1
|
Yuan C, Yin Y, Rong Y, Long Y, Zheng H. Intrinsic oxidase-mimicking activity of nitrite upon visible light illumination and its colorimetric detection in saliva. Talanta 2024; 279:126649. [PMID: 39098240 DOI: 10.1016/j.talanta.2024.126649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Small molecules with enzyme-like properties have recently attracted considerable attention. Herein, we discovered that nitrite possesses intrinsic oxidase-mimicking activity upon visible light, catalyzing the oxidation of the typical chromogenic substrate in the absence of H2O2. Notably, nitrite exhibited a markedly high value of Kcat, approximately 4, 7, and 4000-fold greater than that of Acr+-Mes, Eosin Y, and Diacetyl, respectively. Comprehensive investigation elucidated that O2•⁻ and •OH are the primary reactive oxygen species (ROS) responsible for the oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB). Leveraging the linear correlation between the absorbance of oxidized TMB (oxTMB) at 652 nm and nitrite concentration, a simple colorimetric approach for nitrite detection was successfully established in the range of 1-75 μM with a detection limit of 0.14 μM. Moreover, the proposed strategy could be applied to determine the nitrite concentration in saliva, exhibiting a great prospect for clinical diagnosis. This work contributes novel insights into the exploration of small-molecule enzyme mimics.
Collapse
Affiliation(s)
- Caiyun Yuan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Yin
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Rong
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Zhang Y, Wu L, Yang J, Li G, Deng K, Huang H. A platinum glutamate acid complex as a peroxidase mimic: high activity, controllable chemical modification, and application in biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1093-1101. [PMID: 38284245 DOI: 10.1039/d3ay02121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Recent strides in nanotechnology have given rise to nanozymes, nanomaterials designed to emulate enzymatic functions. Despite their promise, challenges such as batch-to-batch variability and limited atomic utilization persist. This study introduces Pt(Glu)2, a platinum glutamic acid complex, as a versatile small-molecule peroxidase mimic. Synthesized through a straightforward method, Pt(Glu)2 exhibits robust catalytic activity and stability. Steady-state kinetics reveal a lower Km value compared to that of natural enzymes, signifying strong substrate affinity. Pt(Glu)2 was explored for controllable chemical modification and integration into cascade reactions with natural enzymes, surpassing other nanomaterials. Its facile synthesis and seamless integration enhance cascade reactions beyond the capabilities of nanozymes. In biosensing applications, Pt(Glu)2 enabled simultaneous detection of cholesterol and alkaline phosphatase in human serum with high selectivity and sensitivity. These findings illustrate the potential of small molecule mimetics in catalysis and biosensing, paving the way for their broader applications.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lexian Wu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jing Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Guoming Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
3
|
Chai TQ, Chen GY, Chen LX, Wang JL, Zhang CY, Yang FQ. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Anal Chim Acta 2023; 1279:341771. [PMID: 37827670 DOI: 10.1016/j.aca.2023.341771] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 μM min-1, 6.70 μM min-1, and 2.24 μM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 μM (R2 = 0.9951), 5.0-100.0 μM (R2 = 0.9970), and 5.0-200.0 μM (R2 = 0.9924) with the limits of quantitation of 20.0 μM, 5.0 μM, and 5.0 μM, respectively. SIGNIFICANCE In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.
Collapse
Affiliation(s)
- Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Wang J, Gao Z, Dong M, Li J, Jiang H, Xu J, Gu J, Wang D. CdSe@CdS quantum dot-sensitized Au/α-Fe 2O 3 structure for photoelectrochemical detection of circulating tumor cells. Mikrochim Acta 2023; 190:221. [PMID: 37183218 DOI: 10.1007/s00604-023-05797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Circulating tumor cells (CTCs) are the important biomarker for cancer diagnosis and individualized treatment. However, due to the extreme rarity of CTCs (only 1-10 CTCs are found in every milliliter of peripheral blood) high sensitivity and selectivity are urgently needed for CTC detection. Here, a sandwich PEC cytosensor for the ultrasensitive detection of CTCs was developed using the photoactive material Au NP/-Fe2O3 and core-shell CdSe@CdS QD sensitizer. In the proposed protocol, the CdSe@CdS QD/Au NP/α-Fe2O3-sensitized structure with cascade band-edge levels could evidently promote the photoelectric conversion efficiency due to suitable light absorption and efficient electron-hole pair recombination inhibition. Additionally, a dendritic aptamer-DNA concatemer was constructed for highly efficient capture of MCF-7 cells carrying CdSe@CdS QDs, a sensitive material. The linear range of this proposed signal-on PEC sensing method was 300 cell mL-1 to 6 × 105 cell mL-1 with a detection limit of 3 cell mL-1, and it demonstrated an ultrasensitive response to CTCs. Furthermore, this PEC sensor enabled accurate detection of CTCs in serum samples. Hence, a promising strategy for CTC detection in clinical diagnosis was developed based on CdSe@CdS QD-sensitized Au NP/α-Fe2O3-based PEC cytosensor with dendritic aptamer-DNA concatemer.
