1
|
B Oliveira PR, Leyva D, V Tose L, Weisbrod C, Kozhinov AN, Nagornov KO, Tsybin YO, Fernandez-Lima F. Revisiting Dissolved Organic Matter Analysis Using High-Resolution Trapped Ion Mobility and FT-ICR Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2400-2407. [PMID: 39265105 DOI: 10.1021/jasms.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The molecular level characterization of complex mixtures remains an analytical challenge. We have shown that the integration of complementary, high-resolution, gas-phase separations allows for chemical formula level isomeric content description. In the current work, we revisited the current challenges associated with the analysis of dissolved organic matter using high-resolution trapped ion mobility separation (TIMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In particular, we evaluated the separation capabilities provided by TIMS-MS compared to MS alone, the use of ICR complementary data acquisition (DAQ) systems and transient processing strategies, ICR cell geometries (e.g., Infinity cell vs harmonized cell), and magnetic field strengths (7 T vs 9.4 T vs 21 T) for the case of a Harney River DOM sample. Results showed that the external high-performance DAQ enables direct representation of mass spectra in absorption mode FT (aFT), doubling the MS resolution compared to the default magnitude mode FT (mFT). Changes between half- vs full-apodization result in greater MS signal/noise vs superior MS resolving power (RP); in the case of DOM analysis, a 45% increase in assigned formulas is observed when employing the DAQ half (Kaiser-type)-apodization window and aFT when compared to the default instrument mFT. Results showed the advantages of reprocessing 2D-TIMS-FT-ICR MS data with higher RP and magnetic field chemical formulas generated list acquired (e.g., 21 T led to a 24% increase in isomers reported) or the implementation of alternative strategies.
Collapse
Affiliation(s)
- Pablo R B Oliveira
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Lilian V Tose
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| | - Chad Weisbrod
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building 1, 1015 Lausanne, Switzerland
| | | | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building 1, 1015 Lausanne, Switzerland
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Wootton CA, Maillard J, Theisen A, Brabeck GF, Schat CL, Rüger CP, Afonso C, Giusti P. A Gated TIMS FTICR MS Instrument to Decipher Isomeric Content of Complex Organic Mixtures. Anal Chem 2024; 96:11343-11352. [PMID: 38973712 DOI: 10.1021/acs.analchem.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Modern research faces increasingly complex materials with a constant need for new analytical strategies that can provide deeper levels of chemical insight. Ultrahigh resolution mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FTICR) MS, has provided a robust analytical foundation. However, MS alone offers limited structural information. Here, we present the first implementation and results from an FTICR MS with fully integrated dual accumulation analysis with gated trapped ion mobility spectrometry (gTIMS) capability. The drastically extended charge capacity and parallel accumulation facilitate the analysis of complex mixtures. We achieved a high dynamic range of 4 orders of magnitude within a single FTICR acquisition event. Simultaneously, the valuable linear relationship between the TIMS elution voltage and reduced mobility was retained over a wide mobility range. Benchmarking the instrument performance with Suwannee River fulvic acid (SRFA) by variable ramp gTIMS analysis allowed separation and unambiguous assignment of different charge state distributions. Application to bio-oils has proven the capability to distinguish the isomeric diversity in these ultracomplex samples, while maintaining the expected FTICR MS resolving power and mass accuracy. Valuable information about the molecular distribution, isomeric diversity, and main molecular differences could directly be extracted within the analysis time of a classical "dilute and shoot" direct infusion experiment. The development of this fully integrated and flexible gTIMS with FTICR MS analysis possesses the potential to significantly change the current landscape of high-resolution mass spectrometric analysis of complex mixtures through the added insight of isomeric complexity afforded by TIMS. The exploration of the added IMS dimension promises transformative effects across diverse fields including energy transition, environmental studies, and biological research.
