1
|
Yang Y, Zhang N, Jiang W. Functional DNA-Zn 2+ coordination nanospheres for sensitive imaging of 8-oxyguanine DNA glycosylase activity in living cells. Talanta 2024; 280:126779. [PMID: 39217713 DOI: 10.1016/j.talanta.2024.126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Sensitive monitoring of human 8-oxyguanine DNA glycosylase (hOGG1) activity in living cells is helpful to understand its function in damage repair and evaluate its role in disease diagnosis. Herein, a functional DNA-Zn2+ coordination nanospheres was proposed for sensitive imaging of hOGG1 in living cells. The nanospheres were constructed through the coordination-driven self-assembly of the entropy driven reaction (EDR) -deoxyribozyme (DNAzyme) system with Zn2+, where DNAzyme was designed to split structure and assembled into the EDR system. When the nanospheres entered the cell, the competitive coordination between phosphate in the cell and Zn2+ leaded to the disintegration of the nanospheres, releasing DNA and some Zn2+. The released Zn2+ acted as a cofactor of DNAzyme. In the presence of hOGG1, the EDR was completed, accompanied by fluorescence recovery and the generation of a complete DNAzyme. With the assistance of Zn2+, DNAzyme continuously cleaved substrates to produce plenty of fluorescence signals, thus achieving sensitive imaging of hOGG1 activity. The nanospheres successfully achieved sensitive imaging of hOGG1 in human cervical cancer cells (HeLa), human non-small cell lung cancer cells and human normal colonic epithelial cells, and assayed changes in hOGG1 activity in HeLa cells. This nanospheres may provide a new tool for intracellular hOGG1 imaging and related biomedical studies.
Collapse
Affiliation(s)
- Yayun Yang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
2
|
Sun M, Chen X, Chen X, Zhou Q, Huang T, Li T, Xie B, Li C, Chen JX, Dai Z, Chen J. Label-free fluorescence detection of human 8-oxoguanine DNA glycosylase activity amplified by target-induced rolling circle amplification. Anal Chim Acta 2024; 1287:342084. [PMID: 38182379 DOI: 10.1016/j.aca.2023.342084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Human 8-oxoG DNA glycosylase 1 (hOGG1) is one of the important members of DNA glycosylase for Base excision repair (BER), the abnormal activity of which can lead to the failure of BER and the appearance of various diseases, such as breast cancer, bladder cancer, Parkinson's disease and lung cancer. Therefore, it is important to detect the activity of hOGG1. However, traditional detection methods suffer from time consuming, complicated operation, high false positive results and low sensitivity. Thus, it remains a challenge to develop simple and sensitive hOGG1 analysis strategies to facilitate early diagnosis and treatment of the relative disease. RESULTS A target-induced rolling circle amplification (TIRCA) strategy for label-free fluorescence detection of hOGG1 activity was proposed with high sensitivity and specificity. The TIRCA strategy was constructed by a hairpin probe (HP) containing 8-oxoG site and a primer probe (PP). In the presence of hOGG1, the HP transformed into dumbbell DNA probe (DDP) after the 8-oxoG site of which was removed. Then the DDP formed closed circular dumbbell probe (CCDP) by ligase. CCDP could be used as amplification template of RCA to trigger RCA. The RCA products containing repeated G4 sequences could combine with ThT to produce enhanced fluorescence, achieving label-free fluorescence sensing of hOGG1. Given the high amplification efficiency of RCA and the high fluorescence quantum yield of the G4/ThT, the proposed TIRCA achieved highly sensitive measurement of hOGG1 activity with a detection limit of 0.00143 U/mL. The TIRCA strategy also exhibited excellent specificity for hOGG1 analysis over other interference enzymes. SIGNIFICANCE This novel TIRCA strategy demonstrates high sensitivity and high specificity for the detection of hOGG1, which has also been successfully used for the screening of inhibitors and the analysis of hOGG1 in real samples. We believe that this TIRCA strategy provides new insight into the use of the isothermal nucleic acid amplification as a useful tool for hOGG1 detection and will play an important role in disease early diagnosis and treatment.
Collapse
Affiliation(s)
- Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Chen
- Neurology Division, Department of Obstetrics and Gynecology, The First People's Hospital of Tianmen in Hubei Province, Tianmen, 431700, China
| | - Xiang Chen
- Neurology Division, Department of Obstetrics and Gynecology, The First People's Hospital of Tianmen in Hubei Province, Tianmen, 431700, China
| | - Qianying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baoping Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Qiu Y, Liu B, Zhou W, Tao X, Liu Y, Mao L, Wang H, Yuan H, Yang Y, Li B, Wang W, Qiu Y. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst 2024; 149:537-545. [PMID: 38088097 DOI: 10.1039/d3an01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Xueqing Tao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Linxi Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Li QN, Wang DX, Han GM, Liu B, Tang AN, Kong DM. Low-Background CRISPR/Cas12a Sensors for Versatile Live-Cell Biosensing. Anal Chem 2023; 95:15725-15735. [PMID: 37819747 DOI: 10.1021/acs.analchem.3c03131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing. However, many CRISPR/Cas12a-based biosensors, especially those that work in "on-off-on" mode, usually suffer from high background and thus impossible intracellular application. Herein, this problem is efficiently overcome by elaborately designing the activator strand (AS) of CRISPR/Cas12a using the "RESET" effect found by our group. The activation ability of the as-designed AS to CRISPR/Cas12a can be easily inhibited, thus assuring a low background for subsequent biosensing applications, which not only benefits the detection sensitivity improvement of CRISPR/Cas12a-based biosensors but also promotes their applications in live cells as well as makes it possible to design high-performance biosensors with greatly improved flexibility, thus achieving the analysis of a wide range of targets. As examples, by using different strategies such as strand displacement, strand cleavage, and aptamer-substrate interaction to reactivate the inhibited enzyme activity, several CRISPR/Cas12a-based biosensing systems are developed for the sensitive and specific detection of different targets, including nucleic acid (miR-21), biological small molecules (ATP), and enzymes (hOGG1), giving the detection limits of 0.96 pM, 8.6 μM, and 8.3 × 10-5 U/mL, respectively. Thanks to the low background, these biosensors are demonstrated to work well for the accurate imaging analysis of different biomolecules in live cells. Moreover, we also demonstrate that these sensing systems can be easily combined with lateral flow assay (LFA), thus holding great potential in point-of-care testing, especially in poorly equipped or nonlaboratory environments.
