1
|
Singh R, Kumari R, Tripathi CSP, Guin D. Copper oxide nanosheets as an effective nanozyme with haloperoxidase-like activity for the colorimetric detection of H 2O 2 and glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124720. [PMID: 38943756 DOI: 10.1016/j.saa.2024.124720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Copper oxide nanosheets (CuO NSs) have been successfully obtained by exploiting an effective one-step approach of sugar-blowing method followed by calcination. The nanosheets were characterized by several techniques like X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Impressively, CuO NSs display haloperoxidase (HPO) like catalytic activity which catalyses the oxidation of chloride ions by H2O2 giving rise to reactive chlorine species (RCS). A sensitive and selective colorimetric sensor was then demonstrated via the oxidation of chromogenic substrate 3,3',5,5'- tetramethylbenzidine (TMB) by the novel nanoenzyme CuO NSs through the generation of RCS for H2O2 and glucose detection with limit of detection of 109 nM and 21 nM in the linear ranges of 4.6 µM to 769 µM and 0.22 µM to 19.57 µM respectively. Additionally, the methodology is validated for the analysis of glucose in real samples.
Collapse
Affiliation(s)
- Renuka Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh, India
| | - Richa Kumari
- Department of Physics, Institute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh, India
| | | | - Debanjan Guin
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
2
|
Yang Z, Tian Z, Qi C. Potassium single-atoms anchoring on three-dimensional porous N-doped carbon material as sensing material for boosting electrochemical sensing of hydrogen peroxide. Mikrochim Acta 2024; 191:536. [PMID: 39143359 DOI: 10.1007/s00604-024-06609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
For the first time potassium single-atoms (K SA) are explored as the sensing material to boost electrochemical sensing of hydrogen peroxide (H2O2). The N-doped carbon material with a three-dimensional porous structure (3D NG) was prepared using NaCl as the template, and K SA were anchored to the surface of 3D NG through high-temperature pyrolysis. The structure of K SA/3D NG was characterized by TEM, HAADF-STEM, XPS, and XRD. The results of electrochemical studies indicate that K SA play a crucial role in promoting the electrocatalytic reduction of H2O2, which not only optimized the adsorption strength for H2O2 but also improved the electron transfer rate, therefore improving the sensitivity for detecting H2O2. This study demonstrates the excellent electrocatalytic activity of K SA, which provides a promising sensing material for the detection of H2O2 and lays the foundation for the application of alkali metal single-atoms in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China.
| | - Zhigao Tian
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China
| | - Chengcheng Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Yu SQ, Li P, Li HJ, Shang LJ, Guo R, Sun XM, Ren QQ. Highly Sensitive Detection of Hydrogen Peroxide in Cancer Tissue Based on 3D Reduced Graphene Oxide-MXene-Multi-Walled Carbon Nanotubes Electrode. BIOSENSORS 2024; 14:261. [PMID: 38920565 PMCID: PMC11201644 DOI: 10.3390/bios14060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Hydrogen peroxide (H2O2) is a signaling molecule that has the capacity to control a variety of biological processes in organisms. Cancer cells release more H2O2 during abnormal tumor growth. There has been a considerable amount of interest in utilizing H2O2 as a biomarker for the diagnosis of cancer tissue. In this study, an electrochemical sensor for H2O2 was constructed based on 3D reduced graphene oxide (rGO), MXene (Ti3C2), and multi-walled carbon nanotubes (MWCNTs) composite. Three-dimensional (3D) rGO-Ti3C2-MWCNTs sensor showed good linearity for H2O2 in the ranges of 1-60 μM and 60 μM-9.77 mM at a working potential of -0.25 V, with sensitivities of 235.2 µA mM-1 cm-2 and 103.8 µA mM-1 cm-2, respectively, and a detection limit of 0.3 µM (S/N = 3). The sensor exhibited long-term stability, good repeatability, and outstanding immunity to interference. In addition, the modified electrode was employed to detect real-time H2O2 release from cancer cells and cancer tissue ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu-Ming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| | - Qiong-Qiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| |
Collapse
|
4
|
Ramesh M, Umamatheswari S, Vivek PM, Sankar C, Jayavel R. Synthesis of silver‑bismuth oxide encapsulated hydrazone functionalized chitosan (AgBi 2O 3/FCS) nanocomposite for electrochemical sensing of glucose, H 2O 2 and Escherichia coli O157:H7. Int J Biol Macromol 2024; 264:130533. [PMID: 38428782 DOI: 10.1016/j.ijbiomac.2024.130533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
In this work, silver‑bismuth oxide encapsulated 1,3,5-triazine-bis(4-methylbenzenesulfonyl)-hydrazone functionalized chitosan (SBO/FCS) nanocomposite was synthesized by a simple hydrothermal method. The amine (-NH2) group was functionalized by the addition of cyanuric acid chloride followed by 4-methylbenzenesulfonol hydrazide. The SBO/FCS has been characterized by FT-IR, X-ray diffraction, XPS, HR-SEM, HR-TEM, AFM, and thermogravimetry (TGA). Under the optimum conditions, the SBO/FCS sensor showed brilliant electrochemical accomplishment for the sensing of glucose and H2O2 by a limit of detection (LOD) of 0.057 μM and 0.006 μM. It also showed linearity for glucose 0.008-4.848 mM and for H2O2 of 0.01-6.848 mM. Similarly, the sensor exhibited a low sensitivity to glucose (32 μA mM-1 cm-2) and a good sensitivity to H2O2 (295 μA mM-1 cm-2). In addition, that the prepared electrode could be used to sense the glucose and H2O2 levels in real samples such as blood serum and HeLa cell lines. The screen printed electrode (SPE) immunosensor could sense the E. coli O157:H7 concurrently and quantitatively with a linear range of 1.0 × 101-1.0 × 109 CFU mL-1 and a LOD of 4 CFU mL-1. Likewise, the immunosensor efficiently detect spiked E. coli O157:H7 in milk, chicken, and pork samples, with recoveries ranging from 89.70 to 104.72 %, demonstrating that the immunosensor was accurate and reliable.
Collapse
Affiliation(s)
- M Ramesh
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India
| | - S Umamatheswari
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India.
| | - P M Vivek
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology (Deemed University), Chennai 600 062, Tamil Nadu, India
| | - C Sankar
- Department of Chemistry, Velammal College of Engineering and Technology, Madurai 625 009, Tamil Nadu, India.