Collapse
Affiliation(s)
| | - Julien Maillard
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Alina Theisen
- Bruker Daltonics GmbH & Co. Kg, 28359 Bremen, Germany
| | | | | | - Christopher P Rüger
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Carlos Afonso
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| | - Pierre Giusti
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| |
Collapse
|
3
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
4
|
Gosset-Erard C, Aubriet F, Leize-Wagner E, François YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible - A review. Talanta 2023; 257:124324. [PMID: 36780779 DOI: 10.1016/j.talanta.2023.124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France; Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | |
Collapse
|
5
|
Leyva D, Tariq MU, Jaffé R, Saeed F, Fernandez-Lima F. Description of Dissolved Organic Matter Transformational Networks at the Molecular Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2672-2681. [PMID: 36724500 PMCID: PMC11834952 DOI: 10.1021/acs.est.2c04715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dissolved Organic Matter (DOM) is an important component of the global carbon cycle. Unscrambling the structural footprint of DOM is key to understand its biogeochemical transformations at the mechanistic level. Although numerous studies have improved our knowledge of DOM chemical makeup, its three-dimensional picture remains largely unrevealed. In this work, we compare four solid phase extracted (SPE) DOM samples from three different freshwater ecosystems using high resolution mobility and ultrahigh-resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR MS/MS). Structural families were identified based on neutral losses at the level of nominal mass using continuous accumulation of selected ions-collision induced dissociation (CASI-CID)FT-ICR MS/MS. Comparison of the structural families indicated dissimilarities in the structural footprint of this sample set. The structural family representation using Cytoscape software revealed characteristic clustering patterns among the DOM samples, thus confirming clear differences at the structural level (Only 10% is common across the four samples.). The analysis at the level of neutral loss-based functionalities suggests that hydration and carboxylation are ubiquitous transformational processes across the three ecosystems. In contrast, transformation mechanisms involving methoxy moieties may be constrained in estuarine systems due to extensive upstream lignin biodegradation. The inclusion of the isomeric content (mobility measurements at the level of chemical formula) in the structural family description suggests that additional transformation pathways and/or source variations are possible and account for the dissimilarities observed. While the structural character of more and diverse types of DOM samples needs to be assessed and added to this database, the results presented here demonstrate that Graph-DOM is a powerful tool capable of providing novel information on the DOM chemical footprint, based on structural interconnections of precursor molecules generated by fragmentation pathways and collisional cross sections.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Muhammad Usman Tariq
- School of Computing and Information Science, Florida International University, Miami, FL, 33199, United States
| | - Rudolf Jaffé
- Institute of Environment and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Fahad Saeed
- School of Computing and Information Science, Florida International University, Miami, FL, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| |
Collapse
|
6
|
Leyva D, Jaffé R, Courson J, Kominoski JS, Tariq MU, Saeed F, Fernandez-Lima F. Molecular level characterization of DOM along a freshwater-to-estuarine coastal gradient in the Florida Everglades. AQUATIC SCIENCES 2022; 84:63. [PMID: 39917543 PMCID: PMC11800925 DOI: 10.1007/s00027-022-00887-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/20/2022] [Indexed: 02/09/2025]
Abstract
Understanding dissolved organic matter (DOM) export to the ocean is needed to assess the impact of climate change on the global carbon cycle. The molecular-level characterization of DOM compositional variability and complexity in aquatic ecosystems has been analytically challenging. Advanced analytical studies based on ultra-high resolution mass spectrometry (FT ICR MS) have proven highly successful to better understand the dynamics of DOM in coastal ecosystems. In this work, the molecular signature of DOM along a freshwater-to-estuarine gradient in the Harney River, Florida Everglades was analyzed for the first time using a novel approach based on tandem high resolution ion mobility and ultra-high resolution mass spectrometry (ESI-TIMS-FT ICR MS). This method enhances traditional DOM molecular characterization by including the molecular isomeric complexity. An average of six and up to 12 isomers were observed per chemical formula and characteristic isomers to each section of the freshwater-to-estuarine gradient were successfully identified. We measured a decrease in the chemical complexity and diversity (both in the number of molecular formulas and number of isomers per chemical formula) with increasing salinity; this trend is representative of the biogeochemical transformations of DOM during transport and along source variations, showing both clear degradation products and formation of new components along the salinity transect. The inclusion of the isomeric content at the molecular formula allowed to differentiate isomeric species that are present along the transect (mainly lignin-type components) and responsible for the DOM refractory nature. DOM isomeric fingerprints characteristic of the molecular variability along the Everglades freshwater-to-estuarine gradient are also described.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Rudolf Jaffé
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jessica Courson
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - John S. Kominoski
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Muhammad Usman Tariq
- School of Computing and Information Science, Florida International University, Miami, FL 33199, USA
| | - Fahad Saeed
- School of Computing and Information Science, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. MASS SPECTROMETRY REVIEWS 2022; 41:695-721. [PMID: 33492707 DOI: 10.1002/mas.21685] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| | - Estelle Rathahao-Paris
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France
| | - Sandra Alves
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| |
Collapse
|
8
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Following de novo triglyceride dynamics in ovaries of Aedes aegypti during the previtellogenic stage. Sci Rep 2021; 11:9636. [PMID: 33953286 PMCID: PMC8099868 DOI: 10.1038/s41598-021-89025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labeling of follicle lipids with deuterated water (2H2O) can provide unequivocal identification of de novo lipid species during ovarian development. In the present study, we followed de novo triglyceride (TG) dynamics during the ovarian previtellogenic (PVG) stage (2-7 days post-eclosion) of female adult Aedes aegypti. The incorporation of stable isotopes from the diet was evaluated using liquid chromatography (LC) in tandem with the high accuracy (< 0.3 ppm) and high mass resolution (over 1 M) of a 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (14.5 T FT-ICR MS) equipped with hexapolar detection. LC-UHRMS provides effective lipid class separation and chemical formula identification based on the isotopic fine structure. The monitoring of stable isotope incorporation into de novo incorporated TGs suggests that ovarian lipids are consumed or recycled during the PVG stage, with variable time dynamics. These results provide further evidence of the complexity of the molecular mechanism of follicular lipid dynamics during oogenesis in mosquitoes.