Collapse
Affiliation(s)
- Qing-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Tian T, Zhang K, Yang W, Zhong Q, Wang B, Guo W, Liu B. A ratiometric SERS aptasensor array for human DNA glycosylaseat single-cell sensitivity/resolution. Talanta 2023; 259:124544. [PMID: 37086683 DOI: 10.1016/j.talanta.2023.124544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) is involved in the cellular genomic 8-oxoguanine (8-oxoG) excision repair to maintain genome stability. Accurate detection of hOGG1 activity is essential for clinical diagnosis and treatment of various human pathology. Yet, the quantitative detection of hOGG1 remains challenging for existing methods due to poor reproducibility and portability. Herein, we propose a ratiometric array-based SERS point-of-care testing method for hOGG1 activity. A kind of reproducible, uniform and stable plasmonic multi-microarray reaction cells was constructed by assembling AuNPs on the substrate modified by aminosilane and segmented by silica gel gasket, which greatly improved the sensitivity, portability and repeatability of SERS measurement. Based on this, the ratiometric method is further used to effectively overcome the instability of single SERS signal intensity, which allows signal rationing and provides built-in correction for environment effects. In specific, we designed two different Raman-labeled probes for the detection of hOGG1, a thiol- and Cy3-labeled aptamer as an internal standard and a Rox-labeled 8-oxoG-modified complementary aptamer as a signal probe. The ratio value between Cy3 and Rox SERS intensity is well linear with the hOGG1 activity on logarithmic scales in the range from 5 × 10-5 to 5 × 10-3 U/mL, and the limit of detection reaches 3.3 × 10-5 U/mL. Moreover, this strategy can be applied for the screening of inhibitors and the monitoring of cellular hOGG1 activity fluctuation at single-cell levels, providing a flexible and adaptive tool for clinical diagnosis, biochemical processes and drug discovery.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Qingmei Zhong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Liu XW, Liu WJ, Meng Y, Hu J, Zhang CY. Development of a tandem signal amplification strategy for label-free sensing polynucleotide kinase activity in cancer cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Wang LJ, Pan LP, Zou X, Qiu JG, Zhang CY. Activatable Self-Dissociation of Watson-Crick Structures with Fluorescent Nucleotides for Sensing Multiple Human Glycosylases at Single-Cell Level. Anal Chem 2022; 94:17700-17708. [PMID: 36475642 DOI: 10.1021/acs.analchem.2c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleobase oxidation and alkylation can destroy Watson-Crick base-pairing to challenge the genomic integrity. Human 8-oxoguanine glycosylase 1 (hOGG1) and alkyladenine glycosylase (hAAG) are evolved to counter these two cytotoxic lesions through base-excision repair, and their deregulations are implicated with multifactorial diseases and cancers. Herein, we demonstrate activatable self-dissociation of Watson-Crick structures with fluorescent nucleotides for sensing multiple human glycosylases at single-cell level. The presence of hOGG1 and hAAG catalyzes 8-oxoG and deoxyinosine removal in functional probe 1 to release two trigger probes (1 and 2). Then, trigger probes hybridize with functional probe 2 to activate the autocatalytic degradation of functional probes 2 (Cycle I) and 3 (Cycle II), replicating abundant trigger probes (1-4) and releasing two fluorophores (2-aminopurine (2-AP) and pyrrolo-dC (P-dC)). New trigger probes (1, 2) and (3, 4), in turn, hybridize with free functional probes 2 and 3, repeating Cycles I and II turnovers. Through multicycle self-dissociation of Watson-Crick structures, 2-AP and P-dC are exponentially accumulated for the simultaneous quantification of hOGG1 and hAAG. This nanodevice exhibits high sensitivity with a detection limit of 2.9 × 10-3 U/mL for hOOG1 and 1.5 × 10-3 U/mL for hAAG, and it can measure enzymatic kinetics, identify potential inhibitors, discriminate glycosylases between cancer and normal cell lines, and even quantify glycosylase activities in a single HeLa cell. Moreover, this assay may be rapidly and isothermally performed in one tube with only one tool enzyme in a quencher-free manner, promising a simple and powerful platform for multiple human glycosylase detection.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Li-Ping Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou450000, Henan, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
8
|
Zhang Q, Zhang X, Ma F, Zhang CY. Advances in quantum dot-based biosensors for DNA-modifying enzymes assay. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Sun Y, Zang L, Lu J. Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases. Anal Bioanal Chem 2022; 414:3319-3327. [DOI: 10.1007/s00216-022-03978-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
11
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
12
|
Su Q, Yang X. Promoting Room Temperature Phosphorescence through Electron Transfer from Carbon Dots to Promethazine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41238-41248. [PMID: 34410103 DOI: 10.1021/acsami.1c09935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Room temperature phosphorescence (RTP) as a fascinating phenomenon shows great potential toward multiple applications. Howbeit, it is challengeable to improve the phosphorescence efficiency of carbon dots (CDs) owing to their short lifetime. Herein, we proposed a facile, rapid, and gram-scale strategy to synthesize the cross-linked carbon dots (named N-CDs) with both bright blue fluorescence and green RTP emissions. To be specific, the polymer of polyethylenimine (PEI) served as the cross-linking agent and carbon source, during which process phosphoric acid accelerated the formation of the compact carbon core within 30 s. Subsequently, the cross-linked carbon dots with the rigid network formed a small singlet-triplet energy splitting (ΔEST) of 0.490 eV, thus exhibiting a long RTP lifetime of 429.880 ms while coated on the filter paper through the hydrogen bonds. Taking advantage of the double luminescence, we successfully achieved the dual-channel detection of promethazine by N-CDs. The fluorescence of N-CDs was obviously quenched by promethazine through the electron-transfer process, displaying the linear range from 0.4 to 8 mM. Significantly, the electron transfer (ET) from carbon dots to promethazine boosted their phosphorescence efficiency and prolonged the lifetime to 565.190 ms, and the enhanced phosphorescence facilitated the sensitive recognition of promethazine with the concentration range of 1-3000 μM. Meanwhile, the possible autofluorescence interference from biological samples could be avoided through this RTP assaying mode, providing the more accurate results. Also, their RTP and fluorescence endowed the current N-CDs with the ability of dual-signal painting and imaging. This strategy may broaden the new approaches to produce the long-lifetime and high-efficiency RTP material toward the sensing purpose.
