1
|
Boateng ID, Li F, Yang XM. Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba. Foods 2024; 13:1250. [PMID: 38672921 PMCID: PMC11049217 DOI: 10.3390/foods13081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Ginkgo biloba leaves (GBLs), which comprise many phytoconstituents, also contain a toxic substance named ginkgolic acid (GA). Our previous research showed that heating could decarboxylate and degrade GA into ginkgols with high levels of bioactivity. Several methods are available to measure GA in GBLs, but no analytical method has been developed to measure ginkgols and GA simultaneously. Hence, for the first time, an HPLC-DAD method was established to simultaneously determine GA and ginkgols using acetonitrile (0.01% trifluoroacetic acid, v/v) as mobile phase A and water (0.01% trifluoroacetic acid, v/v) as mobile phase B. The gradient elution conditions were: 0-30 min, 75-90% phase A; 30-35 min, 90-90% phase A; 35-36 min, 90-75% phase A; 36-46 min, 75-75% phase A. The detection wavelength of GA and ginkgol were 210 and 270 nm, respectively. The flow rate and injection volume were 1.0 mL/min and 50 μL, respectively. The linearity was excellent (R2 > 0.999), and the RSD of the precision, stability, and repeatability of the total ginkgols was 0.20%, 2.21%, and 2.45%, respectively, in six parallel determinations. The recoveries for the low, medium, and high groups were 96.58%, 97.67%, and 101.52%, respectively. The limit of detection of ginkgol C13:0, C15:1, and C17:1 was 0.61 ppm, 0.50 ppm, and 0.06 ppm, respectively. The limit of quantification of ginkgol C13:0, C15:1, and C17:1 was 2.01 ppm, 1.65 ppm, and 0.20 ppm, respectively. Finally, this method accurately measured the GA and ginkgol content in ginkgo leaves and ginkgo tea products (ginkgo black tea, ginkgo dark tea, ginkgo white tea, and ginkgo green tea), whereas principal component analysis (PCA) was performed to help visualize the association between GA and ginkgols and five different processing methods for GBLs. Thus, this research provides an efficient and accurate quantitative method for the subsequent detection of GA and ginkgols in ginkgo tea.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (I.D.B.); (F.L.)
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, USA
| | - Fengnan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (I.D.B.); (F.L.)
| | - Xiao-Ming Yang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (I.D.B.); (F.L.)
| |
Collapse
|
2
|
Cruz JC, Souza IDD, Lanças FM, Queiroz MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A 2022; 1668:462925. [DOI: 10.1016/j.chroma.2022.462925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
3
|
CoolTip: Low-Temperature Solid-Phase Extraction Microcolumn for Capturing Hydrophilic Peptides and Phosphopeptides. Mol Cell Proteomics 2021; 20:100170. [PMID: 34740827 PMCID: PMC8646264 DOI: 10.1016/j.mcpro.2021.100170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Reversed-phase solid-phase extraction (SPE) techniques are commonly used for desalting samples before LC/MS/MS in shotgun proteomics. However, hydrophilic peptides are often lost during the desalting step under the standard SPE conditions. Here, we describe a simple protocol in which a stop-and-go extraction tip packed with a poly(styrene-divinylbenzene) copolymer disc is used at 4 °C during sample loading without any organic solvent. Using this method, which we designate as the CoolTip protocol, we identified 2.9-fold more tryptic peptides and 6.1-fold more tryptic phosphopeptides from HeLa lysates than the standard SPE protocol for hydrophilic peptides, with a mobile phase of less than 8% acetonitrile in LC/MS/MS. There was no decrease in the recovery of hydrophobic peptides. CoolTip also provided better quantitative reproducibility in LC/MS/MS analysis. We anticipate that this protocol will provide improved performance in many kinds of shotgun proteomics experiments. CoolTip, a StageTip with a poly(styrene-divinylbenzene) disc operated at 4 °C. Identification of more 6.1-fold hydrophilic phosphopeptides from HeLa lysates. No decrease in the recovery of hydrophobic peptides using the CoolTip protocol. Better reproducibility in quantitative LC/MS/MS analysis.