Collapse
Affiliation(s)
- Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingying Xu
- Mental Health Service Center, College of Marxism, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| | - Desong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| |
Collapse
|
5
|
Huang N, Yang D, Chen H, Xiao Y, Wen J, Long Y, Zheng H. Colorimetric detection of biothiols and Hg 2+ based on the peroxidase-like activity of GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122263. [PMID: 36571862 DOI: 10.1016/j.saa.2022.122263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Guanosine-5'-triphosphate (GTP) not only plays a key role in a majority of cellular processes but also be proposed as a peroxidase-like mimic. Compared with nanozymes, GTP shows good tolerance under harsh conditions, which can be used to construct an easy colorimetric analysis for the detection of biomolecules. Here, on the basis of the peroxidase-like activity of GTP which can catalyze the oxidation of 3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB), colorimetric sensing was established for biothiols and Hg2+. Biothiols reduced the oxTMB back to colorless TMB, and Hg2+ restored the formation of oxTMB, leading to the recovery of color. This method not only provides a platform for the detection of metal ions and biothiols, but also shows that GTP has great potential for analytical detection.
Collapse
Affiliation(s)
- Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Dan Yang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huanhuan Chen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
7
|
MIL-88B(Fe)-reduced graphene oxide as an artificial enzyme for gold nanorod etching and its application to develop the prostate-specific antigen immunosensor. Mikrochim Acta 2022; 189:458. [DOI: 10.1007/s00604-022-05540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/15/2022] [Indexed: 11/24/2022]
|
8
|
Wang J, Zhang Q, Yao S, Lu L, Li J, Tang Y, Wu Y. Diacetyl as a new-type of artificial enzyme to mimic oxidase mediated by light and its application in the detection of glutathione at neutral pH. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhang CY, Peng LJ, Chen GY, Zhang H, Yang FQ. Investigation on the Peroxidase-like Activity of Vitamin B6 and Its Applications in Colorimetric Detection of Hydrogen Peroxide and Total Antioxidant Capacity Evaluation. Molecules 2022; 27:molecules27134262. [PMID: 35807507 PMCID: PMC9268325 DOI: 10.3390/molecules27134262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing the peroxidase chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) at the existence of H2O2. The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6 concentration, and incubation time, were investigated. The steady-state kinetic study results indicate that VB6 possesses higher affinity to H2O2 than natural horseradish peroxidase and some other peroxidase mimics. Besides, the radical quenching experiment results confirm that hydroxyl radical (•OH) accounts for the catalytic process. Based on the excellent peroxidase-like catalytic activity of VB6, the colorimetric methods for H2O2 and gallic acid (GA) detection were developed by measuring the absorbance variance of the catalytic system. Under the optimal conditions, the linear ranges of the methods for H2O2 and GA determination with good selectivity are 50.0–600.0 μM and 10.0–50.0 μM, respectively. In addition, the developed method was applied in the detection of H2O2 in milk samples and evaluation of total antioxidant capacity of different tea infusions. This study may broaden the application prospect of VB6 in environmental and biomedical analysis fields, contribute to profound insight of the physiological functions of VB6, as well as lay foundation for further excavation of small-molecule peroxidase mimics.