Collapse
Affiliation(s)
- Qian Su
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610041, China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
14
|
Tu B, Feng Z, Wang H, Zhang W, Ye W, Wang H, Xiao X, Zhao W, Wu T. Development of a background signal suppression probe for 8-oxoguanine DNA glycosylase detection. Anal Chim Acta 2021; 1175:338741. [PMID: 34330449 DOI: 10.1016/j.aca.2021.338741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
8-oxoguanine DNA glycosylase (OGG), which plays a crucial role in base excision repair (BER), is an important biomarker. The existing highly sensitive fluorescent methods always need complicated amplification design. The method with high sensitivity and simple design at the same time is urgently needed. Here, we developed a highly sensitive detection method for OGG detection with lambda exonuclease and the background signal suppression probe. Through probe structure design, the steric hindrance and competitive binding effects successfully suppressed the background signal. We achieved sensitive detection of OGG with a simple design, and the limit of detection was 5.0 × 10-4 U mL-1. Moreover, the method was highly selective and successfully applied to OGG detection in biological samples, which shows the potential clinical application value.
Collapse
Affiliation(s)
- Bocheng Tu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zishan Feng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weicong Ye
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Wang LJ, Liang L, Liu BJ, Jiang B, Zhang CY. A controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of multiple repair glycosylases. Chem Sci 2021; 12:5544-5554. [PMID: 34168791 PMCID: PMC8179622 DOI: 10.1039/d1sc00189b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic oxidation and alkylation are two of the most important forms of cytotoxic damage that may induce mutagenesis, carcinogenicity, and teratogenicity. Human 8-oxoguanine (hOGG1) and alkyladenine DNA glycosylases (hAAG) are responsible for two major forms of oxidative and alkylative damage repair, and their aberrant activities may cause repair deficiencies that are associated with a variety of human diseases, including cancers. Due to their complicated catalytic pathways and hydrolysis mechanisms, simultaneous and accurate detection of multiple repair glycosylases has remained a great challenge. Herein, by taking advantage of unique features of T7-based transcription and the intrinsic superiorities of single-molecule imaging techniques, we demonstrate for the first time the development of a controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of hOGG1 and hAAG. The presence of hOGG1 and hAAG can remove damaged 8-oxoG and deoxyinosine, respectively, from the dumbbell substrate, resulting in breaking of the dumbbell substrate, unfolding of two loops, and exposure of two T7 promoters simultaneously. The T7 promoters can activate symmetric transcription amplifications with the unfolded loops as the templates, inducing efficient transcription to produce two different single-stranded RNA transcripts (i.e., reporter probes 1 and 2). Reporter probes 1 and 2 hybridize with signal probes 1 and 2, respectively, to initiate duplex-specific nuclease-directed cyclic digestion of the signal probes, liberating large amounts of Cy3 and Cy5 fluorescent molecules. The released Cy3 and Cy5 molecules can be simply measured by total internal reflection fluorescence-based single-molecule detection, with the Cy3 signal indicating the presence of hOGG1 and the Cy5 signal indicating the presence of hAAG. This method exhibits good specificity and high sensitivity with a detection limit of 3.52 × 10-8 U μL-1 for hOGG1 and 3.55 × 10-7 U μL-1 for hAAG, and it can even quantify repair glycosylases at the single-cell level. Moreover, it can be applied for the measurement of kinetic parameters, the screening of potential inhibitors, and the detection of repair glycosylases in human serum, providing a new paradigm for repair enzyme-related biomedical research, drug discovery, and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Le Liang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China
| | - Bing-Jie Liu
- Academy of Medical Sciences, Zhengzhou University Zhengzhou 450000 China
| | - BingHua Jiang
- Academy of Medical Sciences, Zhengzhou University Zhengzhou 450000 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China
| |
Collapse
|
17
|
Zhang Y, Hu J, Zou X, Ma F, Qiu JG, Zhang CY. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem Commun (Camb) 2021; 57:2073-2076. [PMID: 33507186 DOI: 10.1039/d0cc08306b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate the development of a new fluorescent biosensor for sensitive DNA methylation assay by integrating single-molecule detection with endo IV-assisted signal amplification. This biosensor possesses the characteristics of good selectivity and high sensitivity with a detection limit of 7.3 × 10-17 M. It can distinguish as low as 0.01% methylation level, and can analyze genomic DNA methylation even in a single cancer cell.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Li F, Wang L, Shao S, Chen H, Chen X. Sensitive homogeneous fluorescent detection of DNA glycosylase by target-triggering ligation-dependent tricyclic cascade amplification. Talanta 2020; 220:121422. [PMID: 32928432 DOI: 10.1016/j.talanta.2020.121422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Abnormal DNA glycosylases are concerned with the aging process as well as numerous pathologies in humans. Herein, a sensitive fluorescence method utilizing target-induced ligation-dependent tricyclic cascade amplification reaction was developed for the detecting DNA glycosylase activity. The presence of DNA glycosylase triggered the cleavage of damaged base in hairpin substrate, successively activating ligation-dependent strand displacement amplification (SDA) and exponential amplification reaction (EXPAR) for the generation of large amount of reporter probes. The resultant reporter probes bound with the signal probes to form stable dsDNA duplexes. And then the signal probes could be digested circularly in the dsDNA duplexes by T7 exonuclease, leading to the generation of an enhanced fluorescence signal. Due to the high efficiency of tricyclic cascade amplification and the low background signal deriving from the inhibition of nonspecific amplification, this method exhibited a detection limit of 0.14 U/mL and a dynamic range from 0.16 to 8.0 U/mL. Moreover, it could be applied for detecting DNA glycosylase activity in human serum with good selectivity and high sensitivity, and even quantifying other types of enzyme with 5'-PO4 residue cleavage product by rationally designing the corresponding substrate. Importantly, this method could be performed in homogenous solution without any complicated separation steps, providing a new strategy for DNA glycosylase-related biomedical research.
