1
|
Wei C, Lv W, Ding Y, Wang C, Sun C, Feng X, Zhang T, Li J, Li Q, Li S. Investigation of co-flow step emulsification (CFSE) microfluidic device and its applications in digital polymerase chain reaction (ddPCR). J Colloid Interface Sci 2025; 678:1132-1142. [PMID: 39255752 DOI: 10.1016/j.jcis.2024.08.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances. EXPERIMENTS By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production. FINDINGS With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/μL to 20,000 copies/μL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.
Collapse
Affiliation(s)
- Chunyang Wei
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Lv
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250399, China
| | - Yanjing Ding
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chen Wang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengduo Sun
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xinhang Feng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianqi Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Qinghua Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.
| |
Collapse
|
2
|
Wu S, Zhou Y, Wei J, Da Z, Chen W, Shu X, Luo T, Duan Y, Yang R, Ding C, Liu G. Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots. Biomater Sci 2024; 12:5562-5572. [PMID: 39292506 DOI: 10.1039/d4bm00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe3O4 nanoparticles (NPs). By adjusting the static magnetic field intensity (Bs), vibration frequency, and flow rate (Q) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (Cf) can be customized by adjusting the Bs and the concentration of Fe3O4 NPs. The directional in situ untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and in vitro experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.
Collapse
Affiliation(s)
- Shiyu Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Juan Wei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Zicheng Da
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Wenquan Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Xiaoxia Shu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yuping Duan
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Fike BJ, Curtin K, Li P. Nucleic Acid Target Sensing Using a Vibrating Sharp-Tip Capillary and Digital Droplet Loop-Mediated Isothermal Amplification (ddLAMP). SENSORS (BASEL, SWITZERLAND) 2024; 24:4266. [PMID: 39001045 PMCID: PMC11243892 DOI: 10.3390/s24134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.
Collapse
Affiliation(s)
- Bethany J Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Kathrine Curtin
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
4
|
Zhang G, Lin X, Mu W, Luo J, Xu Y, Song C, Li J. Application of a clamshell isothermal nucleic acid amplification analyzer in the detection of lower respiratory tract bacteria. Pract Lab Med 2024; 40:e00394. [PMID: 38680549 PMCID: PMC11047283 DOI: 10.1016/j.plabm.2024.e00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives The clamshell isothermal nucleic acid amplification analyzer RTisochip-S, a next-generation instrument featuring improved structural design, enhanced functional integration, reduced cost, and increased portability, was assessed for its suitability in clinical respiratory pathogens detection. Methods The certificated detection kit for lower respiratory tract bacteria (LRTB-kit) was applied to evaluate the performance of RTisochip-S via sensitivity, specificity, and repeatability analysis. The clinical specimens, including 51 sputum specimens and 10 bronchoalveolar lavage fluid specimens, were simultaneously detected on both RTisochip-S and a certificated reference instrument (RTisochip-A) to assess the consistency. Results The results indicated that RTisochip-S fulfills the sensitivity, specificity, and repeatability requirements of the LRTB-Kit, and the results of clinical specimens on the two instruments were consistent. Conclusions RTisochip-S is satisfying the clinical detection of respiratory pathogens while enhancing portability and compactness, making it more well-suited for point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Guanbin Zhang
- Department of Research and Development, Chengdu CapitalBio Medical Laboratory, Chengdu, Sichuan, China
- Department of Research and Development, National Engineering Research Center for Beijing Biochip Technology, Beijing, China
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, Fujian, China
| | - Xiaoying Lin
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, Fujian, China
| | - Wenkun Mu
- Department of Reagent Technology, CapitalBio Technology (Chengdu), Chengdu, Sichuan, China
| | - Jun Luo
- Department of Academic Extension, Chengdu CapitalBio Medical Laboratory, Chengdu, Sichuan, China
| | - Yiyuan Xu
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, Fujian, China
| | - Chicheng Song
- Department of Instrument Technology, CapitalBio Technology (Chengdu), Chengdu, Sichuan, China
| | - Jiang Li
- Department of Academic Extension, Chengdu CapitalBio Medical Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhu Z, Chen T, Wu Y, Wu X, Lang Z, Huang F, Zhu P, Si T, Xu RX. Microfluidic strategies for engineering oxygen-releasing biomaterials. Acta Biomater 2024; 179:61-82. [PMID: 38579919 DOI: 10.1016/j.actbio.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Yin W, Zhuang J, Li J, Xia L, Hu K, Yin J, Mu Y. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303398. [PMID: 37612816 DOI: 10.1002/smll.202303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Digital nucleic acid detection based on microfluidics technology can quantify the initial amount of nucleic acid in the sample with low equipment requirements and simple operations, which can be widely used in clinical and in vitro diagnosis. Recently, isothermal amplification technologies such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) assisted technologies have become a hot spot of attention and state-of-the-art digital nucleic acid chips have provided a powerful tool for these technologies. Herein, isothermal amplification technologies including RPA, LAMP, and CRISPR-Cas assisted methods, based on digital nucleic acid microfluidics chips recently, have been reviewed. Moreover, the challenges of digital isothermal amplification and possible strategies to address them are discussed. Finally, future directions of digital isothermal amplification technology, such as microfluidic chip and device manufacturing, multiplex detection, and one-pot detection, are outlined.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Zhang N, Li C, Dou X, Du Y, Tian F. Test Article for automation purposes. Crit Rev Anal Chem 2023; 53:1969-1989. [PMID: 37881955 DOI: 10.1080/10408347.2022.2042999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
9
|
Tan ZL, Yasuura M, Horiguchi Y, Ashiba H, Fukuda T. Hydrogel capsule-based digital quantitative polymerase chain reaction. Mikrochim Acta 2023; 190:247. [PMID: 37261544 DOI: 10.1007/s00604-023-05827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Droplet digital PCR (ddPCR) is accurate in nucleic acid quantification owing to its linearity and high sensitivity. Amplification of nucleic acid in droplets, however, is limited by the stability of droplets against thermal cycling. While the use of fluorinated oil or supplementation of surfactant could improve the stability of droplets, this process has also greatly increased the cost of ddPCR and limited post-PCR analysis. Here, we report a novel method known as gel capsule-based digital PCR (gc-dPCR) which includes a method to prepare hydrogel capsules encapsulating the PCR reaction mix, conducting PCR reaction, and readout by either quantitative PCR (qPCR) system or fluorescence microplate reader. We have compared the developed method to vortex ddPCR. Our approach results in higher fluorescence intensity compared to ddPCR suggesting higher sensitivity of the system. As hydrogel capsules are more stable than droplets in fluorinated oil throughout thermal cycling, all partitions can be quantified, thus preventing loss of information from low-concentration samples. The new approach should extend to all droplet-based PCR methods. It has greatly improved ddPCR by increasing droplets stability and sensitivity, and reducing the cost of ddPCR, which help to remove the barrier of ddPCR in settings with limited resources.
