1
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhu B, Qian C, Tang H, Kitaguchi T, Ueda H. Creating a Thermostable β-Glucuronidase Switch for Homogeneous Immunoassay by Disruption of Conserved Salt Bridges at Diagonal Interfaces. Biochemistry 2023; 62:309-317. [PMID: 35849118 DOI: 10.1021/acs.biochem.2c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Escherichia coli β-glucuronidase (GUS) has been used as a reporter enzyme in molecular biology and engineered as an enzyme switch for the development of homogeneous biosensors. In this study, we developed a thermostable GUS enzyme switch based on the thermostable GUS mutant TR3337 by disrupting a conserved salt bridge (H514-E523) between the diagonal subunits of its homotetramer. A combinatorial library (240 variants) was screened using a novel high-throughput strategy, which led to the identification of mutant DLW (H514D/M516L/Y517W) as a functional enzyme switch in a caffeine-recognizing immunosensor. Molecular dynamics simulations were performed to predict the topology change around position 514, and a side-chain flip of D514 (repulsion with E523) was observed in the DLW mutant. Up to 1.8-fold of signal-to-background ratio was confirmed when measured at up to 45 °C, thereby highlighting the DLW mutant as a versatile tool for developing thermostable immunosensors for in vitro and in cellulo applications.
Collapse
Affiliation(s)
- Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Cheng Qian
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Haoxuan Tang
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
3
|
Proximity hybridization-induced competitive rolling circle amplification to construct fluorescent dual-sensor for simultaneous evaluation of glycated and total hemoglobin. Biosens Bioelectron 2022; 202:113998. [DOI: 10.1016/j.bios.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
|
4
|
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2374. [PMID: 35407706 PMCID: PMC8999924 DOI: 10.3390/ma15072374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.
Collapse
Affiliation(s)
- Palak Jethva
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
5
|
Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Today, photodynamic therapy is one of the most promising minimally invasive methods of treatment of various diseases, including cancer. The main limitation of this method is the insufficient penetration into the tissue of laser radiation used to activate photosensitizer molecules, which makes it difficult to carry out therapy in the treatment of large or deep-seated tumors. In this regard, there is a great interest in the development of new strategies for photodynamic therapy using infrared radiation for excitation, the wavelengths of which fall into the “transparency window” of biological tissues. In this work, it was proposed to use upconversion NaGdF4 :Yb:Er nanoparticles (UCNP), which absorb infrared excitation and serve as a donor that transfers energy to the photosensitizer. Photosens and phthalosens were chosen as the most promising photosensitizers for the study. The aim of this work was to study the energy transfer processes between upconversion nanoparticles doped with rare-earth ions and photosensitizer molecules. in order to excite photosensitizers with IR radiation and carry out photodynamic therapy of deep-seated neoplasms. Using spectroscopic and time-resolved methods, it has been demonstrated that there is an efficient energy transfer between upconversion particles and photosensitizers phthalosens and photosens. The calculated efficiency of energy transfer by the Foerster mechanism was 41% for the UCNP + photosens system and 69% for the UCNP + phthalosens system. It has been experimentally and theoretically proved that there is a binding of photosensitizer molecules with UCNP by means of surfactants, leading to a reduction in the distance between them, due to which effective nonradiative energy transfer is realized. The generation of singlet oxygen by the phthalosens photosensitizer upon excitation by means of energy transfer from UCNP, excited at 980 nm wavelength of, has been demonstrated.
Collapse
|
6
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
7
|
Noviana E, Siswanto S, Budi Hastuti AAM. Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin. Curr Top Med Chem 2022; 22:2261-2281. [PMID: 36111762 DOI: 10.2174/1568026622666220915114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Soni Siswanto
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agustina Ari Murti Budi Hastuti
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
9
|
Liu C, Shao H, Li D, Sui X, Liu N, Rahman SU, Li X, Arany PR. Safety and efficacy of citric acid-upconverting nanoparticles for multimodal biological imaging in BALB/c mice. Photodiagnosis Photodyn Ther 2021; 36:102485. [PMID: 34411736 DOI: 10.1016/j.pdpdt.2021.102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/03/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
There has been significant progress with rare-earth coated upconversion nanoparticles (UCNPs) representing a promising new generation of contrast agents for biomedical applications. However, in vivo biological safety remains poorly investigated. This work examined citric acid-UCNP (NaYF4:Yb3+/Gd3+, ∼ 5 nm, Cit-UCNP) generated as contrast agents for multimodal imaging with concurrent magnetic resonance (MRI) and X-ray computed tomography (CT). We first examined the in vitro cytotoxicity and efficacy of Cit-UCNPs as a contrast agent. We then performed a systematic investigation of their in vivo biodistribution and biocompatibility. Our results noted that Cit-UCNPs have minimal toxicity and demonstrated significant potential as contrast agents for multimodal biomedical imaging. This study indicates Cit-UCNPs could be a valuable addition to enhance long-term targeted diagnostic and prognostic multimodal clinical imaging approaches.