Collapse
Affiliation(s)
- Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fengyun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Li J, Zhang M, Wang H, Wu J, Zheng R, Zhang J, Li Y, Wang Z, Dai Z. Sensitive determination of formamidopyrimidine DNA glucosylase based on phosphate group-modulated multi-enzyme catalysis and fluorescent copper nanoclusters. Analyst 2020; 145:5174-5179. [PMID: 32613972 DOI: 10.1039/d0an00928h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a method for quantifying the activity of formamidopyrimidine DNA glucosylase (Fpg) was designed based on phosphate group (P)-modulated multi-enzyme catalysis and fluorescent copper nanoclusters (CuNCs). By eliminating 8-oxoguanine from double-stranded DNA, Fpg generates a nick with P at both 3' and 5' termini. Subsequently, part of the DNA is digested by 5'P-activated lambda exonuclease (λ Exo), and the generated 3'P disables exonuclease I (Exo I), resulting in the generation of single-stranded DNA containing poly(thymine) (poly(T)). Using poly(T) as templates, CuNCs were prepared to emit intense fluorescence as the readout of this method. However, in the absence of Fpg, the originally modified 5'P triggers the digestion of λ Exo. In this case, fluorescence emission is not obtained because CuNCs cannot be formed without DNA templates. Therefore, the catalysis of λ Exo and Exo I can be tuned by 5'P and 3'P, which can be further used to determine the activity of Fpg. The fluorescent Fpg biosensor works in a "signal-on" manner with the feature of "zero" background noise, and thus shows desirable analytical features and good performance. Besides, Fpg in serum samples and cell lysate could be accurately detected with the biosensor, indicating the great value of the proposed system in practical and clinical analysis.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sayed IM, Sahan AZ, Venkova T, Chakraborty A, Mukhopadhyay D, Bimczok D, Beswick EJ, Reyes VE, Pinchuk I, Sahoo D, Ghosh P, Hazra TK, Das S. Helicobacter pylori infection downregulates the DNA glycosylase NEIL2, resulting in increased genome damage and inflammation in gastric epithelial cells. J Biol Chem 2020; 295:11082-11098. [PMID: 32518160 DOI: 10.1074/jbc.ra119.009981] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/30/2020] [Indexed: 01/08/2023] Open
Abstract
Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Ayse Z Sahan
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Tatiana Venkova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Ellen J Beswick
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Irina Pinchuk
- College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, California, USA.,Department of Computer Science and Engineering, Jacob's School of Engineering, San Diego, California, USA
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, John and Rebecca Moore Cancer Center, University of California San Diego, San Diego, California, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
21
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
22
|
Wang LJ, Lu YY, Zhang CY. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chem Sci 2020; 11:587-595. [PMID: 32206275 PMCID: PMC7069502 DOI: 10.1039/c9sc04738g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA damage and repair are involved in multiple fundamental biological processes, including metabolism, disease, and aging. Inspired by the natural repair mechanism in vivo, we demonstrate for the first time the construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. The presence of DNA glycosylase can catalyze the excision repair of the damaged base, successively autostarting the self-directed replication through recycling polymerization extension and strand-displacement DNA synthesis for the generation of exponentially amplified dsDNAs. The resultant dsDNA products can be label-free and real-time monitored with SYBR Green I as the fluorescent indicator. Owing to the high efficiency of self-directed exponential replication and the absolute zero background resulting from the efficient inhibition of nonspecific amplification induced by multiple primer-dependent amplification, this strategy exhibits high sensitivity with a detection limit of 1 × 10-8 U μL-1 in vitro and 1 cell in vivo, and it can be further used to screen inhibitors, quantify DNA glycosylase from diverse cancer cells, and even monitor various repair enzymes by simply changing the specific damaged base in the DNA template. Importantly, this assay can be performed in a label-free, real-time and isothermal manner with the involvement of only a single type of polymerase, providing a simple, robust and universal platform for repair enzyme-related biomedical research and clinical therapeutics.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Ying-Ying Lu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| |
Collapse
|
23
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2019; 151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.