Collapse
Affiliation(s)
- Zheng Lin Tan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Masato Yasuura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yukichi Horiguchi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroki Ashiba
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takashi Fukuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
10
|
Ren Y, Ji J, Zhang H, Cao L, Hu J, Xu F, Li Z. A three-in-one microfluidic droplet digital PCR platform for absolute quantitative analysis of DNA. LAB ON A CHIP 2023; 23:2521-2530. [PMID: 37183971 DOI: 10.1039/d3lc00107e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Droplet digital polymerase chain reaction (ddPCR) technology has found widespread applications in the ultrasensitive analysis of nucleic acids, where integrated ddPCR platforms with the capability of sample dispersion, followed by in situ amplification and data analysis, are highly expected. However, current integrated ddPCR platforms are usually limited by either difficultly mass-produced materials or lack of integrated control instruments, restricting their practical application. This paper proposes an integrated three-in-one ddPCR platform with high user-friendliness and practicability, which is composed of an easy-to-use chip and a matching control instrument. The chip was made of thermally resistant and easily mass-produced polycarbonate (PC) material, and the benchtop control instrument was designed to perform droplet generation, in situ amplification, and fluorescence reading. The droplet generation and in situ heating on the chip were well characterized. Finally, the performance of the platform was validated through the analysis of the EGFR L858R mutation in lung cancer. The proposed three-in-one ddPCR platform shows great practicability in ultrasensitive nucleic acid testing. By virtue of its sensitivity, practicability, and cost-effectiveness, the ddPCR can serve as a universal detection platform for monitoring nucleic acid in the fields of tumor diagnosis, pathogen detection, and prenatal diagnosis.
Collapse
Affiliation(s)
- Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingcheng Ji
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Co., Ltd, Suzhou, 215010, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
11
|
Liu F, Ge A, Li C, Gao W, Wu F, Kan L, Xu J, Ma B. Auto Flow-Focusing Droplet Reinjection Chip-Based Integrated Portable Droplet System (iPODs). Anal Chem 2023; 95:6672-6680. [PMID: 37053544 DOI: 10.1021/acs.analchem.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Droplet microfluidics provides powerful tools for biochemical applications. However, precise fluid control is usually required in the process of droplet generation and detection, which hinders droplet-based applications in point-of-care testing (POCT). Here, we present a droplet reinjection method capable of droplet distribution without precise fluid control and external pumps by which the droplets can be passively aligned and detected one by one at intervals. By further integrating the surface-wetting-based droplet generation chip, an integrated POrtable Droplet system (iPODs) is developed. The iPODs integrates multiple functions such as droplet generation, online reaction, and serial reading. Using the iPODs, monodisperse droplets can be generated at a flow rate of 800 Hz with a narrow size distribution (CV <2.2%). Droplets are kept stable, and the fluorescence signal can be significantly identified after the reaction. The spaced droplet efficiency in the reinjection chip is nearly 100%. In addition, we validate digital loop-mediated isothermal amplification (dLAMP) within 80 min with a simple operation workflow. The results show that iPODs has good linearity (R2 = 0.999) at concentrations ranging from 101 to 104 copies/μL. Thus, the developed iPODs highlights its potential to be a portable, low-cost, and easy-to-deploy toolbox for droplet-based applications.
Collapse
Affiliation(s)
- Fengyi Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anle Ge
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chunyu Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Gao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Fei Wu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lingyan Kan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Su YY, Pan DW, Deng CF, Yang SH, Faraj Y, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
13
|
Zhang Z, Cheng Y, Li X, Chen L, Xu R, Qi X, Shao Y, Gao Z, Zhu M. Bent-Capillary-Centrifugal-Driven Monodisperse Droplet Generator with Its Application for Digital LAMP Assay. Anal Chem 2023; 95:3028-3036. [PMID: 36688612 DOI: 10.1021/acs.analchem.2c05110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We developed a bent-capillary-centrifugal-driven (BCCD) monodisperse droplet generator, which could achieve a perfect combination of driving and segmentation for the dispersed phase only using a rotating bent capillary immersed in the continuous phase (mineral oil). The sample could flow continuously to the bent-capillary outlet to form the droplet precursors, which were segmented into homogeneous droplets in the continuous phase. Through the investigation of influence factors on droplet size and stability, we found that the droplet size could be conveniently controlled by the rotational speed of the bent capillary. The droplet volumes could be adjusted with the range from 34 pL to 1 μL, and the coefficient variations (CVs) were less than 3%. Meanwhile, the BCCD droplet generator could realize the controllable droplet output with a high-efficiency sample utilization of 99.75 ± 1.15%, which offered a significant advantage in reducing the waste of precious samples in the droplet generation process. We validated this system with a digital loop-mediated isothermal amplification (dLAMP) assay for the absolute quantification of Mycobacterium tuberculosis complex nucleic acids. The results demonstrated that the BCCD droplet generator was easy to build, was of low cost, and was convenient to operate, as well as avoided sample loss and cross-contamination by coupling with a 96-well plate. Overall, the present platform, as a simple chip-free droplet generator, will provide an especially valuable droplet generation solution for biochemical applications based on droplets.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Yongqiang Cheng
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Xiaotong Li
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Longyu Chen
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Ranran Xu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Xiaoxiao Qi
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Yifan Shao
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Zhenhui Gao
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Meijia Zhu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| |
Collapse
|
14
|
Fabrication of planar monolayer microreactor array for visual statistical analysis and droplet-based digital quantitative analysis in situ. Anal Bioanal Chem 2023; 415:627-637. [PMID: 36504285 DOI: 10.1007/s00216-022-04451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Planar monolayer microreactor arrays (PMMRAs) make droplet-based numerical measurements and statistical analysis cheap and easy. However, PMMRAs are typically produced in complex microfluidic devices and, moreover, still requires stringent control to reduce droplet loss during heating. In this paper, a simple, reliable, and flexible method for fabricating PMMRAs in a 96-well plate is described in detail by using simple materials and low-cost equipment. The partitioned droplets spontaneously assemble into PMMRAs in the plates, and this distribution is maintained even after incubation. This is advantageous for in situ analysis based on an individual droplet in droplet digital loop-mediated isothermal amplification (ddLAMP) and does not require the transfer of positive droplets. Precise and reproducible quantification of classical swine fever virus (CSFV) extracts was executed in these PMMRAs to verify its availability. Our results demonstrate that the proposed approach not only provides a flexible and controllable execution scheme for droplet-based nucleic acid quantification in resource-limited laboratories but also opens new perspectives for numerous analytical and biochemical applications using droplets as versatile plastic microreactors.