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
5
|
Qi C, Wang W, Dong Y. Synthesis of Se single atoms on nitrogen-doped carbon as novel electrocatalyst for sensitive nonenzymatic sensing of hydrogen peroxide. Anal Bioanal Chem 2023; 415:5391-5401. [PMID: 37432443 DOI: 10.1007/s00216-023-04814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Single-atom catalysts received increasing attention due to their maximum atom utilization efficiency. However, metal-free single atoms have not been used to construct electrochemical sensing interfaces. In this work, we demonstrated the use of Se single atoms (SA) as electrocatalyst for sensitive electrochemical nonenzymatic detection of H2O2. Se SA was synthesized and anchored on nitrogen-doped carbon (Se SA/NC) via a high-temperature reduction strategy. The structural properties of Se SA/NC were characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical techniques. The results showed that Se atoms were uniformly distributed on the surface of the NC. The obtained SA catalyst exhibited excellent electrocatalytic activity toward H2O2 reduction, and can be used to detect H2O2 in a wide linear range from 0.04 mM to 11.1 mM with a low detection limit of 0.018 mM and high sensitivity of 403.9 µA mM-1 cm-2. Moreover, the sensor can be used for the quantification of H2O2 concentration in real disinfectant samples. This work is of great significance for expanding the application of nonmetallic single-atom catalysts in the field of electrochemical sensing. Se single atoms (Se SA) as novel electrocatalyst were synthesized and anchored on nitrogen-doped carbon (NC) for sensitive electrochemical nonenzymatic detection of H2O2.
Collapse
Affiliation(s)
- Chengcheng Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
- School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
6
|
Oh DE, Lee CS, Kim TW, Jeon S, Kim TH. A Flexible and Transparent PtNP/SWCNT/PET Electrochemical Sensor for Nonenzymatic Detection of Hydrogen Peroxide Released from Living Cells with Real-Time Monitoring Capability. BIOSENSORS 2023; 13:704. [PMID: 37504103 PMCID: PMC10377607 DOI: 10.3390/bios13070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
We developed a transparent and flexible electrochemical sensor using a platform based on a network of single-walled carbon nanotubes (SWCNTs) for the non-enzymatic detection of hydrogen peroxide (H2O2) released from living cells. We decorated the SWCNT network on a poly(ethylene terephthalate) (PET) substrate with platinum nanoparticles (PtNPs) using a potentiodynamic method. The PtNP/SWCNT/PET sensor synergized the advantages of a flexible PET substrate, a conducting SWCNT network, and a catalytic PtNP and demonstrated good biocompatibility and flexibility, enabling cell adhesion. The PtNP/SWCNT/PET-based sensor demonstrated enhanced electrocatalytic activity towards H2O2, as well as excellent selectivity, stability, and reproducibility. The sensor exhibited a wide dynamic range of 500 nM to 1 M, with a low detection limit of 228 nM. Furthermore, the PtNP/SWCNT/PET sensor remained operationally stable, even after bending at various angles (15°, 30°, 60°, and 90°), with no noticeable loss of current signal. These outstanding characteristics enabled the PtNP/SWCNT/PET sensor to be practically applied for the direct culture of HeLa cells and the real-time monitoring of H2O2 release by the HeLa cells under drug stimulation.
Collapse
Affiliation(s)
- Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Chang-Seuk Lee
- Department of Chemistry, Seoul Woman's University, Seoul 01797, Republic of Korea
| | - Tae Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
7
|
Asif M, Wang Z, Aziz A, Ashraf G, Ali J, Iftikhar T, Xiao F, Sun Y. Hybridizing Ti 3C 2T x Layers with Layered Double Hydroxide Nanosheets at the Molecular Level: A Smart Electrode Material for H 2O 2 Monitoring in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368492 DOI: 10.1021/acsami.3c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Vertically stacked artificial 2D superlattice hybrids fabricated through molecular-level hybridization in a controlled fashion play a vital role in scientific and technological fields, but developing an alternate assembly of 2D atomic layers with strong electrostatic interactions could be much more challenging. In this study, we have constructed an alternately stacked self-assembled superlattice composite through integration of CuMgAl layered double hydroxide (LDH) nanosheets having positive charge with negatively charged Ti3C2Tx layers using well-controlled liquid-phase co-feeding protocol and electrostatic attraction and investigated its electrochemical performance in sensing early cancer biomarkers, i.e., hydrogen peroxide (H2O2). The molecular-level CuMgAl LDH/Ti3C2Tx superlattice self-assembly possesses superb conductivity and electrocatalytic properties, which are significant for obtaining a high electrochemical sensing aptitude. Electron penetration in Ti3C2Tx layers and rapid ion diffusion along 2D galleries have shortened the diffusion path and enhanced the charge transferring efficacy. The electrode modified with the CuMgAl LDH/Ti3C2Tx superlattice has demonstrated admirable electrocatalytic abilities in H2O2 detection with a wide linear concentration range and low real-time limit of detection (LOD) of 0.1 nM with signal/noise ratio (S/N) = 3. Practically, an electrochemical sensing podium based on the CuMgAl LDH/Ti3C2Tx superlattice has been effectively applied in real-time in vitro tracking of H2O2 effluxes excreted from different live cancer cells and normal cells after being encouraged by stimulation. The results exhibit that molecular-level heteroassembly holds great potential in electrochemical sensors to detect promising biomarkers.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhanpeng Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ghazala Ashraf
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jawad Ali
- School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
8
|
Dong J, Qiu X, Huang M, Chen X, Li Y. G-quadruplex-hemin DNAzyme functionalized nanopipettes: Fabrication and sensing application. Talanta 2023; 257:124384. [PMID: 36812658 DOI: 10.1016/j.talanta.2023.124384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Solid-nanopores/nanopipettes have the exquisite ability to reveal the changes in molecular volume due to the advantages of adjustable size, good rigidity and low noise. Herein, a new platform for sensing application was established based on G-quadruplex-hemin DNAzyme (GQH) functionalized gold-coated nanopipettes. In this method, GQH was immobilized on gold-coated nanopipette, which could be used as a catalyst for the reaction of H2O2 with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) to promote the conversion of ABTS to ABTS+ ions inside gold-coated nanopipette, and the change of transmembrane ion current could be monitored in real time. At the optimal conditions, there was a correlation between the ion current and the concentration of H2O2 in a certain range, which could be used for the hydrogen peroxide sensing. The GQH immobilized nanopipette provides a useful platform to investigate enzymatic catalysis in confined environment, which can be used in electrocatalysis, sensing and fundamental electrochemistry.