Collapse
|
10
|
Olanrewaju CA, Ramirez CE, Fernandez-Lima F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal Chem 2021; 93:6080-6087. [PMID: 33835784 DOI: 10.1021/acs.analchem.0c04525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, a novel workflow based on complementary gas-phase separations for the identification of isomeric PAHs from complex mixtures is described. This is the first report on the coupling of gas chromatography (GC), atmospheric pressure laser ionization (APLI), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for the characterization of polycyclic aromatic hydrocarbons. Over a hundred known unknowns are uniquely identified based on the molecular ion retention indices I (5%), mobility (RSD < 0.6% and R = 50-90 with Sr = 0.18 V/ms), mobility-based theoretical candidate assignment (<3%), accurate mass chemical formula assignment (<2 ppm), and electron impact fragmentation pattern and database search. The advantages of theoretical modeling of PAHs and similar compounds were evaluated using candidate structures ranked by retention indices and fragmentation pattern from GC-EI-MS data sets. Over 20 PAH isomeric and deuterated standards were utilized for the GC-APLI-TIMS-TOF MS workflow validation. Noteworthy is the analytical capability for untargeted screening of isomeric and isobaric compounds with additional characterization metrics not available in traditional GC-EI-MSn workflows.
Collapse
Affiliation(s)
- Clement A Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
11
|
May JC, Leaptrot KL, Rose BS, Moser KLW, Deng L, Maxon L, DeBord D, McLean JA. Resolving Power and Collision Cross Section Measurement Accuracy of a Prototype High-Resolution Ion Mobility Platform Incorporating Structures for Lossless Ion Manipulation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1126-1137. [PMID: 33734709 PMCID: PMC9296130 DOI: 10.1021/jasms.1c00056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A production prototype structures for lossless ion manipulation ion mobility (SLIM IM) platform interfaced to a commercial high-resolution mass spectrometer (MS) is described. The SLIM IM implements the traveling wave ion mobility technique across a ∼13m path length for high-resolution IM (HRIM) separations. The resolving power (CCS/ΔCCS) of the SLIM IM stage was benchmarked across various parameters (traveling wave speeds, amplitudes, and waveforms), and results indicated that resolving powers in excess of 200 can be accessed for a broad range of masses. For several cases, resolving powers greater than 300 were achieved, notably under wave conditions where ions transition from a nonselective "surfing" motion to a mobility-selective ion drift, that corresponded to ion speeds approximately 30-70% of the traveling wave speed. The separation capabilities were evaluated on a series of isomeric and isobaric compounds that cannot be resolved by MS alone, including reversed-sequence peptides (SDGRG and GRGDS), triglyceride double-bond positional isomers (TG 3, 6, 9 and TG 6, 9, 12), trisaccharides (melezitose, raffinose, isomaltotriose, and maltotriose), and ganglioside lipids (GD1b and GD1a). The SLIM IM platform resolved the corresponding isomeric mixtures, which were unresolvable using the standard resolution of a drift-tube instrument (∼50). In general, the SLIM IM-MS platform is capable of resolving peaks separated by as little as ∼0.6% without the need to target a specific separation window or drift time. Low CCS measurement biases <0.5% were obtained under high resolving power conditions. Importantly, all the analytes surveyed are able to access high-resolution conditions (>200), demonstrating that this instrument is well-suited for broadband HRIM separations important in global untargeted applications.
