in protein footprinting. CONCLUSION We survey results that show the capability of FPOP for qualitatively measuring protein solvent accessibility on the residue level. To make these approaches more valuable, we describe recent method developments that increase FPOP's quantitative capacity and increase the spatial protein sequence coverage. To improve FPOP further, several new labeling reagents including carbenes and other radicals have been developed. These growing improvements will allow oxidative- footprinting methods coupled with MS to play an increasingly significant role in determining the structure and dynamics of macromolecules and their assemblies.
Collapse
Affiliation(s)
- Liuqing Shi
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| |
Collapse
|
48
|
The use of fast photochemical oxidation of proteins coupled with mass spectrometry in protein therapeutics discovery and development. Drug Discov Today 2019; 24:829-834. [DOI: 10.1016/j.drudis.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023]
|
49
|
Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Evolution of Structural Biology through the Lens of Mass Spectrometry. Anal Chem 2019; 91:142-155. [PMID: 30457831 PMCID: PMC6472977 DOI: 10.1021/acs.analchem.8b05014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T. Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Emily E. Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jessica A. Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
50
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|