Collapse
Affiliation(s)
- Jingyi Dong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Mimi Huang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaohu Chen
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
9
|
Jiang M, Zhu L, Liu Y, Li J, Diao Y, Wang C, Guo X, Chen D. Facile fabrication of laser induced versatile graphene-metal nanoparticles electrodes for the detection of hazardous molecules. Talanta 2023; 257:124368. [PMID: 36801558 DOI: 10.1016/j.talanta.2023.124368] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
In this work, we developed a facile method to fabricate laser induced versatile graphene-metal nanoparticles (LIG-MNPs) electrodes with redox molecules sensing capabilities. Unlike conventional post-electrodes deposition, versatile graphene-based composites were engraved by a facile synthesis process. As a general protocol, we successfully prepared modular electrodes including LIG-PtNPs and LIG-AuNPs and applied them to electrochemical sensing. This facile laser engraving process enables rapid preparation and modification of electrodes, as well as simple replacement of metal particles modification towards varied sensing targets. The LIG-MNPs showed high sensitivity towards H2O2 and H2S due to their excellent electron transmission efficiency and electrocatalytic activity. By simply changing the types of coated precursors, the LIG-MNPs electrodes have successfully achieved real-time monitoring of H2O2 released from tumor cells and H2S contained in wastewater. This work contributed a universal and versatile protocol for quantitatively detecting a wide range of hazardous redox molecules.
Collapse
Affiliation(s)
- Min Jiang
- School of Pharmacy, Hangzhou Normal University, China
| | - Ling Zhu
- School of Pharmacy, Hangzhou Normal University, China
| | - Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, China
| | - Yunqi Diao
- School of Pharmacy, Hangzhou Normal University, China
| | | | - Xishan Guo
- Department of Biosystems Engineering, Biosensors National Special Lab, Zhejiang University, China.
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| |
Collapse
|
10
|
Zhang N, Zhang W, Wu Y, Xie X, Jiang R, Luo F, Zhang K. Upconversion nanoparticles anchored MnO 2 nanosheets for luminescence "turn on" detecting hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122819. [PMID: 37163855 DOI: 10.1016/j.saa.2023.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The sensitively and reliably detecting hydrogen peroxide (H2O2) is of significant for biology and environment protection fields. Herein, we reported a high sensitive H2O2 nanoprobe based on upconversion nanoparticles (UCNPs) anchored MnO2 nanosheets. In which, DNA modified NaYF4@NaYF4:Yb,Tm core-shell nanoparticles were anchored onto the MnO2 nanosheets surface via π-π stacking. Owing to the luminescence resonance energy transfer, the blue luminescence of UCNPs was effectively quenched by MnO2 nanosheets, then the luminescence could be restored by adding H2O2 for reducing MnO2 to Mn2+, and achieving a H2O2 concentration-dependent luminescence change, the detection limit could reach to 0.23 nM (S/N = 3). The proposed method could detect H2O2 in serum, lake water and real samples. Thus, a desired upconversion luminescence sensing strategy for detection H2O2 in life and environmental analysis was successfully constructed. It may be provide a potential tool in disease diagnosis and environmental monitoring fields.
Collapse
Affiliation(s)
- Na Zhang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China; Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wen Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Yilin Wu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Xusheng Xie
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Rongli Jiang
- China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, China.
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 234000, China.
| | - Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
11
|
Zong P, Chen Y, Bi J, Han K, Luo J, Wang X, Kong F, Liu K. Development of a novel chitosan-based two-photon fluorescent nanoprobe with enhanced stability for the specific detection of endogenous H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122797. [PMID: 37150072 DOI: 10.1016/j.saa.2023.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Hydrogen peroxide (H2O2) acts as an important reactive oxygen species (ROS) and maintains the redox equilibrium in organisms. Imbalance of H2O2 concentration is associated with the development of many diseases. Traditional small molecular based fluorescent probes often show drawbacks of cytotoxicity and easily metabolic clearance. Herein, a chitosan-based two-photon fluorescent nanoprobe (DC-BI) was constructed and applied for H2O2 detection in live organisms. DC-BI was composed by chitosan nanoparticles and a two-photon fluorophore of naphthalimide analogues (BI) with H2O2-responsive property. The structure of DC-BI was characterized by NMR, FTIR, XPS, XRD, DLS and MLS analyses. As study shown, the nanoprobe DC-BI exhibited improved distribution stability and smaller cytotoxicity. In the presence of H2O2, both the absorption and emission spectra show dramatic changes, the fluorescence intensity at 580 nm obviously enhanced. Furthermore, fluorescence imaging results indicate that DC-BI is capable of imaging endogenous H2O2 in cells and zebrafish. The design and development of chitosan-based nanoprobe DC-BI has provided a general example of nanoprobe construction with excellent distribution stability, two-photon property, and biocompatibility.
Collapse
Affiliation(s)
- Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunling Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong 250022, China
| | - Jianling Bi
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Kejia Han
- Zibo Product Quality Testing Research Institute, Zibo 255022, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
12
|
Qi C, Xiang W, Dong Y, Zhang W. Co3V2O8 nanoparticle-assembled porous sphere as a new electrocatalyst for sensitive nonenzymatic sensing of H2O2. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Liu J, Li X, Cheng L, Sun J, Xia X, Zhang X, Song Y, Sun D, Sun J, Zhang L. Atomic layer deposition of Pt nanoparticles onto Co/MoN nanoarrays for improved electrochemical detection of H 2O 2. Chem Commun (Camb) 2023; 59:474-477. [PMID: 36524562 DOI: 10.1039/d2cc05521j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design and preparation of advanced nanocatalysts for the sensitive electrochemical detection of H2O2 is of great significance. Herein, a facile Pt@Co/MoN sensing platform was fabricated by depositing Pt nanoparticles onto Co/MoN nanoarrays using atomic layer deposition (ALD) technology. Benefitting from the unique nanostructure and the strong interaction between Pt and the nitride support, the prepared Pt@Co/MoN exhibited excellent performance in the electrochemical detection of H2O2. This work provides an interesting strategy to fabricate low-Pt electrocatalysts on a nanoarray support for future applications in electroanalysis.
Collapse
Affiliation(s)
- Jinzheng Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xue Li
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Lidi Cheng
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Junwei Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xiaomin Xia
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yanyan Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Deshuai Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China. .,The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| |
Collapse
|
14
|
Zhao H, Zhang Y, Liu Q, Jing X, Yang W, Akanyange SN, Liu J, Xie H, Wang X, Crittenden J, Lyu X, Chang H. WSe 2-loaded co-catalysts Cu 3P and CNTs: Improving photocatalytic hydrogen precipitation and photocatalytic memory performance. J Colloid Interface Sci 2023; 629:937-947. [PMID: 36208606 DOI: 10.1016/j.jcis.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 12/28/2022]
Abstract
Photocatalytic decomposition of water for hydrogen production using semiconductor photocatalysts in visible light is considered one of the most promising environmentally friendly ways to produce hydrogen. In this work, the calcination method was adopted to prepare an efficient Cu3P/WSe2/CNTs composite photocatalysts. Cu3P and carbon nanotubes (CNTs) were used as co-catalysts to reduce the composite rate of the photogenerated supports of the photocatalyst. The unique metallic properties of Cu3P as a transition metal phosphide makes it a cost-effective alternative to noble metal co-catalysts. CNTs can serve both as co-catalysts and as a suitable carrier to accelerate the transfer rate of photogenerated electrons. The experimental results showed that the Cu3P/WSe2/CNTs composite photocatalyst exhibited stronger activities in photocatalytic hydrogen production than pure WSe2. In particular, a higher quantum yield of 30.27% at the range 400-700 nm was achieved with a loading of 4% CNTs, a calcination temperature of 300 °C and a calcination time of 2.0 h. In contrast, the quantum yield of pure WSe2 was only 14.01%. The highest hydrogen production rate was 6.987 mL in 4.0 h, and the average hydrogen production rate was 712.985 μmol·h-1g-1, which was 2.39 times higher than that of pure WSe2.The catalytic memory performance of the composite samples was also examined. The results indicated that the best catalytic memory performance was achieved under the pre-illumination condition of 5.0 h. The amount of hydrogen produced under darkness for 4.0 h was up to 4.934 mL and the average hydrogen production rate was 503.454 μmol·h-1g-1. The average hydrogen production rate was 1.69 times higher than the average hydrogen production rate of pure WSe2 under light conditions.