Collapse
|
4
|
Yang S, Li N, Ma Z, Tang T, Li T. [Research advances in nano liquid chromatography instrumentation]. Se Pu 2021; 39:1065-1076. [PMID: 34505428 PMCID: PMC9404240 DOI: 10.3724/sp.j.1123.2021.06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The miniaturization of liquid chromatography equipment is among the most important focus areas in chromatographic technology. It involves the miniaturization of the physical dimensions of the instrument, size of the separation material, and inner diameter of the column. The advantages of a reduced inner diameter of the column have been investigated for several decades, and can be summarized as follows. First, the sample consumption is lower, which is particularly beneficial when a limited amount of sample is available, as is the case with natural products, and in biochemistry and biomedicine. Second, the consumption of the mobile phase is reduced, making the process environmentally friendly and facilitating green chemistry. This allows the addition of more expensive solvent additives, such as chiral additives or isotopic reagents, while maintaining a low analysis cost. Moreover, the degree of band dilution in the column is lower than that with conventional liquid chromatography under the same sample injection conditions. Thus, enhanced mass sensitivity is achieved. Other benefits of a reduced inner diameter of the column include temperature control due to effective heat transfer through the columns and easier coupling to mass detectors, which is particularly advantageous for analyzing complex samples. Typically, the term “nano liquid chromatography” is associated with liquid chromatography, which employs capillary columns of inner diameters less than 100 μm and flow rates in the range of tens to hundreds of nanoliters per minute. Because of the extremely low flow rates and small column volume, the extra-column effect becomes more prominent. Thus, the requirements for every component of liquid chromatographs are augmented toward improving their performance and optimizing the extra-column band broadening of the entire system. The solvent delivery equipment should be able to pump mobile phases accurately and steadily at nanoliter-level flow rates. A gradient mode is required to achieve this, which implies that the lowest flow rate for a single pump unit should reach a few nanoliters per minute. A certain operating pressure is also necessary to employ columns with different inner diameters and particle sizes. A precise and repeatable sample injection procedure is essential for nano liquid chromatography. The injection volume and mode should be suitable for capillary columns, without inducing a significant extra-column effect. A higher-sensitivity detector should be employed, and sample dispersion should be limited. The improved tubing and connection method in nano liquid chromatography should offer stability, reliability, and ease of operation. The extra-column volume should also be restricted to suit nanoliter-level flow rates. Considering that most nano liquid chromatographic instruments have been coupled with a mass detector, this review mainly focused on nanoliter solvent delivery modules, sample injection modules, and tubing and connection modules. By searching and summarizing research articles, technical patents, and brochures of instrument manufacturers, technical routes and research progress on these modules were described in detail. The pump designs can be classified into four types. Pneumatic amplifying pumps have been used in ultra-high-pressure applications. The flow-splitting delivery system, though easy to realize, may lead to a large amount of solvent wastage. Splitless pumps, which are classified based on two main principles, are widely used. Some pumps based on other physical phenomena have been suggested; however, they lacked stability and robustness. Two types of injection modes have been utilized in nano liquid chromatography. The direct nanoliter injection mode typically takes advantage of the groove on the rotor of a switching valve. The trapping injection mode uses trap columns to enable the introduction of large sample volumes. As for the tubing and connection, a few appropriate designs can be acquired from commercial suppliers. The robustness has been improved using some patented technologies. The optimization principles and research progress on optical absorption detection are briefly introduced. Finally, commercial nano liquid chromatographic systems are compared by considering the pumps and injectors.
Collapse
Affiliation(s)
- Sandong Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Naijie Li
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Zhou Ma
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Tao Tang
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
| | - Tong Li
- Dalian Elite Analytical Instruments Co., Ltd., Dalian 116023, China
- Elite Suzhou Analytical Instruments Co., Ltd., Suzhou 215123, China
| |
Collapse
|
5
|
Optimizing oxytocin LC-MS/MS sensitivity by choosing the right column. Pract Lab Med 2021; 27:e00254. [PMID: 34527802 PMCID: PMC8430380 DOI: 10.1016/j.plabm.2021.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Sensitivity is often an issue in bioanalytical LC-MS/MS applications. Commonly investigated parameters to improve it include additives to mobile phase, derivatization and sample-preparation. The nature of the column, however, is not frequently evaluated. Design and Methods The sensitivity is compared for 18 different reversed phase and 2 different HILIC columns using 2 different mobile phase compositions. Sensitivity was evaluated in terms of S/N for 1,5 pg oxytocin on column, using a scouting gradient. Results The measured signal to noise ranged from 55 to 1473, indicating a substantial difference in sensitivity. The most sensitive columns were the Synergi Hydro RP (reversed phase) and the Atlantis HILIC (HILIC). Conclusions This study shows that choosing the right column contributes to the sensitivity of the method.