Collapse
|
15
|
Hu Q, Kanwal F, Lyu W, Zhang J, Liu X, Qin K, Shen F. Multiplex Digital Polymerase Chain Reaction on a Droplet Array SlipChip for Analysis of KRAS Mutations in Pancreatic Cancer. ACS Sens 2023; 8:114-121. [PMID: 36520653 DOI: 10.1021/acssensors.2c01776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a terminal disease with high mortality and very poor prognosis. A sensitive and quantitative analysis of KRAS mutations in pancreatic cancer provides a tool not only to understand the biological mechanisms of pancreatic cancer but also for diagnosis and treatment monitoring. Digital polymerase chain reaction (PCR) is a promising tool for KRAS mutation analysis, but current methods generally require a complex microfluidic handling system, which can be challenging to implement in routine research and point-of-care clinical diagnostics. Here, we present a droplet-array SlipChip (da-SlipChip) for the multiplex quantification of KRAS G12D, V, R, and C mutant genes with the wild-type (WT) gene background by dual color (FAM/ROX) fluorescence detection. This da-SlipChip is a high-density microwell array of 21,696 wells of 200 pL in 4 by 5424 microwell format with simple loading and slipping operation. It does not require the same precise alignment of microfeatures on the different plates that are acquired by the traditional digital PCR SlipChip. This device can provide accurate quantification of both mutant genes and the WT KRAS gene. We collected tumor tissue, paired normal pancreatic tissue, and other normal tissues from 18 pancreatic cancer patients and analyzed the mutation profiles of KRAS G12D, V, R, and C in these samples; the results from the multiplex digital PCR on da-SlipChip agree well with those of next-generation sequencing (NGS). This da-SlipChip moves digital PCR closer to the practical point-of-care applications not only for detecting KRAS mutations in pancreatic cancer but also for other applications that require precise nucleic acid quantification with high sensitivity.
Collapse
Affiliation(s)
- Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Fariha Kanwal
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
16
|
Anyaduba TD, Otoo JA, Schlappi TS. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. MICROMACHINES 2022; 13:1946. [PMID: 36363966 PMCID: PMC9695966 DOI: 10.3390/mi13111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Collapse
Affiliation(s)
- Tochukwu D. Anyaduba
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
- Abbott Rapid Diagnostics, 4545 Towne Center Ct, La Jolla, San Diego, CA 92121, USA
| | - Jonas A. Otoo
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| | - Travis S. Schlappi
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| |
Collapse
|
17
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
|
19
|
Zhang N, Li C, Dou X, Du Y, Tian F. Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA). Crit Rev Anal Chem 2022; 52:1969-1989. [PMID: 35201910 DOI: 10.1080/10408347.2022.2042669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
20
|
Yu Y, Yu Z, Pan X, Xu L, Guo R, Qian X, Shen F. Multiplex digital PCR with digital melting curve analysis on a self-partitioning SlipChip. Analyst 2022; 147:625-633. [PMID: 35107102 DOI: 10.1039/d1an01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Digital polymerase chain reaction (digital PCR) can provide absolute quantification of target nucleic acids with high sensitivity, excellent precision, and superior resolution. Digital PCR has broad applications in both life science research and clinical molecular diagnostics. However, limited by current fluorescence imaging methods, parallel quantification of multiple target molecules in a single digital PCR remains challenging. Here, we present a multiplex digital PCR method using digital melting curve analysis (digital MCA) with a SlipChip microfluidic system. The self-partitioning SlipChip (sp-SlipChip) can generate an array of nanoliter microdroplets with trackable physical positions using a simple loading-and-slipping operation. A fluorescence imaging adaptor and an in situ thermal cycler can be used to perform digital PCR and digital MCA on the sp-SlipChip. The unique signature melting temperature (Tm) designed for amplification products can be used as a fingerprint to further classify the positive amplification partitions into different subgroups. Amplicons with Tm differences as low as 1.5 degrees celsius were clearly separated, and multiple amplicons in the same partition could also be distinguished by digital MCA. We further demonstrated this digital MCA method with simultaneous digital quantification of five common respiratory pathogens, including Staphylococcus aureus, Acinetobacter baumannii, Streptococcus pneumoniae, Hemophilus influenzae, and Klebsiella pneumoniae. Since digital MCA only requires an intercalation dye instead of sequence-specific hydrolysis probes to perform multiplex digital PCR analysis, it can be less expensive and not limited to the number of fluorescence channels.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Rui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
21
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Ye S, Li C, Zheng X, Huang W, Tao Y, Yu Y, Yang L, Lan Y, Ma L, Bian S, Du W. OsciDrop: A Versatile Deterministic Droplet Generator. Anal Chem 2022; 94:2918-2925. [DOI: 10.1021/acs.analchem.1c04852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shun Ye
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Weihang Huang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yi Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanghuan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Dawei Biotechnologies Co., Ltd., Beijing 100085, China
| | - Shengtai Bian
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Lian J, Wu J, Wu S, Yu W, Wang P, Liu L, Zuo Q. Investigation of viscous effects on droplet generation in a co-flowing step emulsification device. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
He Y, Lu Z, Fan H, Zhang T. A photofabricated honeycomb micropillar array for loss-free trapping of microfluidic droplets and application to digital PCR. LAB ON A CHIP 2021; 21:3933-3941. [PMID: 34636815 DOI: 10.1039/d1lc00629k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet microfluidics is a promising platform for various biological and biomedical applications. Among which, droplet-based digital PCR (ddPCR) is one of the most challenging examples, with practical issues involving possible fusion/fission of droplets during PCR thermocycling and difficulties of indexing them for real-time monitoring. While spatially trapped droplet arrays may be helpful, they currently are either of low trapping density or suffer from high droplet loss. In this paper, we, for the first time, report a photofabricated honeycomb micropillar array (PHMA) for high-density and loss-free droplet trapping. By rationally designing high-aspect-ratio micropillars into a honeycomb configuration, droplets can be captured at a density of 160-250 droplets per mm2 and, more interestingly, without any loss. The PHMA device can be fabricated from several photocurable materials, with one gasproof photopolymer being optimally selected herein to enable the simple design to avoid sample evaporation and tedious surface modification, thereby making the fabrication very convenient. Moreover, by using a photocurable oil as a continuous phase, the trapped droplets can be further immobilized, and thus, become more stable even in PCR thermocycling. With these features, the proposed PHMA has shown promising potential in ddPCR, and is expected to find a wide range of applications in various biological and biomedical research.