Collapse
Affiliation(s)
- Huaqing Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqing Jing
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weiting Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Stephen Nyabire Akanyange
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jia Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hongbo Xie
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0595, USA
| | - Xianjun Lyu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hui Chang
- College of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
15
|
Wang ZY, Chang HW, Tsai YC. Synthesis of Bimetallic Ni-Co Phosphide Nanosheets for Electrochemical Non-Enzymatic H 2O 2 Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:66. [PMID: 36615975 PMCID: PMC9824346 DOI: 10.3390/nano13010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
NiCoP nanosheets (NSs) were successfully synthesized using the hydrothermal and high-temperature phosphorization process. The obtained NiCoP NSs were immobilized on a glassy carbon electrode (GCE) and used to construct a novel sensing platform for electrochemical non-enzymatic H2O2 sensing. Physicochemical characteristics of NiCoP NSs were obtained by field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, the electrochemical properties of NiCoP NSs were obtained by cyclic voltammetry (CV) and chronoamperometry (CA) towards the non-enzymatic detection of H2O2. FESEM and FETEM images provided a morphological insight (the unique nanosheets morphology of NiCoP) that could expose more active sites to promote mass/charge transport at the electrode/electrolyte interface. XRD and XPS results also confirmed the crystalline nature of the NiCoP nanosheets and the coexistence of multiple transitional metal oxidation states in NiCoP nanosheets. These unique physicochemical characteristics had a degree of contribution to ensuring enhancement in the electrochemical behavior. As a result, the synthesized NiCoP NSs composed of intercalated nanosheets, as well as the synergistic interaction between bimetallic Ni/Co and P atoms exhibited excellent electrocatalytical activity towards H2O2 electroreduction at neutral medium. As the results showed, the electrochemical sensing based on NiCoP NSs displayed a linear range of 0.05~4 mM, a sensitivity of 225.7 μA mM-1 cm-2, a limit of detection (LOD) of 1.190 μM, and good selectivity. It was concluded that NiCoP NSs-based electrochemical sensing might open new opportunities for future construction of H2O2 sensing platforms.
Collapse
Affiliation(s)
- Zhi-Yuan Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Hou X, Song Y, Zhou H, Guo L, Li G, Tao Q. Chitosan coated fluorescent mesoporous silica for the sensitive and selective detection of H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121661. [PMID: 35926287 DOI: 10.1016/j.saa.2022.121661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A novel turn-on fluorescent sensor for hydrogen peroxide (H2O2) was prepared from chitosan (CS) coating mesoporous silica nanoparticles (MSNs) loaded with 1-(4-Aminophenyl)-1,2,2-triphenylethene (TPE-NH2) and silver nanoparticles (AgNCs). The surface of MSNs was coated by CS as the gatekeeper and the template for loading of AgNCs. Because of the surface plasmon-enhanced energy transfer (SPEET), AgNCs effectively quenched the fluorescence emission of nanoparticles. In the presence of H2O2, AgNCs can be oxidized to Ag+, resulting in the recovery of fluorescence. This fluorescent sensor was characterized with respect to its chemical composition, morphological features and optical properties by means of FTIR, XRD, TGA, SEM, TEM, XPS, UV-Vis and fluorescence spectroscopy. The MSN/TPE-CS@Ag nanoparticles showed good sensitivity and selectivity for H2O2 even with various interfering ions and agents. Under optimized conditions, the detection limit for H2O2 was 0.64 μM in the rage of 1-300 μM. The feasibility of the practical application of this probe was confirmed by accurate quantitative of H2O2 in practical samples.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Hengquan Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
17
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
18
|
Zhu Y, Ma X, Lv X, Zhang L, Li C, Shi N, Wang J. Graphene frameworks-confined synthesis of 2D-layered NiCoP for the electrochemical sensing of H 2O 2 at lower overpotential. Mikrochim Acta 2022; 189:345. [PMID: 36001198 DOI: 10.1007/s00604-022-05445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
A new 2D-layered nickel cobalt phosphide nanosheet confined by 3D graphene frameworks (denoted as NiCoP/GFs) is in situ controllably synthesized as a highly efficient and durable electrocatalyst, which is obtained from the transformation of corresponding NiCo layer double hydroxides and GFs. Hydrogen peroxide (H2O2) is selected as a demonstration to study the electrochemical sensing performance of the NiCoP/GFs. Benefiting from 2D morphology of NiCoP and network structure of GFs, NiCoP/GFs exhibits remarkable electroactivity toward H2O2 at a relatively low overpotential of approximately - 0.3 V (vs sat. Ag/AgCl) in 0.01 M phosphate-buffered saline solution (PBS, pH = 7.4). The NiCoP/GFs-based H2O2 electrochemical sensor achieves a high sensitivity of ∼4398 μA mM-1 cm-2, a low detection limit of 0.028 ± 0.006 μM, and desirable selectivity. In addition, the sensor can sensitively detect H2O2 from living cancer cells. This study not merely broadens the synthesis methods of transition metal phosphide-based nanocrystals but the NiCoP/GFs also has broad prospects in diverse electrochemistry fields. We have reported a controllable synthesis of 2D nickel cobalt phosphide nanosheet confined by graphene frameworks (denoted as NiCoP/GFs) as a greatly efficient and durable electrocatalyst. The NiCoP/GFs exhibits remarkable electroactivity toward detection of H2O2 at a relatively low overpotential of approximately -0.3 V. Density functional theory (DFT) calculations further prove that regulation of the electronic structure of NiCoP by GFs lowers the adsorption free energy of *OOH intermediates, and thus contributes to the greatly improved the electrocatalytic performance of NiCoP/GFs toward H2O2 reduction. The developed NiCoP/GFs can be applied as excellent electrode materials for efficient electrochemical sensing of H2O2.