Collapse
|
6
|
Niezen LE, Staal BBP, Lang C, Pirok BWJ, Schoenmakers PJ. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. J Chromatogr A 2021; 1653:462429. [PMID: 34371364 DOI: 10.1016/j.chroma.2021.462429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Many materials used in a wide range of fields consist of polymers that feature great structural complexity. One particularly suitable technique for characterising these complex polymers, that often feature correlated distributions in e.g. microstructure, chemical composition, or molecular weight, is comprehensive two-dimensional liquid chromatography (LC × LC). For example, using a combination of reversed-phase LC and size-exclusion chromatography (RPLC × SEC). Efficient and sensitive LC × LC often requires focusing of the analytes between the two stages. For the analysis of large-molecule analytes, such as synthetic polymers, thermal modulation (or cold trapping) may be feasible. This approach is studied for the analysis of a styrene/butadiene "star" block copolymer. Trapping efficiency is evaluated qualitatively by monitoring the effluent of the trap with an evaporative light-scattering detector and quantitatively by determining the recovery of polystyrene standards from RPLC × SEC experiments. The recovery was dependant on the molecular weight and the temperatures of the first-dimension column and of the trap, and ranged from 46% for a molecular weight of 2.78 kDa to 86% (or up to 94.5% using an optimized set-up) for a molecular weight of 29.15 kDa, all at a first-dimension-column temperature of 80 °C and a trap temperature of 5 °C. Additionally a strategy to reduce the pressure pulse from the modulation has been developed, bringing it down from several tens of bars to only a few bar.
Collapse
Affiliation(s)
- Leon E Niezen
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland.
| | | | - Christiane Lang
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Bob W J Pirok
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| |
Collapse
|
7
|
Zhao J, Zhang M, Guo J, Meng F, Liu X, Yu J, Liu L. A novel ISM-SAM strategy, based on gas chromatography/mass spectrometry analysis, to compensate for matrix effects in the determination of pyruvic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9042. [PMID: 33395499 DOI: 10.1002/rcm.9042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE The matrix effect is tricky in gas chromatography/mass spectrometry (GC/MS) analyses. Although several methods have been proposed to solve this problem, the results were unsatisfactory. Even fewer studies have assessed the performance of corrective methods. Hence, our study focused on assessing several common corrective methods, and then proposed a new strategy to correct for the matrix effect in GC/MS analyses. METHODS In GC/MS analyses, the internal standard method (ISM) was employed to overcome the matrix effect during the detection of pyruvic acid (PA) in serum samples from a healthy adult female. The accuracy of the ISM was evaluated by comparing it with the standard addition method (SAM). To employ the ISM-SAM strategy, correction factors (CFs) were established by combining the ISM and the SAM based on different groups. The CFs were used to normalize data onto the results of subsequent analyses. RESULTS When using the ISM to detect levels of PA, a serious bias is observed, thereby affecting the conclusions reached. In contrast, more reliable data can be obtained after normalizing results by undertaking the ISM-SAM strategy. The feasibility of this strategy was verified by comparing it with the results of the SAM alone. The ISM-SAM strategy was successfully applied to quantify the PA levels in healthy people and nephrotic syndrome patients. CONCLUSIONS Our results indicated that a false outcome was presented when only the ISM was used to adjust the data, and important information would be missed if the correction strategy was not carried out. Therefore, ISM-SAM, as an available correction method, should be adapted to improve the reliability of research results.