Collapse
Affiliation(s)
- Yu He
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310023, China.
| | - Zefan Lu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310023, China.
| | - Hongliang Fan
- Department of Environmental Medicine, Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310023, China.
| |
Collapse
|
25
|
Chen L, Xiao Y, Wu Q, Yan X, Zhao P, Ruan J, Shan J, Chen D, Weitz DA, Ye F. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102579. [PMID: 34390183 DOI: 10.1002/smll.202102579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Hierarchical emulsions are interesting for both scientific researches and practical applications. Hierarchical emulsions prepared by microfluidics require complicated device geometry and delicate control of flow rates. Here, a versatile method is developed to design hierarchical emulsions using microfluidic 3D droplet printing in droplet. The process of droplet printing in droplet mimics the dragonfly laying eggs and has advantages of easy processing and flexible design. To demonstrate the capability of the method, double emulsions and triple emulsions with tunable core number, core size, and core composition are prepared. The hierarchical emulsions are excellent templates for the developments of functional materials. Flattened crescent-moon-shaped particles are then fabricated using double emulsions printed in confined 2D space as templates. The particles are excellent delivery vehicles for 2D interfaces, which can load and transport cargos through a well-defined trajectory under external magnetic steering. Microfluidic 3D droplet printing in droplet provides a powerful platform with improved simplicity and flexibility for the design of hierarchical emulsions and functional materials.
Collapse
Affiliation(s)
- Li Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Yao Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qinglin Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xiaoxiao Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
26
|
Xie T, Wang P, Wu L, Sun B, Zhao Q, Li G. A hand-powered microfluidic system for portable and low-waste sample discretization. LAB ON A CHIP 2021; 21:3429-3437. [PMID: 35226028 DOI: 10.1039/d1lc00448d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we present a simple and equipment-free system for discretizing samples into tens of thousands of discrete volumes in tens of seconds. Unlike conventional sample discretization systems that require bulky syringe pumps, pressure controllers, or vacuum equipment, our system requires only a sheet of water-soluble film, a hand-operated syringe, and a microfluidic device containing a high-density microchamber array. In this system, the water-soluble film seals the device inlet to form a closed channel-chamber system, while the syringe is used to create a vacuum in the closed system. Benefitting from the high negative pressure created by syringe-vacuum and the dissolution-triggered gating mechanism of the sealing water-soluble film, the aqueous sample loaded into the device inlet can be rapidly partitioned into tens of thousands of isolated chambers without the need for any expensive pumping systems. We demonstrated the utility of this system by exploiting it for digital PCR. We believe that this simple discretization system will find broad applications, such as in digital bioassays, single-cell analysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Tengbao Xie
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Ping Wang
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bangyong Sun
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
27
|
Yuan H, Tian J, Chao Y, Chien YS, Luo RH, Guo JY, Li S, Chou YJ, Shum HC, Chen CF. Hand-Powered Microfluidics for Parallel Droplet Digital Loop-Mediated Isothermal Amplification Assays. ACS Sens 2021; 6:2868-2874. [PMID: 34156242 DOI: 10.1021/acssensors.1c00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Droplet digital loop-mediated isothermal amplification (ddLAMP) is an important assay for pathogen detection due to its high accuracy, specificity, and ability to quantify nucleic acids. However, performing ddLAMP requires expensive instrumentation and the need for highly trained personnel with expertise in microfluidics. To make ddLAMP more accessible, a ddLAMP assay is developed, featuring significantly decreased operational difficulty and instrumentation requirements. The proposed assay consists of three simplified steps: (1) droplet generation step, in which a LAMP mixture can be emulsified just by manually pulling a syringe connected to a microfluidic device. In this step, for the first time, we verify that highly monodispersed droplets can be generated with unstable flow rates or pressures, allowing untrained personnel to operate the microfluidic device and perform ddLAMP assay; (2) heating step, in which the droplets are isothermally heated in a water bath, which can be found in most laboratories; and (3) result analysis step, in which the ddLAMP result can be determined using only a fluorescence microscopy and an open-source analyzing software. Throughout the process, no droplet microfluidic expertise or equipment is required. More importantly, the proposed system enables multiple samples to be processed simultaneously with a detection limit of 10 copies/μL. The test is simple and intuitive to operate in most laboratories for multi-sample detection, significantly enhancing the accessibility and detection throughput of the ddLAMP technique.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Hao Luo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shanshan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Yi-Ju Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
28
|