Collapse
Affiliation(s)
- Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| | - Xiaowei Ma
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xueyi Lv
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Lina Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Chao Li
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Ningning Shi
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
19
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
20
|
Hu P, Qin H, Hu K, Dai R, Wang Z, Huang K. Constructing a defect-rich hydroxide nanoenzyme sensor based on dielectric barrier discharge microplasma etching for sensitive detection of thiamine hydrochloride and hydrogen peroxide. J Colloid Interface Sci 2022; 628:597-606. [DOI: 10.1016/j.jcis.2022.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
21
|
Liu X, He F, Bai L, Cao X, Liu C, Lu W. A two-dimensional G-CoP/N,P-co-doped carbon nanowire electrode for the simultaneous determination of hydroquinone and catechol in domestic wastewater. Anal Chim Acta 2022; 1210:339871. [DOI: 10.1016/j.aca.2022.339871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
|
22
|
Riaz MA, Chen Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. NANOSCALE HORIZONS 2022; 7:463-479. [PMID: 35289828 DOI: 10.1039/d2nh00006g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
H2O2 sensing is required in various biological and industrial applications, for which electrochemical sensing is a promising choice among various sensing technologies. Electrodes and electrocatalysts strongly influence the performance of electrochemical H2O2 sensors. Significant efforts have been devoted to electrode nanostructural designs and nanomaterial-based electrocatalysts. Here, we review the design strategies for electrodes and electrocatalysts used in electrochemical H2O2 sensors. We first summarize electrodes in different structures, including rotation disc electrodes, freestanding electrodes, all-in-one electrodes, and representative commercial H2O2 probes. Next, we discuss the design strategies used in recent studies to increase the number of active sites and intrinsic activities of electrocatalysts for H2O2 redox reactions, including nanoscale pore structuring, conductive supports, reducing the catalyst size, alloying, doping, and tuning the crystal facets. Finally, we provide our perspectives on the future research directions in creating nanoscale structures and nanomaterials to enable advanced electrochemical H2O2 sensors in practical applications.
Collapse
Affiliation(s)
- Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| |
Collapse
|
23
|
Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H 2O 2) Released from Cancer Cells. NANOMATERIALS 2022; 12:nano12091475. [PMID: 35564184 PMCID: PMC9103167 DOI: 10.3390/nano12091475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (H2O2). The common methods for the detection of H2O2 include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of H2O2 by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of H2O2. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric H2O2 detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of H2O2, which can be useful in the early detection of cancerous cells.
Collapse
|
24
|
Zhu Q, Zhang H, Li Y, Tang H, Zhou J, Zhang Y, Yang J. In situ synthesis of Co-doped MoS 2 nanosheet for enhanced mimicking peroxidase activity. JOURNAL OF MATERIALS SCIENCE 2022; 57:8100-8112. [PMID: 35496978 PMCID: PMC9036839 DOI: 10.1007/s10853-022-07201-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED To enhance the catalytic activity of two-dimensional layered materials as versatile materials, the modification of transition metal dichalcogenide nanosheets such as MoS2 by doping with heteroatoms has drawn great interests. However, few reports are available on the study of the enzyme-like activity of doped MoS2. In this study, a facile in situ hydrothermal method for the preparation of various ultrathin transition metals (Fe, Cu, Co, Mn, and Ni) doped MoS2 nanosheets has been reported. Through the density functional theory (DFT) and steady-state kinetic analysis, the Co-doped MoS2 nanosheets exhibited the highest peroxidase-like catalytic activity among them. Furthermore, a typical colorimetric assay for H2O2 was presented based on the catalytic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product (oxTMB) by Co-MoS2. The proposed colorimetric method showed excellent tolerance under extreme conditions and a broad linear range from 0.0005 to 25 mM for H2O2 determination. Concerning the practical application, in situ detection of H2O2 generated from SiHa cells was also fulfilled, fully confirming the great practicability of the proposed method in biosensing fields. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-022-07201-z.
Collapse
Affiliation(s)
- Qiqi Zhu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen, 518055 China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 China
| | - Jia Zhou
- College of Science, Harbin Institute of Technology, Shenzhen, 518055 China
| | - Yifan Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 China
| | - Jiao Yang
- College of Science, Harbin Institute of Technology, Shenzhen, 518055 China
| |
Collapse
|
25
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
26
|
Specifically triggered dissociation based ratiometric electrochemical sensor for H 2O 2 measurement in food samples. Food Chem 2022; 387:132922. [PMID: 35421654 DOI: 10.1016/j.foodchem.2022.132922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
Abstract
A novel ratiometric strategy based electrochemical sensor was developed to quantitative assay of H2O2 in different food samples. 4-aminophenylboronic acid pinacol ester (ABAPE) dissociation was specifically triggered by H2O2 to generate electro-active 4-aminophenol (4-AP), which not only can be oxidized to indirectly indicate the concentration of H2O2, but also endowed the sensor with high selectivity. Meanwhile, a reference probe of poly(thionine) (TH) was modified with ketjen black (KB) and gold nanoparticles (AuNPs) on electrode surface. KB and AuNPs displayed high electrocatalytic activity to 4-AP. A current ratio between 4-AP and TH (i/iTH) showed a good linear relationship with the concentration of H2O2 in a range of 3.0 × 10-7 - 1.0 × 10-4 mol/L (0.010 ppm - 3.40 ppm) with a limit of detection of 2.6 × 10-7 mol/L (0.009 ppm) (S/N = 3). Moreover, the ratiometric strategy based sensor possessed good accuracy, reliability, and stability, and successfully determined H2O2 in food samples with satisfactory results.
Collapse
|
27
|
Hao Y, Li Z, Ding N, Tang X, Zhang C. A new near-infrared fluorescence probe synthesized from IR-783 for detection and bioimaging of hydrogen peroxide in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120642. [PMID: 34857465 DOI: 10.1016/j.saa.2021.120642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A new near-infrared fluorescence probe was developed and synthesized for detection of hydrogen peroxide (H2O2) in vitro and in vivo. Synthesized from IR-783, the probe DBIS was designed to connect 4-(Bromomethyl)benzeneboronic acid pinacol ester as the recognizing moiety to the stable hemicyanine skeleton. Reaction of probe DBIS with H2O2 would result in the oxidation of phenylboronic acid pinacol ester, and thereby release the near-infrared fluorophore HXIS. The background signal of probe DBIS is very low, which is necessary for sensitive detection. Compared with the existing probes for detecting H2O2, the proposed probe DBIS shows excellent optical performance in vitro and in vivo, high selectivity, high sensitivity and good water solubility, as well as near-infrared fluorescence emission 708 nm, with a low detection limit of 0.12 μM. Furthermore, probe DBIS is low cytotoxic, cell membrane permeable, and its applicability has been shown to visualize endogenous H2O2 in mice. In addition, it is the first time that paper chips have been used as carrier to detect H2O2 through fluorescence signals instead of the traditional liquid phase detection mode of fluorescent probes. These superior characteristics of the probe make it have great application potential in biological systems or in vivo related research.