Collapse
Affiliation(s)
- Cheng Liu
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Hua Shao
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Dan Li
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Xin Sui
- Third Affiliated Hospital of Qiqihar Medical College, China
| | | | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Pakistan
| | - Xiang Li
- Fourth Affiliated Hospital of Harbin Medical University, China.
| | - Praveen R Arany
- Oral Biology, Suregry and Biomedical Engineering, University at Buffalo, USA.
| |
Collapse
|
10
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
11
|
Bae K, Xu B, Das A, Wolenski C, Rappeport E, Park W. Selective enhancement of upconversion luminescence for enhanced ratiometric sensing. RSC Adv 2021; 11:18205-18212. [PMID: 34567541 PMCID: PMC8462828 DOI: 10.1039/d1ra01396c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interest in bioimaging and sensing due to their photostability, low excitation energy, and good tissue penetration. Plasmonic nanostructures, on the other hand, can enhance the luminescence of UCNPs by concentrating electric fields into a nanoscale volume. While the enhanced luminescence intensity is in principle beneficial to sensing, intensity-based sensing has limitations in absolute measurements. This deficiency can be overcome by employing ratiometric sensing in which intensity ratio, rather than intensity itself, is used to quantitatively determine the presence of analytes. The ratiometric sensing is advantageous because the intensity ratio is much less sensitive to the variations in the environment and the number of probe materials in the sensing volume. Here, we demonstrate a plasmonic nanostructure with upconversion nanoparticles for an enhanced ratiometric sensing platform. The plasmonic nanostructure is composed of UCNPs, an indium tin oxide (ITO) spacer layer and an Au nanodisk. The nanostructure is designed such that the plasmon resonance selectively enhances the red luminescence of NaYGdF4:Yb3+, Er3+ UCNPs while leaving the green luminescence unaffected, thereby increasing the dynamic range and achievable sensitivity of the red-to-green (R/G) intensity ratio. We observed a 4-fold enhancement in the R/G ratio and also a drastic reduction in the signal uncertainty. This work advances our knowledge of the optical interaction between UCNPs and plasmonic nanostructures and also provides a foundation for improved ratiometric sensing in biomedical applications.
Collapse
Affiliation(s)
- Kyuyoung Bae
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder425 UCBBoulderCO 80309USA
| | - Bo Xu
- Department of Physics, University of Colorado Boulder425 UCBBoulderCO 80309USA
| | - Ananda Das
- Department of Physics, University of Colorado Boulder425 UCBBoulderCO 80309USA
| | - Connor Wolenski
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder425 UCBBoulderCO 80309USA
| | - Eric Rappeport
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder425 UCBBoulderCO 80309USA
| | - Wounjhang Park
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder425 UCBBoulderCO 80309USA
- Materials Science & Engineering Program, University of ColoradoBoulderCO 80309USA
| |
Collapse
|
12
|
Systematic Review on Human Skin-Compatible Wearable Photoplethysmography Sensors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. In this paper, we focus on state-of-the-art skin-compatible PPG sensors and strategies to obtain accurate and stable sensing of biological signals adhered to human skin along with light-absorbing semiconducting materials that are classified as silicone, inorganic, and organic absorbers. The challenges of skin-compatible PPG-based monitoring technologies and their further improvements are also discussed. We expect that such technological developments will accelerate accurate diagnostic evaluation with the aid of the biomedical electronic devices.