Collapse
Affiliation(s)
- Namik Akkilic
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
25
|
Han Y, Chen T, Li Y, Chen L, Wei L, Xiao L. Single-Particle Enumeration-Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle. Anal Chem 2019; 91:11146-11153. [DOI: 10.1021/acs.analchem.9b01849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yameng Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiliang Li
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Langxing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lin Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Liang XX, Qian L, Huang RF. Label-free and ultrasensitive electrochemiluminescence detection of oxidative DNA damage using DNA repair enzyme. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Wang LJ, Luo ML, Yang XY, Li XF, Wu Y, Zhang CY. Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells. Am J Cancer Res 2019; 9:4450-4460. [PMID: 31285772 PMCID: PMC6599653 DOI: 10.7150/thno.35393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
DNA alkylation and oxidation are two most common forms of cytotoxic damage with the characteristics of mutagenic and carcinogenic. Human alkyladenine DNA glycosylase (hAAG) is the only glycosylase known to repair a wide variety of alkylative and oxidative DNA lesions. However, few approaches are capable of real-time monitoring hAAG activity. Methods: Herein, we develop a facile fluorescent strategy for homogeneous and sensitive sensing of hAAG activity based on the controllable autocatalytic cleavage-mediated fluorescence recovery. The presence of hAAG enables the cleavage of hairpin probe 1 (HP1) at the damaged 2′-deoxyinosine site by AP endonuclease 1 (APE1), forming a DNA duplex. The trigger 1 built in the resultant DNA duplex may hybridize with hairpin probe 2 (HP2) to induce the T7 exonuclease (T7 exo)-catalyzed recycling cleavage of HP2 (Cycle I) to release trigger 2. The trigger 2 can further hybridize with the signal probe (a fluorophore (FAM) and a quencher (BHQ1) modified at its 5′ and 3′ ends) to induce the subsequent recycling cleavage of signal probes (Cycle II) to liberate FAM molecules. Through two-recycling autocatalytic cleavage processes, large amounts of fluorophore molecules (i.e., FAM) are liberated from the FAM-BHQ1 fluorescence resonance energy transfer (FRET) pair, leading to the amplified fluorescence recovery. Results: Taking advantage of the high accuracy of in vivo DNA repair mechanism, the high specificity of T7 exo-catalyzed mononucleotides hydrolysis, and the high efficiency of autocatalytic recycling amplification, this strategy exhibits high sensitivity with a detection limit of 4.9 × 10-6 U/μL and a large dynamic range of 4 orders of magnitude from 1 × 10-5 to 0.1 U/μL, and it can further accurately evaluate the enzyme kinetic parameters, screen the potential inhibitors, and even quantify the hAAG activity from 1 cancer cell. Conclusion: The proposed strategy can provide a facile and universal platform for the monitoring of DNA damage-related repair enzymes, holding great potential for DNA repair-related biochemical research, clinical diagnosis, drug discovery, and cancer therapy.
Collapse
|
28
|
Qin Y, Li D, Yuan R, Xiang Y. Silver ion-stabilized DNA triplexes for completely enzyme-free and sensitive fluorescence detection of transcription factors via catalytic hairpin assembly amplification. J Mater Chem B 2019; 7:763-767. [DOI: 10.1039/c8tb03042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new silver ion-stabilized DNA triplex enables enzyme-free and amplified sensitive fluorescence detection of transcription factors.
Collapse
Affiliation(s)
- Yao Qin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
29
|
Wang S, Li D, Yuan R, Xiang Y. Simple label-free and sensitive fluorescence determination of human 8-oxoG DNA glycosylase 1 activity and inhibition viaTdT-assisted sequence extension amplification. NEW J CHEM 2019. [DOI: 10.1039/c9nj01080g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Label-free and sensitive detection of hOGG1 activity and inhibitionviaTdT-assisted sequence extension signal amplification.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
30
|
Wang LJ, Wang HX, Jiang L, Zhang CY. Development of an in Vitro Autocatalytic Self-Replication System for Biosensing Application. ACS Sens 2018; 3:2675-2683. [PMID: 30460848 DOI: 10.1021/acssensors.8b01171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular self-replication is a fundamental function of all living organisms with the capability of templating and catalyzing its own synthesis, and it plays important roles in prebiotic chemical evolution and effective synthetic machineries. However, the construction of the self-replication system in vitro remains a great challenge and its application for biosensing is rare. Here, we demonstrate for the first time the construction of an in vitro enzymatic nucleic acid self-replication system and its application for amplified sensing of human 8-oxoguanine DNA glycosylase (hOGG1) based on autocatalytic self-replication-driven cascaded recycling amplification. In this strategy, hOGG1 excises 8-oxoguanine (8-oxoG) to unfold the hairpin substrate, activating the autonomous biocatalytic process with molecular beacons (MBs) as both the fuels for producing nucleic acid templates and the generators for signal output, leading to the continuous replication of biocatalytic nucleic acid templates and the repeated cleavage of MBs for an enhanced fluorescence signal. This strategy exhibits an extremely low detection limit of 4.3 × 10-7 U/μL and a large dynamic range of 5 orders of magnitude from 1 × 10-6 to 0.05 U/μL. Importantly, it can be applied for the detection of enzyme kinetic parameters, the screening of hOGG1 inhibitors, and the quantification of hOGG1 activity in even 1 single lung cancer cell, providing a new approach for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Hou-xiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Longhe Jiang
- Wendeng Orthopaedic Hospital of Shandong, Wendeng 264400, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
31
|
Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Quantum Dot Based Biotracking and Biodetection. Anal Chem 2018; 91:532-547. [DOI: 10.1021/acs.analchem.8b04721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
32
|
Abstract
DNA repair is now understood to play a key role in a variety of disease states, most notably cancer. Tools for studying DNA have typically relied on traditional biochemical methods which are often laborious and indirect. Efforts to study the biology and therapeutic relevance of DNA repair pathways can be limited by such methods. Recently, specific fluorescent probes have been developed to aid in the study of DNA repair. Fluorescent probes offer the advantage of being able to directly assay for DNA repair activity in a simple, mix-and-measure format. This review will summarize the distinct classes of probe designs and their potential utility in varied research and preclinical settings.