Lyu W, Zhang J, Yu Y, Xu L, Shen F. Slip formation of a high-density droplet array for nucleic acid quantification by digital LAMP with a random-access system. LAB ON A CHIP 2021; 21:3086-3093. [PMID: 34160518 DOI: 10.1039/d1lc00361e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital nucleic acid analysis (digital NAA) is an important tool for the precise quantification of nucleic acids. Various microfluidic-based approaches for digital NAA have been developed, but most methods require complex auxiliary control instruments, cumbersome device fabrication, or inconvenient preparation processes. A SlipChip is a microfluidic device that can generate and manipulate liquid partitions through simple movements of two microfluidic plates in close contact. However, the traditional SlipChip requires accurate alignment of microfeatures on different plates; therefore, the dimensions of the microwells and density of partitions can be constrained. Here, we developed a droplet array SlipChip (da-SlipChip) that can form droplets of various sizes at high density in a single slipping step. This process does not require precise overlapping microfeatures on different plates; therefore, the design flexibility and partition density can be significantly increased. We quantified SARS-CoV-2 nucleic acids extracted from the COVID-19 pseudovirus by digital loop-mediated isothermal amplification (LAMP) on a da-SlipChip with 21 696 of 0.25 nL droplets, and the results were in good agreement with those of the commercial digital PCR method of Stilla. Furthermore, we demonstrated a random-access system with a single-throughput fluorescence imager and a stackable thermal control instrument with nine independent heating modules. This random-access system with the da-SlipChip can greatly improve the total throughput and flexibility for digital isothermal nucleic acid quantification and significantly reduce the total waiting time.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
29
|
He Z, Wang J, Fike BJ, Li X, Li C, Mendis BL, Li P. A portable droplet generation system for ultra-wide dynamic range digital PCR based on a vibrating sharp-tip capillary. Biosens Bioelectron 2021; 191:113458. [PMID: 34216876 DOI: 10.1016/j.bios.2021.113458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 12/31/2022]
Abstract
Monodisperse droplet has been widely used as a versatile tool in different disciplines including biosensing. Existing methods still struggle to balance the droplet generation performance with system simplicity. Here we introduce a novel droplet generation scheme based on the acoustic streaming generated from a vibrating sharp-tip capillary. The unique fluid pattern enables efficient droplet generation without any external pressure sources. This method achieved real-time modulation of droplet size over an ultra-wide range (6.77-661 μm), high throughput (up to 5000 droplets/s), and good monodispersity (<4%) with a power consumption below 60 mW. This method has enabled a multi-volume digital PCR with a dynamic range of ~6 orders of magnitude and multiplexing capability. It has also enabled a simple protocol to produce cell-laden alginate microcapsules in variable sizes with excellent biocompatibility. Overall, the present method combines high performance with small footprint and portability, which will be especially valuable for droplet applications requiring variable droplet size and performed in resource-limited settings.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bethany J Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
30
|
Zhang Y, Zhao Q, Yuan D, Liu H, Yun G, Lu H, Li M, Guo J, Li W, Tang SY. Modular off-chip emulsion generator enabled by a revolving needle. LAB ON A CHIP 2020; 20:4592-4599. [PMID: 33150901 DOI: 10.1039/d0lc00939c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic chips have demonstrated unparalleled abilities in droplet generation, including precise control over droplet size and monodispersity. And yet, their rather complicated microfabrication process and operation can be a barrier for inexperienced researchers, which hinders microdroplets from unleashing their potential in broader fields of research. Here, we attempt to remove this barrier by developing an integrated and modular revolving needle emulsion generator (RNEG) to achieve high-throughput production of uniformly sized droplets in an off-chip manner. The RNEG works by driving a revolving needle to pinch the dispersed phase in a minicentrifuge tube. The system is constructed using modular components without involving any microfabrication, thereby enabling user-friendly operation. The RNEG is capable of producing microdroplets of various liquids with diameters ranging from tens to hundreds of micrometres. We further examine the principle of operation using numerical simulations and establish a simple model to predict the droplet size. Moreover, by integrating curing and centrifugation processes, the RNEG can produce hydrogel microparticles and transfer them from an oil phase into a water phase. Using this ability, we demonstrate the encapsulation and culture of single yeast cells within hydrogel microparticles. We envisage that the RNEG can become a versatile and powerful tool for high-throughput production of emulsions to facilitate diverse biological and chemical research.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Qianbin Zhao
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Dan Yuan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Hangrui Liu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2122, Australia
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610051, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Liu F, Xu T, Liu W, Zheng X, Xu J, Ma B. Spontaneous droplet generation via surface wetting. LAB ON A CHIP 2020; 20:3544-3551. [PMID: 32895671 DOI: 10.1039/d0lc00641f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A surface wetting-driven droplet generation microfluidic chip was developed, and could produce droplets spontaneously once adding a drop of oil and an aqueous sample on the chip without any power source and equipment. The chip is simply composed of three drilled holes connected by a single microchannel. The aqueous sample dropped in the middle hole could be converged and segmented into monodispersed droplets spontaneously by preloading oil in the side hole, and then flow into the other side hole through the microchannel. To address the high throughput and stability in practical applications, a siphon pump was further integrated into the microfluidic chip by simply connecting oil-filled tubing also acting as a collector. In this way, droplets can be generated spontaneously with a high uniformity (CV < 3.5%) and adjustable size (30-80 μm). Higher throughput (280 Hz) and multi-sample emulsification are achieved by parallel integration of a multi-channel structure. Based on that, the microfluidic chip was used as the droplet generator for the ddPCR to absolutely quantify S. mutans DNA. This is the first time that the feasibility of droplet generation driven only by oil wettability on hydrophobic surfaces is demonstrated. It offers great opportunity for self-sufficient and portable W/O droplet generation in biomedical samples, thus holding the potential for point-of-care testing (POCT).