Collapse
Affiliation(s)
- Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Mingjia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jing Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Fanyu Meng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
8
|
Sorensen MJ, Kennedy RT. Capillary ultrahigh-pressure liquid chromatography-mass spectrometry for fast and high resolution metabolomics separations. J Chromatogr A 2020; 1635:461706. [PMID: 33229007 DOI: 10.1016/j.chroma.2020.461706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
LC-MS is an important tool for metabolomics due its high sensitivity and broad metabolite coverage. The goal of improving resolution and decreasing analysis time in HPLC has led to the use of 5 - 15 cm long columns packed with 1.7 - 1.9 µm particles requiring pressures of 8 - 12 kpsi. We report on the potential for capillary LC-MS based metabolomics utilizing porous C18 particles down to 1.1 µm diameter and columns up to 50 cm long with an operating pressure of 35 kpsi. Our experiments show that it is possible to pack columns with 1.1 µm porous particles to provide predicted improvements in separation time and efficiency. Using kinetic plots to guide the choice of column length and particle size, we packed 50 cm long columns with 1.7 µm particles and 20 cm long columns with 1.1 µm particles, which should produce equivalent performance in shorter times. Columns were tested by performing isocratic and gradient LC-MS analyses of small molecule metabolites and extracts from plasma. These columns provided approximately 100,000 theoretical plates for metabolite standards and peak capacities over 500 in 100 min for a complex plasma extract with robust interfacing to MS. To generate a given peak capacity, the 1.1 µm particles in 20 cm columns required roughly 75% of the time as 1.7 µm particles in 50 cm columns with both operated at 35 kpsi. The 1.1 µm particle packed columns generated a given peak capacity nearly 3 times faster than 1.7 µm particles in 15 cm columns operated at ~10 kpsi. This latter condition represents commercial state of the art for capillary LC. To consider practical benefits for metabolomics, the effect of different LC-MS variables on mass spectral feature detection was evaluated. Lower flow rates (down to 700 nL/min) and larger injection volumes (up to 1 µL) increased the features detected with modest loss in separation performance. The results demonstrate the potential for fast and high resolution separations for metabolomics using 1.1 µm particles operated at 35 kpsi for capillary LC-MS.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Recent applications of retention modelling in liquid chromatography. J Sep Sci 2020; 44:88-114. [PMID: 33058527 PMCID: PMC7821232 DOI: 10.1002/jssc.202000905] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Recent applications of retention modelling in liquid chromatography (2015–2020) are comprehensively reviewed. The fundamentals of the field, which date back much longer, are summarized. Retention modeling is used in retention‐mechanism studies, for determining physical parameters, such as lipophilicity, and for various more‐practical purposes, including method development and optimization, method transfer, and stationary‐phase characterization and comparison. The review focusses on the effects of mobile‐phase composition on retention, but other variables and novel models to describe their effects are also considered. The five most‐common models are addressed in detail, i.e. the log‐linear (linear‐solvent‐strength) model, the quadratic model, the log–log (adsorption) model, the mixed‐mode model, and the Neue–Kuss model. Isocratic and gradient‐elution methods are considered for determining model parameters and the evaluation and validation of fitted models is discussed. Strategies in which retention models are applied for developing and optimizing one‐ and two‐dimensional liquid chromatographic separations are discussed. The review culminates in some overall conclusions and several concrete recommendations.
Collapse
Affiliation(s)
- Mimi J den Uijl
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Maarten R van Bommel
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.,University of Amsterdam, Faculty of Humanities, Conservation and Restoration of Cultural Heritage, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M. Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902023. [PMID: 31502719 DOI: 10.1002/adma.201902023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
High-performance liquid chromatography integrated with tandem mass spectrometry (HPLC-MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the "heart" of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow-through pores, are regarded as an alternative to particle-packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next-generation separation materials for high-throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Pepermans V, De Vos J, Eeltink S, Desmet G. Peak sharpening limits of solvent-assisted post-column refocusing to enhance detection limits in liquid chromatography. J Chromatogr A 2019; 1586:52-61. [DOI: 10.1016/j.chroma.2018.11.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
12
|
Rerick MT, Groskreutz SR, Weber SG. Multiplicative On-Column Solute Focusing Using Spatially Dependent Temperature Programming for Capillary HPLC. Anal Chem 2019; 91:2854-2860. [DOI: 10.1021/acs.analchem.8b04826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael T. Rerick
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Futagami S, Hara T, Ottevaere H, Terryn H, Baron GV, Desmet G, De Malsche W. Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system. Analyst 2019; 144:1809-1817. [DOI: 10.1039/c8an01937a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of a porous-layered radially elongated pillar (PLREP) array column in a commercial nano-LC system was examined by performing separation of alkylphenones and peptides.