Collapse
Affiliation(s)
- Jody C. May
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | - Katrina L. Leaptrot
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | - Bailey S. Rose
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| | | | - Liulin Deng
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion
Systems, Chadds Ford, Pennsylvania 19317, United States
| | - John A. McLean
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tenessee 37235, United States
| |
Collapse
|
12
|
Leyva D, Jaffe R, Fernandez-Lima F. Structural Characterization of Dissolved Organic Matter at the Chemical Formula Level Using TIMS-FT-ICR MS/MS. Anal Chem 2020; 92:11960-11966. [PMID: 32786462 DOI: 10.1021/acs.analchem.0c02347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TIMS-FT-ICR MS is an important alternative to study the isomeric diversity and elemental composition of complex mixtures. While the chemical structure of many compounds in the dissolved organic matter (DOM) remains largely unknown, the high structural diversity has been described at the molecular level using chemical formulas. In this study, we further push the boundaries of TIMS-FT-ICR MS by performing chemical formula-based ion mobility and tandem MS analysis for the structural characterization of DOM. The workflow described is capable to mobility select (R ∼ 100) and isolate molecular ion signals (Δm/z = 0.036) in the ICR cell, using single-shot ejections after broadband ejections and MS/MS based on sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The workflow results are compared to alternative TIMS-q-FT-ICR MS/MS experiments with quadrupole isolation at nominal mass (∼1 Da). The technology is demonstrated with isomeric and isobaric mixtures (e.g., 4-methoxy-1-naphthoic acid, 2-methoxy-1-naphthoic acid, decanedioic acid) and applied to the characterization of DOM. The application of this new methodology to the analysis of a DOM is illustrated by the isolation of the molecular ion [C18H18O10-H]- in the presence of other isobars at nominal mass 393. Five IMS bands were assigned to the heterogeneous ion mobility profile of [C18H18O10-H]-, and candidate structures from the PubChem database were screened based on their ion mobility and the MS/MS matching score. This approach overcomes traditional challenges associated with the similarity of fragmentation patterns of DOM samples (e.g., common neutral losses of H2O, CO2, and CH2-H2O) by narrowing down the isomeric candidate structures using the mobility domain.
Collapse
|
13
|
Palacio Lozano DC, Thomas MJ, Jones HE, Barrow MP. Petroleomics: Tools, Challenges, and Developments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:405-430. [PMID: 32197051 DOI: 10.1146/annurev-anchem-091619-091824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detailed molecular characterization of petroleum-related samples by mass spectrometry, often referred to as petroleomics, continues to present significant analytical challenges. As a result, petroleomics continues to be a driving force for the development of new ultrahigh resolution instrumentation, experimental methods, and data analysis procedures. Recent advances in ionization, resolving power, mass accuracy, and the use of separation methods, have allowed for record levels of compositional detail to be obtained for petroleum-related samples. To address the growing size and complexity of the data generated, vital software tools for data processing, analysis, and visualization continue to be developed. The insights gained impact upon the fields of energy and environmental science and the petrochemical industry, among others. In addition to advancing the understanding of one of nature's most complex mixtures, advances in petroleomics methodologies are being adapted for the study of other sample types, resulting in direct benefits to other fields.
Collapse
Affiliation(s)
| | - Mary J Thomas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
- Molecular Analytical Sciences Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hugh E Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
- Molecular Analytical Sciences Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|
14
|
Jeanne Dit Fouque K, Fernandez-Lima F. Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Gao Y, Wang W, He C, Fang Z, Zhang Y, Shi Q. Fractionation and molecular characterization of natural organic matter (NOM) by solid-phase extraction followed by FT-ICR MS and ion mobility MS. Anal Bioanal Chem 2019; 411:6343-6352. [DOI: 10.1007/s00216-019-01943-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
|
16
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
17
|
Jeanne Dit Fouque K, Ramirez CE, Lewis RL, Koelmel JP, Garrett TJ, Yost RA, Fernandez-Lima F. Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species. Anal Chem 2019; 91:5021-5027. [DOI: 10.1021/acs.analchem.8b04979] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Cesar E. Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Russell L. Lewis
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, Unites States
| | - Jeremy P. Koelmel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, Unites States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
18
|
Leyva D, Tose LV, Porter J, Wolff J, Jaffé R, Fernandez-Lima F. Understanding the structural complexity of dissolved organic matter: isomeric diversity. Faraday Discuss 2019; 218:431-440. [DOI: 10.1039/c8fd00221e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present work, the advantages of ESI-TIMS-FT-ICR MS to address the isomeric content of dissolved organic matter are studied.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Southeast Environmental Research Center
| | - Lilian V. Tose
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Jacob Porter
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Rudolf Jaffé
- Southeast Environmental Research Center
- Florida International University
- Miami
- USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
19
|
Chouinard CD, Nagy G, Smith RD, Baker ES. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Baird MA, Anderson GA, Shliaha PV, Jensen ON, Shvartsburg AA. Differential Ion Mobility Separations/Mass Spectrometry with High Resolution in Both Dimensions. Anal Chem 2018; 91:1479-1485. [DOI: 10.1021/acs.analchem.8b04518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Gordon A. Anderson
- GAACE, 101904 Wiser Parkway Ste 105, Kennewick, Washington 99338, United States
| | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
21
|
Larriba-Andaluz C, Chen X, Nahin M, Wu T, Fukushima N. Analysis of Ion Motion and Diffusion Confinement in Inverted Drift Tubes and Trapped Ion Mobility Spectrometry Devices. Anal Chem 2018; 91:919-927. [DOI: 10.1021/acs.analchem.8b03930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University−Purdue University Indianapolis (IUPUI), 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Xi Chen
- Department of Mechanical Engineering, Indiana University−Purdue University Indianapolis (IUPUI), 723 W. Michigan St., Indianapolis, Indiana 46202, United States
- Purdue University, West Lafayette, Indiana 47907, United States
| | - Minal Nahin
- Department of Mechanical Engineering, Indiana University−Purdue University Indianapolis (IUPUI), 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Tianyang Wu
- Department of Mechanical Engineering, Indiana University−Purdue University Indianapolis (IUPUI), 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| | | |
Collapse
|
22
|
Tose LV, Benigni P, Leyva D, Sundberg A, Ramírez CE, Ridgeway ME, Park MA, Romão W, Jaffé R, Fernandez-Lima F. Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1287-1295. [PMID: 29756663 DOI: 10.1002/rcm.8165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 05/05/2023]
Abstract
RATIONALE There is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. METHODS A TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. RESULTS TIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760 m/z signals, 1430 and 3050 formulas using the general Cx Hy N0-3 O0-19 S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. CONCLUSIONS TIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.