Collapse
Affiliation(s)
- David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
33
|
Li CC, Zhang Y, Tang B, Zhang CY. Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Chem Commun (Camb) 2018; 54:5839-5842. [PMID: 29707704 DOI: 10.1039/c8cc01695j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We combine single-molecule detection with magnetic separation for simultaneous measurement of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycosylase (UDG) based on excision repair-initiated endonuclease IV (Endo IV)-assisted signal amplification. This method can sensitively detect multiple DNA glycosylases, and it can be further applied for the simultaneous measurement of enzyme kinetic parameters and screening of both hOGG1 and UDG inhibitors.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | |
Collapse
|
34
|
Hu J, Liu MH, Zhang CY. Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci 2018; 9:4258-4267. [PMID: 29780556 PMCID: PMC5944210 DOI: 10.1039/c8sc00832a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
The integration of quantum dot-based fluorescence resonance energy transfer with rolling circle amplification enables simultaneous sensitive detection of multiple microRNAs.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate important physiological processes, and their dysregulation is associated with various human diseases. Simultaneous sensitive detection of multiple miRNAs may facilitate early clinical diagnosis. In this research, we demonstrate for the first time the integration of hyperbranched rolling circle amplification (HRCA) with quantum dot (QD)-based fluorescence resonance energy transfer (FRET) for the simultaneous detection of multiple microRNAs with a single-color QD as the donor and two fluorescent dyes as the acceptors. We used miR-21 and miR-221 as target miRNAs. We designed two circular templates which may specifically hybridize with miR-21 and miR-221, respectively, for the initiation of the HRCA reaction. The products of the HRCA reaction may hybridize with both capture probes and reporter probes to form the biotinylated acceptor-labeled sandwich hybrids. The resultant sandwich hybrids can assemble on the surface of the QD, enabling efficient FRET between the QD and the acceptors, with the Cy3 signal indicating the presence of miR-21 and the Texas Red signal indicating the presence of miR-221. This assay has significant advantages of simplicity and low cost. The HRCA reaction can be performed under isothermal conditions with the same reverse primer for different target miRNAs, and the products of the HRCA reaction for both miR-21 and miR-221 can specifically hybridize with the same capture probes. This assay exhibits excellent specificity and high sensitivity with a detection limit of 7.2 × 10–16 M for miR-21 and 1.6 × 10–17 M for miR-221, and it can be used for simultaneous detection of multiple miRNAs in human cancer cells, holding great potential in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| |
Collapse
|
35
|
Shang J, Li Z, Liu L, Xi D, Wang H. Label-Free Sensing of Human 8-Oxoguanine DNA Glycosylase Activity with a Nanopore. ACS Sens 2018; 3:512-518. [PMID: 29363311 DOI: 10.1021/acssensors.7b00954] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) plays a significant role in maintaining the genomic integrity of living organisms for its capability of repairing DNA lesions. Accurate detection of hOGG1 activity would greatly facilitate the screening and early diagnosis of diseases. In this work, we report a nanopore-based sensing strategy to probe the hOGG1 activity by employing the enzyme-catalytic cleavage reaction of DNA substrate. The hOGG1 specifically catalyzed the removal of the 8-hydroxyguanine (8-oxoG) and cleaved the DNA substrates immobilized on magnetic beads, thereby releasing the output DNA which would quantitatively produce the signature current events when subjected to α-hemolysin (α-HL) nanopore test. The approach enables the sensitive detection of hOGG1 activity without the need of any labeling or signal amplification route. Furthermore, the method can be applied to assay the inhibition of hOGG1 and evaluate the activity of endogenous hOGG1 in crude cell extracts. Importantly, since DNAs with specific sequences are the catalytic substrates of a wide variety of enzymes, the proposed strategy should be universally applicable for probing the activities of different types of enzymes with nanopore sensors.
Collapse
Affiliation(s)
- Jizhen Shang
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Institute
of Medicine and Materials Application Technologies, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhi Li
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Liping Liu
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Dongmei Xi
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Hua Wang
- Institute
of Medicine and Materials Application Technologies, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
36
|
Wang ZY, Wang LJ, Zhang Q, Tang B, Zhang CY. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem Sci 2018; 9:1330-1338. [PMID: 29675180 PMCID: PMC5887231 DOI: 10.1039/c7sc04813k] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic modification in human genomes. Herein, we develop a single quantum dot (QD)-based nanosensor for sensitive detection of DNA methylation at both CpG and non-CpG sites using tricyclic ligation chain reaction (LCR)-mediated QD-based fluorescence resonance energy transfer (FRET). We design two sets of DNA probes (X and Y, X' and Y') for methylated DNA assay. In the presence of thermostable DNA ligase, probes X and Y may adjacently hybridize with the methylated DNA to obtain the ligated XY products which may function as the templates for probes X' and Y' to generate the X'Y' products. The resultant X'Y' products may in turn act as the templates to ligate probes X and Y for the generation of XY products, consequently inducing tricyclic LCR amplification under thermal denaturation conditions to generate a large number of XY products. The subsequent hybridization of XY products with the capture and reporter probes results in the formation of sandwich hybrids which may assemble on the 605QD surface to obtain 605QD-oligonucleotide-Cy5 nanostructures, inducing efficient FRET from the 605QD to Cy5 and the emission of Cy5. This nanosensor can detect DNA methylation at single 5-methylcytosine (5-mC) resolution with a detection limit of as low as 1.0 aM and a large dynamic range of 7 orders of magnitude. Moreover, this nanosensor can distinguish as low as a 0.01% methylation level, and it can detect DNA methylation in human lung cancer cells as well, holding great potential for accurate epigenetic evaluation and early cancer diagnosis.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86-0531-86186033
| | - Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86-0531-86186033
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen , 518052 , China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86-0531-86186033
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86-0531-86186033
| |
Collapse
|
37
|
Mansur AAP, Mansur HS, Caires AJ, Mansur RL, Oliveira LC. Composition-Tunable Optical Properties of Zn x Cd (1 - x)S Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications. NANOSCALE RESEARCH LETTERS 2017; 12:443. [PMID: 28683540 PMCID: PMC5498436 DOI: 10.1186/s11671-017-2212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/25/2017] [Indexed: 05/16/2023]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal laser scanning fluorescence microscopy. Moreover, these conjugates presented photocatalytic activity for photodegradation of methylene blue used as model organic industrial pollutant in water. Hence, composition-tunable optical properties of ternary Zn x Cd1 - x S (x = 0-1) fluorescent alloyed QDs was achieved using a facile eco-friendly aqueous processing route, which can offer promising alternatives for developing innovative nanomaterials for applications in nanomedicine and environmental science and technology.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil.