Collapse
Affiliation(s)
- Shunta Futagami
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
- Department of Applied Physics and Photonics
| | - Takeshi Hara
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
- Division of Metabolomics
| | - Heidi Ottevaere
- Department of Applied Physics and Photonics
- Brussels Photonics (B-PHOT)
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Herman Terryn
- Department of Materials and Chemistry
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Gino V. Baron
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Gert Desmet
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Wim De Malsche
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| |
Collapse
|
14
|
Horner AR, Wilson RE, Groskreutz SR, Murray BE, Weber SG. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy. J Chromatogr A 2018; 1589:73-82. [PMID: 30626503 DOI: 10.1016/j.chroma.2018.12.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023]
Abstract
Predicting retention and enthalpy allows for the simulation and optimization of advanced chromatographic techniques including gradient separations, temperature-assisted solute focusing, multidimensional liquid chromatography, and solvent focusing. In this paper we explore the fits of three expressions for retention as a function of mobile phase composition and temperature to retention data of 101 small molecules in reversed phase liquid chromatography. The three retention equations investigated are those by Neue and Kuss (NK) and two different equations by Pappa-Louisi et al., one based on a partition model (PL-P) and one based on an adsorption model (PL-A). More than 25 000 retention factors were determined for 101 small molecules under various mobile phase and temperature conditions. The pure experimental uncertainty is very small, approximately 0.22% uncertainty in retention factors measured on the same day (2.1% when performed on different days). Each of the three equations for ln(k) was fit to the experimental data based on a least-squares approach and the results were analyzed using lack-of-fit residuals. The PL-A model, while complex, gives the best overall fits. In addition to examining the equations' adequacy for retention, we also examined their use for apparent retention enthalpy. This enthalpy can be predicted by taking the derivative of these expressions with respect to the inverse of absolute temperature. The numerical values of the fitted parameters based on retention data can then be used to predict retention enthalpy. These enthalpy predictions were compared to those obtained from a modified van 't Hoff equation that included a quadratic term in inverse temperature. Based on analysis of 1 211 van 't Hoff plots (solute-mobile phase-day combinations), ninety-eight percent showed a significantly better fit when using the modified van 't Hoff expression, justifying its use to provide apparent enthalpies as a function of mobile phase composition and temperature. The foregoing apparent enthalpies were compared to the apparent enthalpies predicted by the three models. The PL-A model, which contains a temperature dependent enthalpy, provided the best enthalpy prediction. However, there is virtually no correlation between the overall lack of fit to experimental ln(k) for each model and the corresponding lack of fit of the linear (in 1/T) van 't Hoff expression. Thus, the temperature-dependent enthalpy is apparently not the cause of a model's ability to fit ln(k) as a function of mobile phase composition and temperature. The value in these expressions is their ability to predict chromatograms, allowing for optimization of an advanced chromatographic technique. The two simpler models NK and PL-P, which do not contain a temperature dependent enthalpy, have their merits in modelling retention (NK being the better of the two) and enthalpy (PL-P being the better of the two) if a simpler expression is required for a given application.
Collapse
Affiliation(s)
- Anthony R Horner
- University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| | - Rachael E Wilson
- University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| | - Stephen R Groskreutz
- University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| | - Bridget E Murray
- University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| | - Stephen G Weber
- University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
15
|
Wilson RE, Jaquins-Gerstl A, Weber SG. On-Column Dimethylation with Capillary Liquid Chromatography-Tandem Mass Spectrometry for Online Determination of Neuropeptides in Rat Brain Microdialysate. Anal Chem 2018; 90:4561-4568. [PMID: 29504751 PMCID: PMC6236683 DOI: 10.1021/acs.analchem.7b04965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have developed a method for online collection and quantitation of neuropeptides in rat brain microdialysates using on-column dimethylation with capillary liquid chromatography-tandem mass spectrometry (cLC-MS2). This method addresses a number of the challenges of quantifying neuropeptides with cLC-MS. It is also a completely automated and robust method for the preparation of stable isotope labeled-peptide internal standards to correct for matrix effects and thus ensure accurate quantitation. Originally developed for tissue-derived proteomics samples ( Raijmakers et al. Mol. Cell. Proteomics 2008 , 7 , 1755 - 1762 ), the efficacy of on-column dimethylation for native peptides in microdialysate has not been demonstrated until now. We have modified the process to make it more amenable to the time scale of microdialysis sampling and to reduce the accumulation of nonvolatile contaminants on the column and, thus, loss of sensitivity. By decreasing labeling time, we have a temporal resolution of 1 h from sample loading to elution and our peptide detection limits are in the low pM range for 5 μL injections of microdialysate. We have demonstrated the effectiveness of this method by quantifying basal and potassium stimulated concentrations of the neuropeptides leu-enkephalin and met-enkephalin in the rat hippocampus. To our knowledge, this is the first report of quantitation of these peptides in the hippocampus using MS.