Collapse
Affiliation(s)
- Fengyi Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Tao Y, Yun J, Wang J, Xu P, Li C, Liu H, Lan Y, Pan J, Du W. High-performance detection of Mycobacterium bovis in milk using digital LAMP. Food Chem 2020; 327:126945. [DOI: 10.1016/j.foodchem.2020.126945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
|
33
|
Li HT, Wang HF, Wang Y, Pan JZ, Fang Q. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay. Talanta 2020; 217:120997. [DOI: 10.1016/j.talanta.2020.120997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
|
34
|
Zhang F, Liao P, Sun Y, Chen Z, Pang Y, Huang Y. Surfactant and oil formulations for monodisperse droplet emulsion PCR. LAB ON A CHIP 2020; 20:2328-2333. [PMID: 32458866 DOI: 10.1039/d0lc00052c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsion PCR has become a popular and widely applied method in biological research and clinical diagnostics to provide evenly amplified products and perform highly quantitative counting of target sequences. However, there is still a lack of information to support further development of appropriate water-in-oil emulsion formulations, which need to be both thermally and mechanically stable for digital amplification reactions. Here, we present a systematic survey of the oil and surfactant components of stable monodisperse w/o emulsions suitable for use with our previously developed micro-capillary array (MiCA)-based centrifugal emulsion generation method. Our findings show that a binary formula consisting of isopropyl palmitate and a silicone copolymer demonstrated the best performance, and provided a general guideline for the development of emulsion systems for digital PCR and emulsion amplification applications.
Collapse
Affiliation(s)
- Fangli Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
35
|
Thakare DR, Schaer G, Yourdkhani M, Sottos NR. Fabrication of pH-responsive monodisperse microcapsules using interfacial tension of immiscible phases. SOFT MATTER 2020; 16:5139-5147. [PMID: 32324190 DOI: 10.1039/d0sm00301h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monodisperse, stimuli-responsive microcapsules are required for applications involving precise delivery of chemical payloads but are difficult to fabricate with high throughput and control over capsule geometry and shell wall properties, especially in the presence of organic solvents. In this paper, we adapt a facile technique based on the interfacial tension of immiscible phases for the generation of monodisperse emulsion templates and microcapsules. In this technique, either one (single emulsion) or two (double emulsion) dispersed phases are simultaneously delivered while reciprocating across the interface of a stationary immiscible continuous phase. The interfacial tension of the continuous phase results in the separation of a monodisperse droplet in every cycle. Monodisperse single emulsion-templated microcapsules based on cyclic poly(phthalaldehyde) (cPPA) and polymethacrylate (Eudragit E100) shell walls are formed with hydrophobic cores. The acid-triggered release of Eudragit and cPPA microcapsules containing an oil core is demonstrated in an acidic media. Tunable, monodisperse double emulsion templates with an aqueous core are formed with sizes ranging from 295 μm to 1200 μm and reciprocation frequencies of 1 Hz to 7 Hz. The double emulsion templates are converted to monodisperse, responsive microcapsules with a hydrophilic core through photocuring or selective solvent evaporation to form the polymer shell wall. Microcapsules with a variety of polymeric shell walls based on photocurable polyisocyanurate, cPPA and polylactide are fabricated. The acid-triggered release of cPPA microcapsules containing an aqueous core with a slower degradation rate is also demonstrated. We achieve excellent control over the emulsion templates and microcapsules, with polydispersity less than 2% and the ability to predict the size reliably based on process parameters. The cost-effectiveness, ease of fabrication and potential for scale-up make this technique very promising for fabrication of a diverse range of stimuli-responsive microcapsules.
Collapse
Affiliation(s)
- Dhawal R Thakare
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Grayson Schaer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mostafa Yourdkhani
- Department of Mechanical Engineering, Colorado State University, Colorado 80521, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
36
|
He Y, Yin J, Wu W, Liang H, Zhu F, Mu Y, Fan H, Zhang T. Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR. Anal Chem 2020; 92:8530-8535. [PMID: 32412739 DOI: 10.1021/acs.analchem.0c01304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Digital PCR (dPCR) is a powerful technique capable of absolute quantification of nucleic acids with good accuracy. Droplet-based dPCR (ddPCR), among others, is one of the most important dPCR techniques. However, the surface tension-controlled droplets may suffer from fusion/fission due to the vigorous temperature change in PCR thermal cycling. Besides, the free movement of droplets makes them unsuitable for real-time fluorescence monitoring. In this paper, we first developed a photoimmobilized planar droplet array (PIPDA) by using a photocurable polyurethane as the continuous oil phase. It is found that uniform water-in-oil droplets of various sizes can be readily generated, and more importantly, the oil phase can be rapidly solidified in just a few seconds upon exposure to UV irradiation. This process will leave the droplets immobilized in the accommodation chamber as a stable planar array and, thus, effectively prevent the movement, coalescence, and breakup of droplets. In addition, a novel multilayered chip design has been proposed, which can thoroughly overcome the evaporation issue that commonly exists in polydimethylsiloxane (PDMS)-based dPCR chips. With these two innovations, the ddPCR experiment could be performed in a robust manner, and shows a promising potential in the development of real-time ddPCR technique. These features may therefore enable the wide application of PIPDA-based ddPCR in various fields.