Collapse
Affiliation(s)
- Lilian V Tose
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
| | - Paolo Benigni
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Dennys Leyva
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Abigail Sundberg
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - César E Ramírez
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | | | | | - Wanderson Romão
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo, 29106-010, Vila Velha, ES, Brazil
| | - Rudolf Jaffé
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
23
|
Garabedian A, Benigni P, Ramirez CE, Baker ES, Liu T, Smith RD, Fernandez-Lima F. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:817-826. [PMID: 28889248 PMCID: PMC5844780 DOI: 10.1007/s13361-017-1787-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/29/2017] [Accepted: 08/10/2017] [Indexed: 05/12/2023]
Abstract
In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Erin S Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
24
|
Garabedian A, Leng F, Ridgeway ME, Park MA, Fernandez-Lima F. Tailoring peptide conformational space with organic gas modifiers in TIMS-MS. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12127-018-0231-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Adams KJ, Smith NF, Ramirez CE, Fernandez-Lima F. Discovery and targeted monitoring of polychlorinated biphenyl metabolites in blood plasma using LC-TIMS-TOF MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:133-140. [PMID: 29915519 PMCID: PMC6003708 DOI: 10.1016/j.ijms.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, the potential for rapid, targeted analysis of hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) in diluted human blood plasma using liquid chromatography coupled with trapped ion mobility spectrometry and TOF high resolution mass spectrometry (LC-TIMS-TOF MS) was evaluated. Experimental OH-PCB collisional cross section (CCSN2) and gas-phase candidate structures (<3% error) are reported for the first time and used, in addition to the LC retention time and accurate m/z, as OH-PCB identification features in order to increase the detection selectivity. The proposed LC-TIMS-TOF MS workflow combines a "dilute-and-shoot" sample preparation strategy, a robust liquid chromatography step, a high-resolving power mobility separation (R ~ 150-250) and high-resolution mass spectrometry (R ~ 30-40k) for the separation, identification and quantification of common OH-PCB isomers with limits of detection comparable to traditional workflows (e.g., LOD and LOQ of ~10 pg/mL and ~50 pg/mL, respectively). The higher selectivity and low detection limits provides multiple advantages compared to current methodologies that typically require long, labor-intensive preparation and/or derivatization steps prior to gas or liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Kendra J. Adams
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Natalie F. Smith
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Cesar E. Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
26
|
Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Anal Chem 2018; 90:5139-5146. [DOI: 10.1021/acs.analchem.7b05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Javier Moreno
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Julian D. Hegemann
- Department of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Séverine Zirah
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Sylvie Rebuffat
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
27
|
Garabedian A, Baird M, Porter J, Jeanne Dit Fouque K, Shliaha PV, Jensen ON, Williams TD, Fernandez-Lima F, Shvartsburg A. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 2018; 90:2918-2925. [PMID: 29359922 PMCID: PMC6366606 DOI: 10.1021/acs.analchem.7b05224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Comprehensive characterization of proteomes comprising the same proteins with distinct post-translational modifications (PTMs) is a staggering challenge. Many such proteoforms are isomers (localization variants) that require separation followed by top-down or middle-down mass spectrometric analyses, but condensed-phase separations are ineffective in those size ranges. The variants for "middle-down" peptides were resolved by differential ion mobility spectrometry (FAIMS), relying on the mobility increment at high electric fields, but not previously by linear IMS on the basis of absolute mobility. We now use complete histone tails with diverse PTMs on alternative sites to demonstrate that high-resolution linear IMS, here trapped IMS (TIMS), broadly resolves the variants of ∼50 residues in full or into binary mixtures quantifiable by tandem MS, largely thanks to orthogonal separations across charge states. Separations using traveling-wave (TWIMS) and/or involving various time scales and electrospray ionization source conditions are similar (with lower resolution for TWIMS), showing the transferability of results across linear IMS instruments. The linear IMS and FAIMS dimensions are substantially orthogonal, suggesting FAIMS/IMS/MS as a powerful platform for proteoform analyses.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | - Matthew Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | | | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045