Collapse
Affiliation(s)
- Rachael E Wilson
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Stephen G Weber
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
16
|
Groskreutz SR, Horner AR, Weber SG. Development of a 1.0 mm inside diameter temperature-assisted focusing precolumn for use with 2.1 mm inside diameter columns. J Chromatogr A 2017; 1523:193-203. [DOI: 10.1016/j.chroma.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/16/2023]
|
17
|
de Vries R, Vereyken L, François I, Dillen L, Vreeken RJ, Cuyckens F. High sensitivity and selectivity in quantitative analysis of drugs in biological samples using 4-column multidimensional micro-UHPLC-MS enabling enhanced sample loading capacity. Anal Chim Acta 2017; 989:104-111. [DOI: 10.1016/j.aca.2017.07.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
18
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
19
|
Young C, Podtelejnikov AV, Nielsen ML. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. J Proteome Res 2017; 16:2307-2317. [DOI: 10.1021/acs.jproteome.6b01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Clifford Young
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | - Michael L. Nielsen
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Restriction capillaries as an innovative mixing unit for intermediate mobile phase exchange in multidimensional analysis. J Chromatogr A 2017; 1497:70-80. [PMID: 28372840 DOI: 10.1016/j.chroma.2017.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
A novel mixing unit is proposed for the serial coupling of orthogonal columns to analyze polar and non-polar compounds in a single run. The principle relies on the isolation of unretained peaks eluting from a first dimension column in a sample loop, before directing them to a second column for separation. Since the mobile phases employed in highly orthogonal separations are not directly compatible, a mixing unit is required to alter the mobile phase composition before executing the second dimension separation. The mixing unit proposed in this work is based on the use of two restriction capillaries with different flow resistances to dilute the mobile phase eluting from the first dimension with a solvent appropriate for the second dimension separation. The restriction capillaries are implemented in an ultra-high performance liquid chromatography set-up using three high-pressure switching valves and two T-pieces. It is demonstrated that the dilution ratio can be adequately predicted using the law of Hagen-Poiseuille and can be adjusted easily by changing the dimensions of the restriction capillaries. The dilution volume required to obtain acceptable recoveries is investigated and the use of different column diameters in the first and second dimension is proposed to increase the sensitivity of the analysis. Under optimum dilution conditions, recoveries ranging between 82% and 99% are always obtained, while repeatability values are excellent. The proof-of-concept of the different set-ups is demonstrated for the separation of 20 pharmaceuticals with log D-values ranging between -5.75 and 4.22.
Collapse
|
21
|
Hetzel T, Blaesing C, Jaeger M, Teutenberg T, Schmidt TC. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots. J Chromatogr A 2017; 1485:62-69. [DOI: 10.1016/j.chroma.2017.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
|
22
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
23
|
Creese ME, Creese MJ, Foley JP, Cortes HJ, Hilder EF, Shellie RA, Breadmore MC. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 2016; 89:1123-1130. [DOI: 10.1021/acs.analchem.6b03279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mari E. Creese
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Mathew J. Creese
- Allison Laboratories Pty Ltd., Sandy Bay, Tasmania 7005, Australia
| | - Joe P. Foley
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia 19104, United States
| | - Hernan J. Cortes
- HJ Cortes Consulting LLC, Midland, Michigan 48642, United States
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Future
Industries Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Michael C. Breadmore
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
24
|
Groskreutz SR, Weber SG. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. J Chromatogr A 2016; 1474:95-108. [PMID: 27836226 PMCID: PMC5115952 DOI: 10.1016/j.chroma.2016.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF.
Collapse
Affiliation(s)
- Stephen R Groskreutz
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
25
|
Zhu X, Liang Y, Weng Y, Chen Y, Jiang H, Zhang L, Liang Z, Zhang Y. Gold-Coated Nanoelectrospray Emitters Fabricated by Gravity-Assisted Etching Self-Termination and Electroless Deposition. Anal Chem 2016; 88:11347-11351. [DOI: 10.1021/acs.analchem.6b03422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xudong Zhu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yu Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yejing Weng
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuanbo Chen
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
26
|
Liu Y, Song Q, Zheng J, Li J, Zhao Y, Li C, Song Y, Tu P. Sensitive profiling of phenols, bile acids, sterols, and eicosanoids in mammalian urine by large volume direct injection-online solid phase extraction-ultra high performance liquid chromatography-polarity switching tandem mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra13272c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new sensitive LVDI-online SPE-UHPLC-psMS/MS method was developed and applied for simultaneous and direct determination of 28 constituents, including 10 BAs, 5 sterols, 8 eicosanoids and 8 phenolic compounds in mammalian urinary samples.
Collapse
Affiliation(s)
- Yao Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
- School of Chinese Materia Medica
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
- School of Chinese Materia Medica
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| |
Collapse
|