Collapse
Affiliation(s)
- Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
28
|
Zhao A, Lin T, Xu Y, Zhang W, Asif M, Sun Y, Xiao F. Integrated electrochemical microfluidic sensor with hierarchically porous nanoarrays modified graphene fiber microelectrode for bioassay. Biosens Bioelectron 2022; 205:114095. [PMID: 35202983 DOI: 10.1016/j.bios.2022.114095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 01/10/2023]
Abstract
The development of high-efficient biosensing systems for rapid and sensitive detection of disease-related biomarkers in human samples is of great significance for disease diagnosis and treatment in clinical practice. In this work, we develop an integrated electrochemical microfluidic sensing platform based on freestanding graphene fiber (GF) microelectrode for bioassay. In order to improve the electrocatalytic activity of GF microelectrode, it has been modified by unique 3D well-ordered hierarchically porous nickel-cobalt phosphide (NiCoP) nanosheet arrays (NSAs). Benefiting from the excellent electrochemical properties and structural merits, the resultant NiCoP-NSAs modified GF microelectrode shows excellent sensing performances towards neurotransmitter dopamine (DA), with a high sensitivity of 5.56 μA cm-2 μM-1, a low detection limit of 14 nM, as well as good selectivity, reproducibility and stability. Furthermore, in virtue of the miniaturized size and good mechanical properties, the nanohybrid GF microelectrode can be embedded into a home-made microfluidic chip to construct an integrated electrochemical microfluidic sensing device, which has been used for sensitive analysis of DA in minimal volume of human serum and urine samples, and in situ tracking DA released from neuroblastoma cells SHSY-5Y under the stimulation for physio-pathological and pharmacological study of nervous system-related diseases.
Collapse
Affiliation(s)
- Anshun Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China; Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Tao Lin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Weiguo Zhang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
29
|
Deng Z, Zhao L, Zhou H, Xu X, Zheng W. Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Li H, Jiang L, Shao D, Wu C, Gao Y, Yang Z, Yang Z. Facile synthesis of Cu@Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Seifner MS, Snellman M, Makgae OA, Kumar K, Jacobsson D, Ek M, Deppert K, Messing ME, Dick KA. Interface Dynamics in Ag-Cu 3P Nanoparticle Heterostructures. J Am Chem Soc 2022; 144:248-258. [PMID: 34949090 PMCID: PMC8759066 DOI: 10.1021/jacs.1c09179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.
Collapse
Affiliation(s)
- Michael S. Seifner
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Markus Snellman
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Ofentse A. Makgae
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Krishna Kumar
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- National
Center for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Martin Ek
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Knut Deppert
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
32
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Xu Y, Hu B, Cui Y, Li L, Nian F, Zhang Z. A self-ratiometric and selective electrochemical sensor for the detection of tyrosinase in mouse brain homogenate. Analyst 2022; 147:4092-4097. [DOI: 10.1039/d2an00196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method for selectively sensing and accurately quantifying tyrosinase in mouse brain homogenate is reported.
Collapse
Affiliation(s)
- Yumei Xu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Li Li
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fang Nian
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhixia Zhang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| |
Collapse
|
34
|
Tong Y, Wang L, Song J, Zhang M, Qi H, Ding S, Qi H. Self-Terminated Electroless Deposition of Surfactant-Free and Monodispersed Pt Nanoparticles on Carbon Fiber Microelectrodes for Sensitive Detection of H 2O 2 Released from Living Cells. Anal Chem 2021; 93:16683-16689. [PMID: 34860503 DOI: 10.1021/acs.analchem.1c04299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a self-terminated electroless deposition method to prepare surfactant-free and monodispersed Pt nanoparticle (NP)-modified carbon fiber microelectrodes (Pt NP/CFEs) for electrochemical detection of hydrogen peroxide (H2O2) released from living cells. The surfactant-free and monodispersed Pt NPs with a uniform size of 65 nm are spontaneously deposited on a CFE surface by immersing an exposed carbon fiber (CF) of CFE in the PtCl42- solution, in which an exposed CF can be used as the reducing agent and stabilizer. A self-terminated electroless deposition method is demonstrated, in which the density and size of Pt NPs on a CFE surface do not increase when the reaction time increases from 20 to 60 min. The self-terminated electroless deposition process not only can effectively avoid any manual electrode modification and thus largely minimize person-to-person and electrode-to-electrode deviations but also can avoid the use of any extra reductant or surfactant in the fabrication process. Therefore, Pt NPs/CFEs, with good reproducibility and sensitivity, not only exhibit high electrocatalytic activity toward the oxidation of H2O2 but also maintain the spatial resolution of CFEs. Moreover, Pt NPs/CFEs can detect H2O2 with a wide linear range of 0.5-80 μM and a low detection limit of 0.17 μM and then can be successfully applied in the monitoring of H2O2 released from RAW 264.7 cells. The self-terminated electroless deposition method can also be extended to selectively prepare other metal NP-modified CFEs, such as Au NPs/CFEs or Ag NPs/CFEs, by choosing the metal ions with higher reduction potential as precursors. This work provides a simple, straightforward, and general method for the preparation of small, surfactant-free, and monodispersed metal NP-modified CFEs with high sensitivity, reproducibility, and spatial resolution.
Collapse
Affiliation(s)
- Yuxi Tong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lifen Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jiajia Song
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Mengyue Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hetong Qi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
35
|
Wu N, Jiao L, Song S, Wei X, Cai X, Huang J, Sha M, Gu W, Song W, Zhu C. Tuning the Ratio of Pt(0)/Pt(II) in Well-Defined Pt Clusters Enables Enhanced Electrocatalytic Reduction/Oxidation of Hydrogen Peroxide for Sensitive Biosensing. Anal Chem 2021; 93:15982-15989. [PMID: 34797969 DOI: 10.1021/acs.analchem.1c03362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational design and construction of advanced sensing platforms for sensitive detection of H2O2 released from living cells is one of the challenges in the field of physiology and pathology. Noble metal clusters are a kind of nanomaterials with well-defined chemical composition and special atomic structures, which have been widely explored in catalysis, biosensing, and therapy. Compared with noble metal nanoparticles, noble metal clusters exhibit great potential in electrochemical biosensing due to their high atom utilization efficiency and abundant reactive active sites. Herein, Pt nanoclusters anchored on hollow carbon spheres (PtNCS/HCS) were successfully prepared for sensitive detection of H2O2. By tuning the ratio of Pt(0)/Pt(II) at different annealing temperatures, the optimized PtNCS/HCS-550 showed higher H2O2 reduction and oxidation catalytic activities than other control samples. Density functional theory calculations revealed that H2O2*can be better activated and dissociated in the Pt0II model featured with the co-existence of Pt(0)/Pt(II) and the key intermediates OOH*/OH* have a stronger interaction with the Pt0II model. As a concept application, the electrochemical biosensing platform was successfully applied to sensitive detection of H2O2 released from the cells.