- Federal University of Minas Gerais, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, Belo Horizonte, MG, 31.270-901, Brazil.
| | - Anderson J Caires
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Rafael L Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Luiz C Oliveira
- Department of Chemistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Hu J, Li Y, Li Y, Tang B, Zhang CY. Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Anal Chem 2017; 89:12992-12999. [DOI: 10.1021/acs.analchem.7b04065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan Hu
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Yueying Li
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ying Li
- School
of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Bo Tang
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
39
|
Hu J, Liu MH, Li Y, Tang B, Zhang CY. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chem Sci 2017; 9:712-720. [PMID: 29629140 PMCID: PMC5869805 DOI: 10.1039/c7sc04296e] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
We demonstrate the simultaneous detection of human 8-oxoguanine DNA glycosylase 1 and human alkyladenine DNA glycosylase at the single-molecule level.
DNA glycosylases are involved in the base excision repair pathway, and all mammals express multiple DNA glycosylases to maintain genome stability. However, the simultaneous detection of multiple DNA glycosylase still remains a great challenge. Here, we develop a single-molecule detection method for the simultaneous detection of human 8-oxoguanine DNA glycosylase 1 (hOGG1) and human alkyladenine DNA glycosylase (hAAG) on the basis of DNA glycosylase-mediated cleavage of molecular beacons. We designed a Cy3-labeled molecular beacon modified with 8-oxoguanine (8-oxoG) for a hOGG1 assay and a Cy5-labeled molecular beacon modified with deoxyinosine for a hAAG assay. hOGG1 may catalyze the removal of 8-oxoG from 8-oxoG/C base pairs to generate an apurinic/apyrimidinic (AP) site, and hAAG may catalyze the removal of deoxyinosine from deoxyinosine/T base pairs to generate an AP site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of AP sites results in the cleavage of molecular beacons, with Cy3 indicating the presence of hOGG1 and Cy5 indicating the presence of hAAG. Both of the Cy3 and Cy5 signals can be simply quantified by total internal reflection fluorescence-based single-molecule detection. This method can simultaneously detect multiple DNA glycosylases with a detection limit of 2.23 × 10–6 U μL–1 for hOGG1 and 8.69 × 10–7 U μL–1 for hAAG without the involvement of any target amplification. Moreover, this method can be used for the screening of enzyme inhibitors and the simultaneous detection of hOGG1 and hAAG from lung cancer cells, having great potential for further application in early clinical diagnosis.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Ying Li
- School of Medicine , Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| |
Collapse
|
40
|
Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron 2017; 96:239-245. [DOI: 10.1016/j.bios.2017.04.052] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/09/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
|
41
|
Yao J, Li L, Li P, Yang M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. NANOSCALE 2017; 9:13364-13383. [PMID: 28880034 DOI: 10.1039/c7nr05233b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, nanotechnology has become one of the major forces driving basic and applied research. As a novel class of inorganic fluorochromes, research into quantum dots (QDs) has become one of the fastest growing fields of nanotechnology today. QDs are made of a semiconductor material with tunable physical dimensions as well as unique optoelectronic properties, and have attracted multidisciplinary research efforts to further their potential bioanalytical applications. Recently, numerous optical properties of QDs, such as narrow emission band peaks, broad absorption spectra, intense signals, and remarkable resistance to photobleaching, have made them biocompatible and sensitive for biological assays. In this review, we give an overview of these exciting materials and describe their potential, especially in biomolecules analysis, including fluorescence detection, chemiluminescence detection, bioluminescence detection, electrochemiluminescence detection, and electrochemical detection. Finally, conclusions are made, including highlighting some critical challenges remaining and a perspective of how this field can be expected to develop in the future.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, People's Republic of China.
| | | | | | | |
Collapse
|
42
|
Chatterjee S, Maitra U. In situ formation of luminescent CdSe QDs in a metallohydrogel: a strategy towards synthesis, isolation, storage and re-dispersion of the QDs. NANOSCALE 2017; 9:13820-13827. [PMID: 28891578 DOI: 10.1039/c7nr03758a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A one step, in situ, room temperature synthesis of yellow luminescent CdSe QDs was achieved in a metallohydrogel derived from a facially amphiphilic bile salt, resulting in a QD-gel hybrid. An ordered self-assembly and homogeneous distribution of the CdSe QDs in the hydrogel network was observed from optical and electron micrographs. The different excited state behavior of the CdSe QDs in the hybrid was revealed for the first time using time resolved spectroscopy. We also describe the successful isolation of the photoluminescent CdSe QDs from the gel followed by their re-dispersion in an organic solvent using suitable capping ligands.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India.
| | | |
Collapse
|
43
|
|
44
|
Feng Y, Cai S, Xiong G, Zhang G, Wang S, Su X, Yu C. Sensitive Detection of DNA Lesions by Bulge-Enhanced Highly Specific Coamplification at Lower Denaturation Temperature Polymerase Chain Reaction. Anal Chem 2017; 89:8084-8091. [PMID: 28675037 DOI: 10.1021/acs.analchem.7b01599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutagenic modifications of nucleotides or DNA lesions that result from environmental stress have proven to be associated with a variety of diseases, particularly cancer. The method for accurately detecting the lesions is therefore of great importance for biomedical research and toxicity study. We develop a sensitive and low-cost bulge-enhanced coamplification at lower denaturation temperature polymerase chain reaction (COLD-PCR) method for detecting DNA lesions (uracil and 8-oxoguanine) by combining an in vitro base excision repair (BER) pathway and COLD-PCR. The modified bases are converted to bulge via the BER pathway involving converting modified bases to an apurinic/apyrimidinic (AP) site, cleavage at the AP site, and break ligation. The presence of the bulge induces a large change of the hybridization thermodynamics of double-stranded DNA, eventually enhancing the specificity of COLD-PCR. Besides, we used the free energy of hybridization as a reference to optimize the critical denaturation temperature (Tc) of COLD-PCR obtaining more specific amplification than empirical Tc. Taking advantage of the proposed bulge-enhanced COLD-PCR, we are able to identify the presence of DNA lesion-containing strands at low abundance down to 0.01%. This method also exhibits high sensitivity for glycosylase with a detection limit of 10-4 U/mL [3 S/N (signal-to-noise ratio)] that is superior than some recently reported methods. With the design of the repair guide probe, the level of oxidative damage in genomic DNA caused by chemicals and photodynamic therapy (PDT) can be evaluated, heralding more applications in clinical diagnosis and epigenetic study.