Collapse
|
13
|
Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. SENSORS 2020; 20:s20247274. [PMID: 33353006 PMCID: PMC7765918 DOI: 10.3390/s20247274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
Glycated hemoglobin (HbA1c) levels are an important index for the diagnosis and long-term control of diabetes. This study is the first to use a direct and label-free photoelectric biosensor to determine HbA1c using bacteriorhodopsin-embedded purple membranes (PM) as a transducer. A biotinylated PM (b-PM) coated electrode that is layered with protein A-oriented antibodies against hemoglobin (Hb) readily captures non-glycated Hb (HbA0) and generates less photocurrent. The spectra of bacteriorhodopsin and Hb overlap so the photocurrent is reduced because of the partial absorption of the incident light by the captured Hb molecules. Two HbA0 and HbA1c aptasensors that are prepared by conjugating specific aptamers on b-PM coated electrodes single-step detect HbA0 and HbA1c in 15 min, without cross reactivity, with detection limits of ≤0.1 μg/mL and a dynamic range of 0.1–100 μg/mL. Both aptasensors exhibit high selectivity and long-term stability. For the clinical samples, HbA0 concentrations and HbA1c levels that are measured with aptasensors correlate well with total Hb concentrations and the HbA1c levels that are determined using standard methods (correlation gradient = 0.915 ± 0.004 and 0.981 ± 0.001, respectively). The use of these aptasensors for diabetes care is demonstrated.
Collapse
|
14
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
15
|
Tang Z, Liu X, Su B, Chen Q, Cao H, Yun Y, Xu Y, Hammock BD. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121678. [PMID: 31753666 PMCID: PMC7990105 DOI: 10.1016/j.jhazmat.2019.121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
Ochratoxin A (OTA) is a major concern for public health and the rapid detection of trace OTA in food is always a challenge. To minimize OTA exposure to consumers, a nanobody (Nb)-mediated förster resonance energy transfer (FRET)-based immunosensor using quantum dots (Nb-FRET immunosensor) was proposed for ultrasensitive, single-step and competitive detection of OTA in agro-products at present work. QDs of two sizes were covalently labeled with OTA and Nb, acting as the energy donor and acceptor, respectively. The free OTA competed with the donor to bind to acceptor, thus the FRET efficiency increased with the decrease of OTA concentration. The single-step assay could be finished in 5 min with a limit of detection of 5 pg/mL, which was attributed to the small size of Nb for shortening the effective FRET distance and improving the FRET efficiency. The Nb-FRET immunosensor exhibited high selectivity for OTA. Moreover, acceptable accuracy and precision were obtained in the analysis of cereals and confirmed by the liquid chromatography-tandem mass spectrometry. Thus the developed Nb-FRET immunosensor was demonstrated to be an efficient tool for ultrasensitive and rapid detection of OTA in cereals and provides a detection model for other toxic small molecules in food and environment.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China.
| | - Benchao Su
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
16
|
Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020; 208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
|
17
|
Park J, Kim K, Jo EJ, Kim W, Kim H, Lee R, Lee JY, Jo JY, Kim MG, Jung GY. Plasmon enhanced up-conversion nanoparticles in perovskite solar cells for effective utilization of near infrared light. NANOSCALE 2019; 11:22813-22819. [PMID: 31750490 DOI: 10.1039/c9nr08432k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an alternative to silicon-based solar cells, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted much attention and achieved a comparable power conversion efficiency (PCE) to silicon-based ones, although the perovskite materials can absorb only visible light. Hence, the challenge remains to enhance the PCE utilizing near infrared (NIR) light in the solar light spectrum. One of the easiest ways to utilize the NIR is to incorporate NIR active materials in PSCs such as up-conversion nanoparticles (UCNPs); however, such a stratergy is not simple to adopt in PSCs due to the inherent vurnerability of perovskite materials towards moisture. In this work, we present NIR-utilizing PSCs by locating UCNPs within the PSC structure by a simple dry transfer method. A maximum PCE of 15.56% was obtained in the case of PSC having the UCNPs located between the hole transport layer (HTL) and gold (Au) top electrode, which is an 8.4% enhancement compared to the cell without the UCNPs. This enhancement came from the combined effects of NIR light utilization and the surface plasmon resonance (SPR) phenomenon originating from the Au top electrode, which was interfacing the UCNPs.