Collapse
Affiliation(s)
- Nannan Wu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Xiaoqian Wei
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoli Cai
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiajia Huang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Meng Sha
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
36
|
Zhu Y, Xie Z, Li J, Liu Y, Li C, Liang W, Huang W, Kang J, Cheng F, Kang L, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Xu J, Li D, Zhang H. From phosphorus to phosphorene: Applications in disease theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214110] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
He L, Qian W, Cen L, Shen S, Wang S, Chen S, Liu S, Liu A, Yang Y, Liu Y. Catalase-conjugated collagen surfaces and their application for the quantification determination of H2O2 in milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Amri F, Septiani NLW, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti YV, Yuliarto B. Mesoporous TiO 2-based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B 2021; 9:1189-1207. [PMID: 33406200 DOI: 10.1039/d0tb02292f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past two decades, mesoporous TiO2 has emerged as a promising material for biosensing applications. In particular, mesoporous TiO2 materials with uniform, well-organized pores and high surface areas typically exhibit superior biosensing performance, which includes high sensitivity, broad linear response, low detection limit, good reproducibility, and high specificity. Therefore, the development of biosensors based on mesoporous TiO2 has significantly intensified in recent years. In this review, the expansion and advancement of mesoporous TiO2-based biosensors for glucose detection, hydrogen peroxide detection, alpha-fetoprotein detection, immobilization of enzymes, proteins, and bacteria, cholesterol detection, pancreatic cancer detection, detection of DNA damage, kanamycin detection, hypoxanthine detection, and dichlorvos detection are summarized. Finally, the future perspective and research outlook on the utilization of mesoporous TiO2-based biosensors for the practical diagnosis of diseases and detection of hazardous substances are also given.
Collapse
Affiliation(s)
- Fauzan Amri
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Rezki
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan and School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia and Nanotubes Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan.
| | - Yusuf Valentino Kaneti
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan
| | - Brian Yuliarto
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung 40132, Indonesia
| |
Collapse
|
39
|
Ling PH, Zang XN, Qian CH, Gao F. A metal-organic framework with multienzyme activity as a biosensing platform for real-time electrochemical detection of nitric oxide and hydrogen peroxide. Analyst 2021; 146:2609-2616. [PMID: 33720222 DOI: 10.1039/d1an00142f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Metal-Organic Framework (MOFs) with large surface area, exposed active site, excellent catalytic performance and high chemical stability has been used as an artificial enzyme and designed for nonenzymatic electrochemical sensors. Here, a strategy of using an enhanced electrochemical sensing platform for the detection of nitic oxide (NO) and hydrogen peroxide (H2O2) was designed via a nano-metalloporphyrinic metal-organic framework (NporMOF(Fe)) as an electrode material. By taking advantage of the small size, high surface area and exposed Fe active site, the obtained NporMOF(Fe) displays excellent electrocatalytic activity toward NO and H2O2. The NporMOF(Fe) modified electrode shows high sensing ability toward the in situ generated NO in NO2- containing phosphate buffer (PB) solution with a wide linear detection range of 5 μM to 200 μM and a very low detection limit of 1.3 μM. Moreover, NporMOF(Fe) exhibits high electrocatalytic activity toward the reduction of H2O2 and the practical detection of H2O2 released from HeLa cells. Furthermore, the NporMOF(Fe) modified electrode shows excellent selectivity toward the detection of NO and H2O2 in the presence of other physiologically important analytes. This method shows excellent biosensing performance, implying the universal applicability of MOFs-based artificial nanozymes for biosensors and the potential application for third generation biosensors.
Collapse
Affiliation(s)
- Ping-Hua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiao-Na Zang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Cai-Hua Qian
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
40
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
41
|
Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens Bioelectron 2021; 179:113052. [DOI: 10.1016/j.bios.2021.113052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
|
42
|
Wu Y, Lu L, Yu Z, Wang X. Electrochemical sensor based on the Mn 3O 4/CeO 2 nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1672-1680. [PMID: 33861233 DOI: 10.1039/d1ay00085c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the strategy of increasing the number of oxygen vacancies to improve the catalytic performance, we have developed a novel electrochemical sensor based on the multivalent metal oxides cerium dioxide and manganous oxide (Mn3O4/CeO2) for reliable determination of extracellular hydrogen peroxide (H2O2) released from living cells. The Mn3O4/CeO2 nanocomposite was characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance of the Mn3O4/CeO2 nanocomposite modified glassy carbon electrode (Mn3O4/CeO2/GCE) was investigated. Owing to the abundant oxygen vacancies and strong synergistic effect between the multivalent Ce and Mn, the sensor exhibited excellent catalytic activity and selectivity for the electrochemical detection of H2O2 with a low quantitation limit of 2 nM. Moreover, Mn3O4/CeO2/GCE exhibited excellent reproducibility, repeatability, and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was able to determine H2O2 released from living cells with satisfactory results. The results showed that the Mn3O4/CeO2 sensor is a promising candidate for a nanoenzymatic H2O2 sensor with the possibility of applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yalin Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | |
Collapse
|
43
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
44
|
Yin D, Tang J, Bai R, Yin S, Jiang M, Kan Z, Li H, Wang F, Li C. Cobalt Phosphide (Co 2P) with Notable Electrocatalytic Activity Designed for Sensitive and Selective Enzymeless Bioanalysis of Hydrogen Peroxide. NANOSCALE RESEARCH LETTERS 2021; 16:11. [PMID: 33438118 PMCID: PMC7803862 DOI: 10.1186/s11671-020-03469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In this work, cobalt phosphide nanoparticles (Co2P NPs) were prepared by simple and mild hydrothermal method without the use of harmful phosphorous source. The morphological structure and surface component of Co2P were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy measurements. Considering the excellent electrocatalytic reduction activity and good electrical conductivity of transition-metal phosphide, we fabricated Co2P NPs on indium tin oxide (ITO) substrate (Co2P/ITO) for H2O2 detection. The Co2P/ITO transducer displayed a rapid amperometric response less than 5 s, a broader response range from 0.001 to 10.0 mM and a low detection limit of 0.65 μM. In addition, the non-enzymatic Co2P/ITO sensor showed outstanding selectivity, reproducibility, repeatability and stability, all of which qualified the Co2P/ITO electrode for quite a reliable and promising biosensor for H2O2 sensing.