Collapse
Affiliation(s)
- Yu He
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Wenshuai Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hongxiao Liang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Futianchun Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.,College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Fan
- Department of Environmental Medicine, Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
37
|
Droplet digital PCR enabled by microfluidic impact printing for absolute gene quantification. Talanta 2020; 211:120680. [DOI: 10.1016/j.talanta.2019.120680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
38
|
Yuan H, Chao Y, Shum HC. Droplet and Microchamber-Based Digital Loop-Mediated Isothermal Amplification (dLAMP). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904469. [PMID: 31899592 DOI: 10.1002/smll.201904469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/22/2019] [Indexed: 05/15/2023]
Abstract
Digital loop-mediated isothermal amplification (dLAMP) refers to compartmentalizing nucleic acids and LAMP reagents into a large number of individual partitions, such as microchambers and droplets. This compartmentalization enables dLAMP to be an excellent platform to quantify the absolute number of the target nucleic acids. Owing to its low requirement for instrumentation complexity, high specificity, and strong tolerance to inhibitors in the nucleic acid samples, dLAMP has been recognized as a simple and accurate technique to quantify pathogenic nucleic acid. Herein, the general process of dLAMP techniques is summarized, the current dLAMP techniques are categorized, and a comprehensive discussion on different types of dLAMP techniques is presented. Also, the challenges of the current dLAMP are illustrated together with the possible strategies to address these challenges. In the end, the future directions of the dLAMP developments, including multitarget detection, multisample detection, and processing nucleic acid extraction are outlined. With recently significant advances in dLAMP, this technology has the potential to see more widespread use beyond the laboratory in the future.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
39
|
Yun J, Zheng X, Xu P, Zheng X, Xu J, Cao C, Fu Y, Xu B, Dai X, Wang Y, Liu H, Yi Q, Zhu Y, Wang J, Wang L, Dong Z, Huang L, Huang Y, Du W. Interfacial Nanoinjection-Based Nanoliter Single-Cell Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903739. [PMID: 31565845 DOI: 10.1002/smll.201903739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Single-cell analysis offers unprecedented resolution for the investigation of cellular heterogeneity and the capture of rare cells from large populations. Here, described is a simple method named interfacial nanoinjection (INJ), which can miniaturize various single-cell assays to be performed in nanoliter water-in-oil droplets on standard microwell plates. The INJ droplet handler can adjust droplet volumes for multistep reactions on demand with high precision and excellent monodispersity, and consequently enables a wide range of single-cell assays. Importantly, INJ can be coupled with fluorescence-activated cell sorting (FACS), which is currently the most effective and accurate single-cell sorting and isolation method. FACS-INJ pipelines for high-throughput plate well-based single-cell analyses, including single-cell proliferation, drug-resistance testing, polymerase chain reaction (PCR), reverse-transcription PCR, and whole-genome sequencing are introduced. This FACS-INJ pipeline is compatible with a wide range of samples and can be extended to various single-cell analysis applications in microbiology, cell biology, and biomedical diagnostics.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingyue Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Engineering, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yusi Fu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Engineering, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Bingxue Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongtao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaolian Yi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Engineering, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Peng H, Zhu M, Gao Z, Liao C, Jia C, Wang H, Zhou H, Zhao J. A centrifugal microfluidic emulsifier integrated with oil storage structures for robust digital LAMP. Biomed Microdevices 2020; 22:18. [DOI: 10.1007/s10544-020-0475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Cui X, Wu L, Wu Y, Zhang J, Zhao Q, Jing F, Yi L, Li G. Fast and robust sample self-digitization for digital PCR. Anal Chim Acta 2020; 1107:127-134. [PMID: 32200886 DOI: 10.1016/j.aca.2020.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
We present a facile sample partitioning method to enable rapid and low-cost digital PCR (dPCR) assays. By subdividing a high percentage of the sample volume into a large number of equal volume compartments with a self-digitization (SD) chip, this method can achieve a low-waste and high-order sample discretization in a matter of minutes. The SD chip contains a set of parallel microfluidic channels used for sample delivery, and each channel is connected with two rows of cylindrical wells to hold the discretized sample. By utilizing a degassed PDMS sealing slab as a detachable vacuum pumping source, the SD chip automatically generate large arrays of small sample volumes without requirement of external pumping and valving components. Unlike most microfluidic chamber-based methods for sample discretization, our detachable SD chip allows for discretizing sample with air flushing, then peeling off the cover PDMS slab and sealing the digitized samples with oil layer. Due to obviation of time-consuming oil flushing, such microfluidic device can achieve much faster digitization of sample volumes. Furthermore, this digitization chip can partition more than 90% of a sample volume, which is important for the applications where the amount of material available is small. We also demonstrated the utility of the proposed SD chip by applying it to a dPCR assay.
Collapse
Affiliation(s)
- Xu Cui
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yin Wu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Jinghong Zhang
- Shanghai Turtle Technology Company Limited, Shanghai, 200439, China
| | - Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Fengxiang Jing
- Shanghai Turtle Technology Company Limited, Shanghai, 200439, China.
| | - Lin Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
42
|
Investigation of microfluidic co-flow effects on step emulsification: Wall contact angle and critical dimensions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Huang F, Niu Y, Zhu Z, Huang H, Xue Y, Si T, Xu RX, Zhao Y. Oblique interface shearing (OIS): single-step microdroplet generation and on-demand positioning. SOFT MATTER 2019; 15:4782-4786. [PMID: 31107490 DOI: 10.1039/c9sm00263d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new process for simultaneous generation and positioning of microdroplets within a single step named oblique interface shearing (OIS) is reported based on the observation that liquid microdroplets generated by vibrating a thin capillary across the air-liquid interface at an oblique angle exhibit notable lateral displacements. An analytical model is established to describe the lateral droplet displacement induced by the Stokes drift effect. The dependency of the lateral displacement on typical operating parameters allows for on-demand droplet positioning while they are produced. The efficacy of the process is validated through delivering microdroplets with the same size to different positions as well as size-dependent positioning of these microdroplets.