Collapse
Affiliation(s)
- Jiyoon Park
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Eun-Jung Jo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Woochul Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Hyeonghun Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Ryeri Lee
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun Young Lee
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Ji Young Jo
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Gun Young Jung
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Dong PT, Lin H, Huang KC, Cheng JX. Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. SCIENCE ADVANCES 2019; 5:eaav0561. [PMID: 31093524 PMCID: PMC6510558 DOI: 10.1126/sciadv.aav0561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
As a stable and accurate biomarker, glycated hemoglobin (HbA1c) is clinically used to diagnose diabetes with a threshold of 6.5% among total hemoglobin (Hb). Current methods such as boronate affinity chromatography involve complex processing of large-volume blood samples. Moreover, these methods cannot measure HbA1c fraction at single-red blood cell (RBC) level, thus unable to separate the contribution from other factors such as RBC lifetime. Here, we demonstrate a spectroscopic transient absorption imaging approach that is able to differentiate HbA1c from Hb on the basis of their distinct excited-state dynamics. HbA1c fraction inside a single RBC is derived quantitatively through phasor analysis. HbA1c fraction distribution of diabetic blood is apparently different from that of healthy blood. A mathematical model is developed to derive the long-term blood glucose concentration. Our technology provides a unique way to study heme modification and to derive clinically important information void of bloodstream glucose fluctuation.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kai-Chih Huang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
19
|
Gu Y, Wang J, Shi H, Pan M, Liu B, Fang G, Wang S. Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens Bioelectron 2019; 128:129-136. [DOI: 10.1016/j.bios.2018.12.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2018; 91:548-568. [DOI: 10.1021/acs.analchem.8b04049] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Qingsong Mei
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
21
|
Gwon K, Jo EJ, Sahu A, Lee JY, Kim MG, Tae G. Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:77-84. [DOI: 10.1016/j.msec.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/21/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
22
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, Xiao L, Li HW, Wang J. Homogeneous Immunosorbent Assay Based on Single-Particle Enumeration Using Upconversion Nanoparticles for the Sensitive Detection of Cancer Biomarkers. Anal Chem 2018; 90:4807-4814. [DOI: 10.1021/acs.analchem.8b00251] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xue Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lanlan Pan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zunyan Yi
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| |
Collapse
|
24
|
Mackenzie LE, Goode JA, Vakurov A, Nampi PP, Saha S, Jose G, Millner PA. The theoretical molecular weight of NaYF 4 :RE upconversion nanoparticles. Sci Rep 2018; 8:1106. [PMID: 29348590 PMCID: PMC5773537 DOI: 10.1038/s41598-018-19415-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Upconversion nanoparticles (UCNPs) are utilized extensively for biomedical imaging, sensing, and therapeutic applications, yet the molecular weight of UCNPs has not previously been reported. Herein, we present a theory based upon the crystal structure of UCNPs to estimate the molecular weight of UCNPs: enabling insight into UCNP molecular weight for the first time. We estimate the theoretical molecular weight of various UCNPs reported in the literature, predicting that spherical NaYF4 UCNPs ~ 10 nm in diameter will be ~1 MDa (i.e. 106 g/mol), whereas UCNPs ~ 45 nm in diameter will be ~100 MDa (i.e. 108 g/mol). We also predict that hexagonal crystal phase UCNPs will be of greater molecular weight than cubic crystal phase UCNPs. Additionally we find that a Gaussian UCNP diameter distribution will correspond to a lognormal UCNP molecular weight distribution. Our approach could potentially be generalised to predict the molecular weight of other arbitrary crystalline nanoparticles: as such, we provide stand-alone graphic user interfaces to calculate the molecular weight both UCNPs and arbitrary crystalline nanoparticles. We expect knowledge of UCNP molecular weight to be of wide utility in biomedical applications where reporting UCNP quantity in absolute numbers or molarity will be beneficial for inter-study comparison and repeatability.
Collapse
Affiliation(s)
- Lewis E Mackenzie
- Department of Chemistry, Faculty of Sciences, Durham University, Durham, DH1 4ED, United Kingdom.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Jack A Goode
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alexandre Vakurov
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Padmaja P Nampi
- School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Gin Jose
- School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
25
|
|
26
|
An Z, Wang L, Gao C, He N, Zhu B, Liu Y, Cai Q. Fe3+-Enhanced NIR-to-NIR upconversion nanocrystals for tumor-targeted trimodal bioimaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe3+-Enhanced NIR-to-NIR multifunctional upconversion luminescence nanocrystals were synthesized for excellent tumor-targeted UCL/MRI/X-ray trimodal bioimaging.