Collapse
Affiliation(s)
- Donghang Yin
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Junyan Tang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Rongbiao Bai
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Shuyi Yin
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Mengnan Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Zigui Kan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198 People’s Republic of China
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Lhasa, 850000 Tibet People’s Republic of China
| |
Collapse
|
45
|
Zhu Y, Kang K, Jia Y, Guo W, Wang J. General and fast synthesis of graphene frameworks using sugars for high-performance hydrogen peroxide nonenzymatic electrochemical sensor. Mikrochim Acta 2020; 187:669. [PMID: 33216215 DOI: 10.1007/s00604-020-04607-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
3D graphene frameworks (GFs) are fast and scalably synthesized via a general and facile method from the rich biomass of sugars with the aid of molten salts, using glucose as the prototype, to obtain an effective sensing platform for sensitive nonenzymatic hydrogen peroxide (H2O2) detection. The electroactive area of the GFs/GCE (0.1437 cm2) is obviously higher than that of bare GCE (0.0653 cm2). The GFs are found to exhibit remarkable electrocatalytic activity toward H2O2 reduction while avoiding enzyme loading. The electrochemical sensor for H2O2 based on GFs displays a low detection limit of 0.032 ± 0.005 μM (S/N = 3) at a working potential of - 0.55 V in 0.01 M N2-saturated phosphate-buffered saline (PBS, pH = 7.4) by an amperometric method. The sensor has good selectivity over other compounds such as ascorbic acid, dopamine, uric acid, NaCl, citric acid, and glucose. Moreover, the sensor shows excellent reproducibility with a relative standard deviation of 3.7% and acceptable stability after 30 days of usage. Furthermore, it can detect H2O2 released from living tumorigenic cells in real time. Most importantly, it is demonstrated that such GFs can be obtained from a variety of sugars (sucrose, fructose, lactose, and maltose). This work may offer a new general avenue for the synthesis of 3D GFs and promote the development of electrochemical sensors. Graphical abstract We have reported a general and fast method to synthesize GFs from sugars (glucose, sucrose, fructose, lactose, and maltose) with the addition of molten Na2CO3 salt as a template. The developed GFs can be applied as excellent electrode materials for efficient electrochemical sensing of H2O2.
Collapse
Affiliation(s)
- Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| | - Kai Kang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yutao Jia
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Wei Guo
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
46
|
Zhang H, Zhang Y, Liu S. Preparation of Trace Fe
2
P Modified N,P Co‐doped Carbon Materials and their Application to Hydrogen Peroxide Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.202060445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haiyan Zhang
- School of Materials Science and Engineering Jilin University Changchun 130012 P. R. China
| | - Yaqing Zhang
- College of Electronic Science and Engineering Jilin University Changchun 130012 P. R. China
| | - Sen Liu
- College of Electronic Science and Engineering Jilin University Changchun 130012 P. R. China
| |
Collapse
|
47
|
Huang ZN, Liu GC, Zou J, Jiang XY, Liu YP, Yu JG. A hybrid composite of recycled popcorn-shaped MnO2 microsphere and Ox-MWCNTs as a sensitive non-enzymatic amperometric H2O2 sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Wu H, Xiao K, Ouyang T, Wang Z, Chen Y, Li N, Liu ZQ. Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. J Colloid Interface Sci 2020; 585:605-613. [PMID: 33139019 DOI: 10.1016/j.jcis.2020.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a significant biomarker in physiological processes. Abnormal levels of H2O2 are considered to be closely related to some acute diseases. Therefore, it is important to monitor the H2O2 levels in bio-samples. Herein, we present a novel non-enzymatic electrochemical H2O2 sensor based on the excellent electrocatalytic performance of a composite comprising Zn-Cr-Co ternary spinel metal oxide nanodots (ZnCrCoO4) anchored on the surface of nitrogen-doped carbon nanotubes (NCNTs), denoted as ZnCrCoO4/NCNTs, toward H2O2 reduction. ZnCrCoO4/NCNTs were synthesized using a facile one-pot hydrothermal strategy. The enhanced electrocatalytic performance of ZnCrCoO4 is resulted from the partial substitution of Co in spinel zinc cobaltate (ZnCo2O4) with Cr, which modifies the CoO electronic structure and enhances electroconductivity. The ZnCrCoO4/NCNTs-based H2O2 sensor exhibited a wide quantitative detection range from 1 to 7330 μM with a detection limit of 1 μM. The sensor showed excellent reproducibility and selectivity for H2O2 sensing. In addition, remarkable recoveries were obtained for H2O2-spiked fish serum samples. These results demonstrated that the as-developed sensor has a great potential in monitoring H2O2 levels in practical applications.
Collapse
Affiliation(s)
- Huixiang Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Nan Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China.
| |
Collapse
|
49
|
Zhang W, Wang C, Guan L, Peng M, Li K, Lin Y. A non-enzymatic electrochemical biosensor based on Au@PBA(Ni-Fe):MoS 2 nanocubes for stable and sensitive detection of hydrogen peroxide released from living cells. J Mater Chem B 2020; 7:7704-7712. [PMID: 31754682 DOI: 10.1039/c9tb02059d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2) is the main product of enzymatic reactions and plays an important role in biological processes. The detection of H2O2 inside organisms or cells is critical. Here, we report a nickel-iron Prussian blue analogue nanocube doped with molybdenum disulfide and Au nanoparticles (Au@PBA(Ni-Fe):MoS2) as an electrochemical sensing material for the stable detection of H2O2 in neutral solutions for a long time. First, the Prussian blue analogue (PBA(Ni-Fe)) is synthesized by a simple charge-assembly technology, and then etched into PBA(Ni-Fe):MoS2 hollow nanocubes by a high-temperature hydrothermal reaction. Finally, Au nanoparticles are reduced inside the PBA(Ni-Fe):MoS2in situ to generate Au@PBA(Ni-Fe):MoS2 nanocubes. Ni-doping enhances the nanocube's stability in neutral solutions; as a result, the sensor can maintain a stable current response towards H2O2 reduction for more than 1 h. The sensing material can meet the needs of a long-time test. The introduction of Au enhances the electron transfer efficiency, which endows the sensor with good reduction ability for H2O2 at 0 V over a wide linear range (0.5-200 μM and 210-3000 μM) and with a low detection limit (0.23 μM (S/N = 3)), which fulfills the requirements for the detection of H2O2 in a biological system. The sensor can sense H2O2 released from cells stimulated by ascorbic acid. Au@PBA(Ni-Fe):MoS2 provides good guidance for the future development of efficient biosensors to be applied in cell biology.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | | | | | | | | | | |
Collapse
|
50
|
|