| | | | - Alexandre Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| |
Collapse
|
28
|
Benigni P, Porter J, Ridgeway ME, Park MA, Fernandez-Lima F. Increasing Analytical Separation and Duty Cycle with Nonlinear Analytical Mobility Scan Functions in TIMS-FT-ICR MS. Anal Chem 2018; 90:2446-2450. [PMID: 29376337 DOI: 10.1021/acs.analchem.7b04053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, nonlinear, stepping analytical mobility scan functions are implemented to increase the analytical separation and duty cycle during tandem Trapped Ion Mobility Spectrometry and FT-ICR MS operation. The differences between linear and stepping scan functions are described based on length of analysis, mobility scan rate, signal-to-noise, and mobility resolving power. Results showed that for the linear mobility scan function only a small fraction of the scan is sampled, resulting in the lowest duty cycle 0.5% and longest experiment times. Implementing nonlinear targeted scan functions for analysis of known mobilities resulted in increased duty cycle (0.85%) and resolving powers (R up to 300) with a 6-fold reduction in time from 30 to 5 min. For broad range characterization, a nonlinear mobility stepping scan function provided the best sensitivity, resolving power, duty cycle (4%), and points per peak. The applicability of nonlinear mobility scan functions for the analysis of complex mixtures is illustrated for the case of a direct infusion of a MCF-7 breast cancer cell digest, where isobaric peptides (e.g., DFTPAELR and TTILQSTGK) were separated in the mobility domain (RIMS: 110) and identified based on their CCS, accurate mass (RMS: 550k), and tandem MS using IRMPD in the ICR cell.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States.,Biomolecular Sciences Institute , Miami, Florida 33199, United States
| |
Collapse
|
29
|
Jeanne Dit Fouque K, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Metal ions induced secondary structure rearrangements: mechanically interlocked lassovs.unthreaded branched-cyclic topoisomers. Analyst 2018; 143:2323-2333. [DOI: 10.1039/c8an00138c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change.
Collapse
Affiliation(s)
| | - Javier Moreno
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | | |
Collapse
|
30
|
Baglai A, Gargano AF, Jordens J, Mengerink Y, Honing M, van der Wal S, Schoenmakers PJ. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography–mass spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry. J Chromatogr A 2017; 1530:90-103. [DOI: 10.1016/j.chroma.2017.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/04/2023]
|
31
|
Fouque KJD, Garabedian A, Porter J, Baird M, Pang X, Williams TD, Li L, Shvartsburg A, Fernandez-Lima F. Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 2017; 89:11787-11794. [PMID: 28982001 PMCID: PMC5677546 DOI: 10.1021/acs.analchem.7b03401] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite often minute concentrations in vivo, d-amino acid containing peptides (DAACPs) are crucial to many life processes. Standard proteomics protocols fail to detect them as d/l substitutions do not affect the peptide parent and fragment masses. The differences in fragment yields are often limited, obstructing the investigations of important but low abundance epimers in isomeric mixtures. Separation of d/l-peptides using ion mobility spectrometry (IMS) was impeded by small collision cross section differences (commonly ∼1%). Here, broad baseline separation of DAACPs with up to ∼30 residues employing trapped IMS with resolving power up to ∼340, followed by time-of-flight mass spectrometry is demonstrated. The d/l-pairs coeluting in one charge state were resolved in another, and epimers merged as protonated species were resolved upon metalation, effectively turning the charge state and cationization mode into extra separation dimensions. Linear quantification down to 0.25% proved the utility of high resolution IMS-MS for real samples with large interisomeric dynamic range. Very close relative mobilities found for DAACP pairs using traveling-wave IMS (TWIMS) with different ion sources and faster IMS separations showed the transferability of results across IMS platforms. Fragmentation of epimers can enhance their identification and further improve detection and quantification limits, and we demonstrate the advantages of online mobility separated collision-induced dissociation (CID) followed by high resolution mass spectrometry (TIMS-CID-MS) for epimer analysis.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Matthew Baird