Collapse
Affiliation(s)
- Zhengbin An
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Lijia Wang
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Chan Gao
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Ni He
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Baode Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development
- College of Life Sciences
- Hunan Normal University
- Changsha
| | - Yingju Liu
- College of Materials & Energy, South China Agricultural University
- Guangzhou 510642
- China
| | - Qingyun Cai
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
27
|
Jo EJ, Byun JY, Mun H, Bang D, Son JH, Lee JY, Lee LP, Kim MG. Single-Step LRET Aptasensor for Rapid Mycotoxin Detection. Anal Chem 2017; 90:716-722. [PMID: 29210570 DOI: 10.1021/acs.analchem.7b02368] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contamination of foods by mycotoxins is a common yet serious problem. Owing to the increase in consumption of fresh produce, consumers have become aware of food safety issues caused by mycotoxins. Therefore, rapid and sensitive mycotoxin detection is in great demand in fields such as food safety and public health. Here we report a single-step luminescence resonance energy transfer (LRET) aptasensor for mycotoxin detection. To accomplish the single-step sensor, our sensor was constructed by linking a quencher-labeled aptamer through a linker to the surface of upconversion nanoparticles (UCNPs). Our LRET aptasensor is composed of Mn2+-doped NaYF4:Yb3+,Er3+ UCNPs as the LRET donor, and black hole quencher 3 (BHQ3) as the acceptor. The maximum quenching efficiency is obtained by modulating the linker length, which controls the distance between the quencher and the UCNPs. Our distinctive design of LRET aptasensor allows detection of mycotoxins selectively in colored food samples within 10 min without multiple bioassay steps. We believe our single-step aptasensor has a significant potential for on-site detection of food contaminants, environmental pollutants, and biological metabolites.
Collapse
Affiliation(s)
| | - Ju-Young Byun
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, Republic of Korea
| | | | - Doyeon Bang
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | - Jun Ho Son
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | | | - Luke P Lee
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California , Berkeley, California 94720, United States
| | | |
Collapse
|
28
|
Lanthanide-Doped Nanoparticles for Diagnostic Sensing. NANOMATERIALS 2017; 7:nano7120411. [PMID: 29168770 PMCID: PMC5746901 DOI: 10.3390/nano7120411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
Lanthanide-doped nanoparticles exhibit unique optical properties, such as a long luminescence lifetime (up to several milliseconds), sharp emission peaks, and upconversion luminescence over the range of wavelengths from near-infrared to visible. Exploiting these optical properties, lanthanide-doped nanoparticles have been widely utilized for cellular and small animal imaging with the absence of background autofluorescence. In addition, these nanoparticles have advantages of high signal-to-noise ratio for highly sensitive and selective diagnostic detection. In this review, we summarize and discuss recent progress in the development of highly sensitive diagnostic methods using lanthanide-doped nanoparticles. Combined with a smartphone, portable luminescence detecting platforms could be widely applied in point-of-care tests.
Collapse
|
29
|
Single-step, homogeneous and sensitive detection for microRNAs with dual-recognition steps based on luminescence resonance energy transfer (LRET) using upconversion nanoparticles. Biosens Bioelectron 2017; 100:475-481. [PMID: 28963965 DOI: 10.1016/j.bios.2017.09.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 01/23/2023]
Abstract
A single-step, homogeneous and sensitive LRET assay is presented for the detection of miRNAs. The amplification-free assay provides a unique combination of high specificity with dual-recognition approach of different hybridization and ligation steps and preventing background auto-fluorescence in biological samples using upconversion nanoparticles (UCNPs) as signal-producing nanoprobes. The assay probe is composed of signal-producing unit (a pair of homogeneous upconversion luminescence resonance energy transfer (UC-LRET)-based oligonucleotides) and recognition unit (two adaptor oligonucleotides). In the presence of target miRNAs, the probe and target miRNAs leads to the formation of stable double-strands and semi-stable adaptor-miRNAs complexes with an adaptor nick. Ligation of the nick using ligase cause the formation of stable double-strands, resulting in UCNPs-to-dye UC-LRET for detection of the miRNAs with near-infrared radiation (980nm). Sensitive detection of miRNA-21 at concentrations of 200pM to 1.4nM and detection limits of 0.095nM with good precision of 3.9% (RSD) for seven repeated measurements of 500pM miRNAs demonstrate the feasibility of both high throughput and point-of-care clinical diagnostics. The homogeneous UC-LRET assay without any washing can be extended to the application in other important types of nucleic acid analysis.