Collapse
Affiliation(s)
- Fangsheng Huang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
WEI YY, SUN ZQ, REN HH, LI L. Advances in Microdroplet Generation Methods. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61162-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Azizi M, Zaferani M, Cheong SH, Abbaspourrad A. Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics. ACS Sens 2019; 4:841-848. [PMID: 30908029 DOI: 10.1021/acssensors.8b01206] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid amplifications, such as polymerase chain reaction (PCR), are very beneficial for diagnostic applications, especially in the context of bacterial or viral outbreaks due to their high specificity and sensitivity. However, the need for bulky instrumentation and complicated protocols makes these methods expensive and slow, particularly for low numbers of RNA or DNA templates. In addition, implementing conventional nucleic acid amplification in a high-throughput manner is both reagent- and time-consuming. We bring droplet-based microfluidics and loop-mediated isothermal amplification (LAMP) together in an optimized operational condition to provide a sensitive biosensor for amplifying extracted RNA templates for the detection of Salmonella typhimurium (targeting the invA gene). By simultaneously performing ∼106 LAMP-assisted amplification reactions in picoliter-sized droplets and applying a new mathematical model for the number of droplets necessary to screen for the first positive droplet, we study the detection limit of our platform with pure culture and real samples (bacterial contaminated milk samples). Our LAMP-assisted droplet-based microfluidic technique was simple in operation, sensitive, specific, and rapid for the detection of pathogenic bacteria Salmonella typhimurium in comparison with well-established conventional methods. More importantly, the high-throughput nature of this technique makes it suitable for many applications in biological assays.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Meisam Zaferani
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Lin X, Huang X, Urmann K, Xie X, Hoffmann MR. Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane. ACS Sens 2019; 4:242-249. [PMID: 30604619 PMCID: PMC6350201 DOI: 10.1021/acssensors.8b01419] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
this work, we report digital loop-mediated isothermal amplification
(LAMP) or reverse-transcription LAMP (RT-LAMP) on a commercial membrane,
without the need for complex chip fabrication or use of specialized
equipment. Due to the pore size distribution, the theoretical error
for digital LAMP on these membranes was analyzed, using a combination
of Random Distribution Model and Multivolume Theory. A facile peel-off
process was developed for effective droplet formation on the commercial
track-etched polycarbonate (PCTE) membrane. Each pore functions as
an individual nanoreactor for single DNA amplification. Absolute quantification
of bacteria genomic DNA was realized with a dynamic range from 11
to 1.1 × 105 copies/μL. One-step digital RT-LAMP
was also successfully performed on the membrane for the quantification
of MS2 virus in wastewater. With the introduction of new probes, the
positive pores can be easily distinguished from negative ones with
100 times difference in fluorescence intensities. Finally, the cost
of a disposable membrane is less than $0.10/piece, which, to the best
of our knowledge, is the most inexpensive way to perform digital LAMP.
The membrane system offers opportunities for point-of-care users or
common laboratories to perform digital quantification, single cell
analysis, or other bioassays in an inexpensive, flexible, and simplified
way.
Collapse
Affiliation(s)
- Xingyu Lin
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiao Huang
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Katharina Urmann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Xing Xie
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael R. Hoffmann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Nie M, Zheng M, Li C, Shen F, Liu M, Luo H, Song X, Lan Y, Pan JZ, Du W. Assembled Step Emulsification Device for Multiplex Droplet Digital Polymerase Chain Reaction. Anal Chem 2019; 91:1779-1784. [DOI: 10.1021/acs.analchem.8b04313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mengyue Nie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Meng Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manhua Liu
- Department of Instrument Science and Engineering, The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haibei Luo
- Pilot Gene Technologies, Hangzhou, 311203, China
| | - Xiaohui Song
- Pilot Gene Technologies, Hangzhou, 311203, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
48
|
Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1522. [PMID: 29797414 PMCID: PMC6185786 DOI: 10.1002/wnan.1522] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
Biomarkers are nucleic acids, proteins, single cells, or small molecules in human tissues or biological fluids whose reliable detection can be used to confirm or predict disease and disease states. Sensitive detection of biomarkers is therefore critical in a variety of applications including disease diagnostics, therapeutics, and drug screening. Unfortunately for many diseases, low abundance of biomarkers in human samples and low sample volumes render standard benchtop platforms like 96-well plates ineffective for reliable detection and screening. Discretization of bulk samples into a large number of small volumes (fL-nL) via droplet microfluidic technology offers a promising solution for high-sensitivity and high-throughput detection and screening of biomarkers. Several microfluidic strategies exist for high-throughput biomarker digitization into droplets, and these strategies have been utilized by numerous droplet platforms for nucleic acid, protein, and single-cell detection and screening. While the potential of droplet-based platforms has led to burgeoning interest in droplets, seamless integration of sample preparation technologies and automation of platforms from biological sample to answer remain critical components that can render these platforms useful in the clinical setting in the near future. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Department of Biomedical Engineering, Johns Hopkins University
| |
Collapse
|
49
|
Yuan H, Chao Y, Li S, Tang MYH, Huang Y, Che Y, Wong AST, Zhang T, Shum HC. Picoinjection-Enabled Multitarget Loop-Mediated Isothermal Amplification for Detection of Foodborne Pathogens. Anal Chem 2018; 90:13173-13177. [PMID: 30354065 DOI: 10.1021/acs.analchem.8b03673] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we develop a method to detect multiple DNAs of foodborne pathogens by encapsulating emulsion droplets for loop-mediated isothermal amplification (LAMP). In contrast to the traditional bulk-phase LAMP, which involves a labor-intensive mixing process, with our method, different primers are automatically mixed with DNA samples and LAMP buffers after picoinjection. By directly observing and analyzing the fluorescence intensity of the resultant droplets, one can detect DNA from different pathogens, with a detection limit 500 times lower than that obtained by bulk-phase LAMP. We further demonstrate the ability to quantify bacteria concentration by detecting bacterial DNA in practical samples, showing great potential in monitoring water resources and their contamination by pathogenic bacteria.
Collapse
Affiliation(s)
- Hao Yuan
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Youchuang Chao
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - ShanShan Li
- School of Biological Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Matthew Y H Tang
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Yue Huang
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - You Che
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Alice S T Wong
- School of Biological Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Tong Zhang
- Centre for Environmental Engineering Research, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Ho Cheung Shum
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518057 , China.,Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
50
|
Liao S, Tao Y, Du W, Wang Y. Interfacial Emulsification: An Emerging Monodisperse Droplet Generation Method for Microreactors and Bioanalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11655-11666. [PMID: 29792711 DOI: 10.1021/acs.langmuir.8b01067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The generation of uniform droplets has been extensively investigated owing to its profound potentials both in scientific research and engineering applications. Although various methods have been put forward to expand this area, new innovations are still needed to improve the technical convenience and save instrumental cost. In this feature article, we highlight an interfacial emulsification technique that we developed in the past several years. This technique serves as a platform for preparing uniform droplets that are formed on the air-liquid interface of the continuous phase based on interfacial shearing. Three specific aspects of interfacial emulsification are reviewed, including its basic design and principle, the preparation of droplets with controllable size and adjustable components, and practical applications of the method in bioanalysis, microreactors, and particle synthesis. Compared to other droplet generation methods, several attractive advantages and perspectives for further development have been summarized.
Collapse
Affiliation(s)
- Shenglong Liao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Yi Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , China
- Savaid Medical School , University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , China
- Savaid Medical School , University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Yapei Wang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| |
Collapse
|