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Xueqin Pang
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
32
|
Molano-Arevalo JC, Dit Fouque KJ, Pham K, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. Characterization of Intramolecular Interactions of Cytochrome c Using Hydrogen-Deuterium Exchange-Trapped Ion Mobility Spectrometry-Mass Spectrometry and Molecular Dynamics. Anal Chem 2017; 89:8757-8765. [PMID: 28742962 PMCID: PMC5653375 DOI: 10.1021/acs.analchem.7b00844] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Globular proteins, such as cytochrome c (cyt c), display an organized native conformation, maintained by a hydrogen bond interaction network. In the present work, the structural interrogation of kinetically trapped intermediates of cyt c was performed by correlating the ion-neutral collision cross section (CCS) and charge state with the starting solution conditions and time after desolvation using collision induced activation (CIA), time-resolved hydrogen/deuterium back exchange (HDX) and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high ion mobility resolving power of the TIMS analyzer allowed the identification of new ion mobility bands, yielding a total of 63 mobility bands over the +6 to +21 charge states and 20 mobility bands over the -5 to -10 charge states. Mobility selected HDX rates showed that for the same charge state, conformers with larger CCS present faster HDX rates in both positive and negative ion mode, suggesting that the charge sites and neighboring exchange sites on the accessible surface area define the exchange rate regardless of the charge state. Complementary molecular dynamic simulations permitted the generation of candidate structures and a mechanistic model of the folding transitions from native (N) to molten globule (MG) to kinetic intermediates (U) pathways. Our results suggest that cyt c major structural unfolding is associated with the distancing of the N- and C-terminal helices and subsequent solvent exposure of the hydrophobic, heme-containing cavity.
Collapse
Affiliation(s)
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts, 01821, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|
33
|
Nahin M, Oberreit D, Fukushima N, Larriba-Andaluz C. Modeling of an Inverted Drift Tube for Improved Mobility Analysis of Aerosol Particles. Sci Rep 2017; 7:6456. [PMID: 28744005 PMCID: PMC5527120 DOI: 10.1038/s41598-017-06448-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/13/2017] [Indexed: 01/29/2023] Open
Abstract
A new mobility particle analyzer, which has been termed Inverted Drift Tube, has been modeled analytically as well as numerically and proven to be a very capable instrument. The basis for the new design have been the shortcomings of the previous ion mobility spectrometers, in particular (a) diffusional broadening which leads to degradation of instrument resolution and (b) inadequate low and fixed resolution (not mobility dependent) for large sizes. To overcome the diffusional broadening and have a mobility based resolution, the IDT uses two varying controllable opposite forces, a flow of gas with velocity v gas , and a linearly increasing electric field that opposes the movement. A new parameter, the separation ratio Λ = v drift /v gas , is employed to determine the best possible separation for a given set of nanoparticles. Due to the system's need to operate at room pressure, two methods of capturing the ions at the end of the drift tube have been developed, Intermittent Push Flow for a large range of mobilities, and Nearly-Stopping Potential Separation, with very high separation but limited only to a narrow mobility range. A chromatography existing concept of resolving power is used to differentiate between peak resolution in the IDT and acceptable separation between similar mobility sizes.
Collapse
Affiliation(s)
- Minal Nahin
- Integrated Nanosystems Development Institute(INDI), IUPUI, Department of Mechanical Engineering, Indianapolis, IN, 46106, USA
| | | | | | - Carlos Larriba-Andaluz
- Integrated Nanosystems Development Institute(INDI), IUPUI, Department of Mechanical Engineering, Indianapolis, IN, 46106, USA.
| |
Collapse
|
34
|
Benigni P, Sandoval K, Thompson CJ, Ridgeway ME, Park MA, Gardinali P, Fernandez-Lima F. Analysis of Photoirradiated Water Accommodated Fractions of Crude Oils Using Tandem TIMS and FT-ICR MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5978-5988. [PMID: 28457132 PMCID: PMC5661887 DOI: 10.1021/acs.est.7b00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kathia Sandoval
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|
35
|
Benigni P, Marin R, Sandoval K, Gardinali P, Fernandez-Lima F. Chemical Analysis of Water-accommodated Fractions of Crude Oil Spills Using TIMS-FT-ICR MS. J Vis Exp 2017. [PMID: 28287592 DOI: 10.3791/55352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.