Collapse
|
30
|
Zhang L, Zhang J, Chen H, Wang L. Redox luminescence switch based on Mn 2+ -doped NaYF 4 :Yb,Er upconversion nanorods. LUMINESCENCE 2017; 33:138-144. [PMID: 28880436 DOI: 10.1002/bio.3383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022]
Abstract
An redox luminescence switch was developed for the sensing of glutathione (GSH), l-cysteine (Cys) or l-ascorbic acid (AA) based on redox reaction. The Mn2+ -doped NaYF4 :Yb,Er upconversion nanorods (UCNRs) with an emission peak located in the red region were synthesized. The luminescence intensity of the UCNRs could be quenched due to the Mn2+ could be oxidized to MnO2 by KMnO4 . Subsequently, when the AA, GSH or Cys was added into the MnO2 modified upconversion nanosystem, which could reduced MnO2 to Mn2+ and the luminescence intensity was recovered. The concentration ranges of the nanosystem are 0.500-3.375 mM (R2 = 0.99) for AA, 0.6250-11.88 mM (R2 = 0.99) for GSH and 0.6250-9.375 mM (R2 = 0.99) for Cys, respectively.
Collapse
Affiliation(s)
- Liping Zhang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People's Republic of China
| | - Jianguo Zhang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People's Republic of China
| | - Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People's Republic of China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People's Republic of China
| |
Collapse
|
31
|
Dukhno O, Przybilla F, Collot M, Klymchenko A, Pivovarenko V, Buchner M, Muhr V, Hirsch T, Mély Y. Quantitative assessment of energy transfer in upconverting nanoparticles grafted with organic dyes. NANOSCALE 2017; 9:11994-12004. [PMID: 28795714 DOI: 10.1039/c6nr09706e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Upconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications. In this article, we assembled UCNP-organic dye RET systems and investigated their luminescence decays and spectra, with varying UCNP sizes and quantities of dyes grafted onto their surface. We observed an increase in RET efficiency with lower particle sizes and higher dye decoration. We also observed several unexpected effects, notably a quenching of UCNP luminescence bands that are not resonant with the absorption of organic dyes. We proposed a semi-empirical Monte Carlo model for predicting the behavior of UCNP-organic dye systems, and validated it by comparison with our experimental data. These findings will be useful for the development of more accurate UCNP-based assays, sensors, and imaging agents, as well as for optimization of UCNP-organic dye RET systems employed in cancer treatment and theranostics.
Collapse
Affiliation(s)
- Oleksii Dukhno
- Laboratory of Biophotonics and Pharmacology, UMR 7213 CNRS, University of Strasbourg, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
33
|
Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Anal Bioanal Chem 2017; 409:5875-5890. [DOI: 10.1007/s00216-017-0482-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
34
|
Chen Y, Zhang F, Wang Q, Tong R, Lin H, Qu F. Near-infrared light-mediated LA-UCNPs@SiO2-C/HA@mSiO2-DOX@NB nanocomposite for chemotherapy/PDT/PTT and imaging. Dalton Trans 2017; 46:14293-14300. [DOI: 10.1039/c7dt02529g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon 980 nm light irradiation, multiple-emission can not only induce chemotherapy/PDT/PTT but also imaging.
Collapse
Affiliation(s)
- Yuhua Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| | - Ruihan Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
35
|
Hu P, Wu X, Hu S, Tang Z, Dai G, Liu Y. Upconversion nanoparticle arrays for detecting glycated hemoglobin with high sensitivity and good reusability. RSC Adv 2016. [DOI: 10.1039/c6ra20642e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted extensive interest in bio-applications due to their unique optical properties by converting near infrared excitation to visible emission.
Collapse
Affiliation(s)
- Pan Hu
- School of Information and Electrical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xiaofeng Wu
- School of Information and Electrical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Shigang Hu
- School of Information and Electrical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Zhijun Tang
- School of Information and Electrical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Gangtao Dai
- Department of Physics and Electrical Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Yunxin Liu
- Department of Physics and Electrical Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
- INPAC-Institute for Nanoscale Physics and Chemistry
| |
Collapse
|