Collapse
Affiliation(s)
- Yu Feng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shuang Cai
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine , Shenzhen 518033, Guangdong, China
| | - Guanfei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shihui Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xin Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Changyuan Yu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
45
|
Zhang Y, Li CC, Tang B, Zhang CY. Homogeneously Sensitive Detection of Multiple DNA Glycosylases with Intrinsically Fluorescent Nucleotides. Anal Chem 2017. [PMID: 28621520 DOI: 10.1021/acs.analchem.7b01655] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA glycosylases are responsible for recognition and excision of the damaged bases in the base excision repair pathway, and all mammals express multiple DNA glycosylases to maintain genome stability. However, simultaneous detection of multiple DNA glycosylase still remains a great challenge. Here, we develop a rapid and sensitive fluorescent method for simultaneous detection of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycolase (UDG) using exonuclease-assisted recycling signal amplification in combination with fluorescent bases 2-aminopurine (2-AP) and pyrrolo-dC (P-dC) as the fluorophores. We design a bifunctional DNA probe modified with one 8-oxoG and five uracil bases, which can hybridize with the trigger probes to form a sandwiched DNA substrate for hOGG1 and UDG. In addition, we design 2-AP and P-dC signal probes as the hairpin structures with 2-AP and P-dC in the stems. The presence of hOGG1 and UDG may initiate the signal amplification process by the recycling lambda exonuclease digestion and generates distinct fluorescence signals, with 2-AP indicating the presence of hOGG1 and P-dC indicating the presence of UDG. This method can simultaneously detect multiple DNA glycosylases with the detection limits of 0.0035 U/mL for hOGG1 and 0.0025 U/mL for UDG, and it can even measure DNA glycosylases at the single-cell level. Moreover, this method can be applied for the measurement of enzyme kinetic parameters and the screening of DNA glycosylase inhibitors, holding great potential for further applications in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
46
|
Wang LJ, Zhang Q, Tang B, Zhang CY. Single-Molecule Detection of Polynucleotide Kinase Based on Phosphorylation-Directed Recovery of Fluorescence Quenched by Au Nanoparticles. Anal Chem 2017; 89:7255-7261. [PMID: 28585816 DOI: 10.1021/acs.analchem.7b01783] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
5'-Polynucleotide kinase such as T4 polynucleotide kinase (T4 PNK) may catalyze the phosphorylation of 5'-hydroxyl termini in nucleic acids, playing a crucial role in DNA replication, DNA recombination, and DNA damage repair. Here, we demonstrate for the first time single-molecule detection of PNK based on phosphorylation-directed recovery of fluorescence quenched by Au nanoparticle (AuNP) in combination with lambda exonuclease-mediated cleavage reaction. In the presence of PNK, the γ-phosphate group from adenosine triphosphate (ATP) is transferred to 5'-hydroxyl terminus, resulting in 5'-phosphorylation of the hairpin probe. The phosphorylated hairpin probes may function as the substrates of lambda exonuclease and enable the removal of 5' mononucleotides from the stem, leading to the unfolding of hairpin structure and the formation of binding probes. The resultant binding probes may specifically hybridize with the AuNP-modified capture probes, forming double-strand DNA (dsDNA) duplexes with 5'-phosphate groups as the substrates of lambda exonuclease and subsequently leading to the cleavage of capture probes and the liberation of Cy5 molecules and the binding probes. The released binding probes may further hybridize with new capture probes, inducing cycles of digestion-release-hybridization and consequently the release of numerous Cy5 molecules. Through simply monitoring Cy5 molecules with total internal reflection fluorescence (TIRF)-based imaging, PNK activity can be quantitatively measured. This assay is very sensitive with a limit of detection of 9.77 × 10-8 U/μL, and it may be further used to screen the PNK inhibitors and measure PNK in cancer cell extracts.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
47
|
Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2017; 89:4488-4494. [PMID: 28306242 DOI: 10.1021/acs.analchem.6b04673] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
48
|
Liu H, Liang Y, Li N, Wu G. A novel “top-down” strategy for preparing organosilica micelle encapsulating multiple hydrophobic quantum dots as efficient fluorescent label. CRYSTAL RESEARCH AND TECHNOLOGY 2017. [DOI: 10.1002/crat.201600328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hongxin Liu
- College of Life Science; Shenyang Normal University; Shenyang 110034 China
| | - Yuan Liang
- College of Chemistry and Chemical Engineering; Shenyang Normal University; Shenyang 110034 China
| | - Nana Li
- College of Chemistry and Chemical Engineering; Shenyang Normal University; Shenyang 110034 China
| | - Gang Wu
- College of Chemistry and Chemical Engineering; Shenyang Normal University; Shenyang 110034 China
| |
Collapse
|
49
|
Hu J, Wang ZY, Li CC, Zhang CY. Advances in single quantum dot-based nanosensors. Chem Commun (Camb) 2017; 53:13284-13295. [DOI: 10.1039/c7cc07752a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We review the advances in single quantum dot-based nanosensors and their biomedical applications. We highlight their challenges and future direction.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zi-yue Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chen-chen Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
50
|
Ma F, Liu WJ, Tang B, Zhang CY. A single quantum dot-based nanosensor for the signal-on detection of DNA methyltransferase. Chem Commun (Camb) 2017; 53:6868-6871. [DOI: 10.1039/c7cc03736h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|