Collapse
Affiliation(s)
- Paolo Benigni
- Chemistry and Biochemistry, Florida International University
| | - Rebecca Marin
- Chemistry and Biochemistry, Florida International University
| | - Kathia Sandoval
- Chemistry and Biochemistry, Florida International University
| | - Piero Gardinali
- Chemistry and Biochemistry, Florida International University
| | | |
Collapse
|
36
|
Greisch JF, Chmela J, Harding ME, Wunderlich D, Schäfer B, Ruben M, Klopper W, Schooss D, Kappes MM. Correlation of the structural information obtained for europium-chelate ensembles from gas-phase photoluminescence and ion-mobility spectroscopy with density-functional computations and ligand-field theory. Phys Chem Chem Phys 2017; 19:6105-6112. [PMID: 28191564 DOI: 10.1039/c6cp04656h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined investigation of europium(iii)9-oxo-phenalen-1-one (PLN) coordination complexes, [Eu(PLN)4AE]+ with AE = Mg, Ca, and Sr, using gas-phase photoluminescence, trapped ion-mobility spectrometry and density-functional computations. In order to sort out the structural impact of the alkali earth dications on the photoluminescence spectra, the experimental data are compared to the predicted ligand-field splittings as well as to the collision cross-sections for different isomers of [Eu(PLN)4AE]+. The best fitting interpretation is that one isomer family predominantly contributes to the recorded luminescence. The present work demonstrates the complexity of the coordination patterns of multicenter lanthanoid chelates involved in dynamical equilibria and the pertinence of using isolation techniques to elucidate their photophysical properties.
Collapse
Affiliation(s)
- Jean-François Greisch
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Jiří Chmela
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Michael E Harding
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dirk Wunderlich
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany.
| | - Bernhard Schäfer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, Rue du Loess 23, BP 43, 67034 Strasbourg Cedex 2, France
| | - Wim Klopper
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Detlef Schooss
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
37
|
Rüger CP, Schwemer T, Sklorz M, O'Connor PB, Barrow MP, Zimmermann R. Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:28-39. [PMID: 28657450 DOI: 10.1177/1469066717694286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The analysis of petrochemical materials and particulate matter originating from combustion sources remains a challenging task for instrumental analytical techniques. A detailed chemical characterisation is essential for addressing health and environmental effects. Sophisticated instrumentation, such as mass spectrometry coupled with chromatographic separation, is capable of a comprehensive characterisation, but needs advanced data processing methods. In this study, we present an improved data processing routine for the mass chromatogram obtained from gas chromatography hyphenated to atmospheric pressure chemical ionisation and ultra high resolution mass spectrometry. The focus of the investigation was the primary combustion aerosol samples, i.e. particulate matter extracts, as well as the corresponding fossil fuels fed to the engine. We demonstrate that utilisation of the entire transient and chromatographic information results in advantages including minimisation of ionisation artefacts and a reliable peak assignment. A comprehensive comparison of the aerosol and the feed fuel was performed by applying intensity weighted average values, compound class distribution and principle component analysis. Certain differences between the aerosol generated with the two feed fuels, diesel fuel and heavy fuel oil, as well as between the aerosol and the feed were revealed. For the aerosol from heavy fuel oil, oxidised species from the CHN and CHS class precursors of the feed were predominant, whereas the CHOx class is predominant in the combustion aerosol from light fuel oil. Furthermore, the complexity of the aerosol increases significantly compared to the feed and incorporating a higher chemical space. Coupling of atmospheric pressure chemical ionisation to gas chromatography was found to be a useful additional approach for characterisation of a combustion aerosol, especially with an automated utilisation of the information from the ultra-high resolution mass spectrometer and the chromatographic separation.
Collapse
Affiliation(s)
- Christopher P Rüger
- 1 Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
- 2 Department of Chemistry, University of Warwick, Coventry, UK
| | - Theo Schwemer
- 1 Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
- 3 HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health
| | - Martin Sklorz
- 1 Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
- 4 Joint Mass Spectrometry Centre/Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Mark P Barrow
- 2 Department of Chemistry, University of Warwick, Coventry, UK
| | - Ralf Zimmermann
- 1 Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
- 3 HICE - Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health - Aerosols and Health
- 4 Joint Mass Spectrometry Centre/Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
38
|
Garabedian A, Butcher D, Lippens JL, Miksovska J, Chapagain PP, Fabris D, Ridgeway ME, Park MA, Fernandez-Lima F. Structures of the kinetically trapped i-motif DNA intermediates. Phys Chem Chem Phys 2016; 18:26691-26702. [PMID: 27711445 PMCID: PMC5652045 DOI: 10.1039/c6cp04418b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | - David Butcher
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | | | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| | - Prem P Chapagain
- Biomolecular Science Institute, Florida International University, Miami, USA and Department of Physics, Florida International University, Miami, USA
| | | | | | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| |
Collapse
|
39
|
Fernandez-Lima F. Trapped Ion Mobility Spectrometry: past, present and future trends. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0206-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|