Collapse
|
10
|
A Facile Colorimetric Method for Ultra-rapid and Sensitive Detection of Copper Ions in Water. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Peng L, Yang X, Wang S, Chan YK, Chen Y, Yang Z, Mao Y, Li L, Yang W, Deng Y. Bimetal metal-organic framework domino micro-reactor for synergistic antibacterial starvation/chemodynamic therapy and robust wound healing. NANOSCALE 2022; 14:2052-2064. [PMID: 35076646 DOI: 10.1039/d1nr07611f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infections due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan of ROS generated by CDT is too short to achieve the efficacy of complete sterilization; thus, residual bacteria inevitably reproduce and cause super-infections. To address this concern, we devise an innovative bimetal, metal-organic framework (BMOF) domino micro-reactor (BMOF-DMR), consisting of Cu/Zn-rich BMOF and glucose oxidase (GOx), via electrostatic self-assembly. GOx catalyzes conversion of glucose into H2O2, and the Cu2+ ions then convert H2O2 into ˙OH to kill bacteria, thereby showing a domino effect. Accordingly, the BMOF-DMR not only blocks the nutrient/energy supply for bacteria, but also triggers a Fenton(-like) reaction and glutathione (GSH) depletion in a self-generating H2O2 microenvironment, all leading to high-efficiency bactericidal performance through synergistic starvation/chemodynamic therapy. Remarkably, in vitro and in vivo assessments demonstrate that the BMOF-DMR has superior cytocompatibility and exhibits robust ability to accelerate infectious full-thickness cutaneous regeneration through eradicating bacteria, promoting epithelialization of the wound beds and facilitating angiogenesis from the antibacterial activity and delivery of bimetal elements. The advantage of this antibacterial platform is that it suppresses bacterial metabolism by blocking the energy supply, which might prevent secondary infections from residual bacteria. As envisaged, the use of such a micro-reactor with starvation/chemodynamic therapy is a promising approach for combating bacterial skin wounds.
Collapse
Affiliation(s)
- Liming Peng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, Frontiers Science Centre for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Yong Chen
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaopu Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yurong Mao
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Limei Li
- Science and Technology Achievement Incubation Centre, Kunming Medical University, Kunming 650500, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Zhang CY, Chai TQ, Chen GY, Zhang WY, Zhang H, Yang FQ. Investigation on the peroxidase-mimic activity of adenine phosphate and its applications. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
15
|
Guo H, Wen Z, Yang S, Qi H. Association of p73 G4C14-A4T14 and p53 codon 72 polymorphism with cervical cancer in Chinese population. Indian J Cancer 2021; 59:33-38. [PMID: 34380847 DOI: 10.4103/ijc.ijc_538_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Cervical cancer is known to be the fourth most common cancer among women globally. In various factors, genetic factors have been considered as one major risk factor for cervical cancer. The research of genetic susceptibility to cervical cancer can be greatly helpful in studying the complex mechanism. This study was conducted to identify whether polymorphic variants of p73 G4C14-A4T14 and tumor protein p53 (p53) codon 72, either independently or jointly, might be associated with the risk of cervical cancer. Methods The genotypes of p73 G4C14-A4T14 and p53 codon 72 polymorphisms of peripheral blood DNA from 190 cervical cancer patients and 210 controls were investigated using polymerase chain reaction with confronting two-pair primers and polymerase chain reaction-restriction fragment length polymorphism, respectively. Results The frequency of p73 G4C14-A4T14 AT/AT (P = 0.013) or p53 codon 72 GG (P = 0.026) genotype was associated with an increased risk of cervical cancer by comparing with the p73 G4C14-A4T14 GC/GC or p53 codon 72 CC genotype, respectively. In addition, the interaction between the p73 G4C14-A4T14 and p53 codon 72 polymorphisms increased the risk of cervical cancer in a multiply manner, with the odds ratio being 3.692 (95% confidence interval =2.106-6.473) for subjects carrying both p73 G4C14-A4T14 GC/AT+AT/AT and p53 codon 72 GG genotypes. Conclusion These results suggest that there is a statistical difference between p73 and p53 gene polymorphism and the risk of cervical cancer in Chinese women, and there is a potential gene-gene interaction in the incidence of cervical cancer.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, China
| | - Zhang Wen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518133, China
| | - Shaodi Yang
- School of Automation, central South University, changsha, Hunan 410083, China
| | - Hongyan Qi
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, China
| |
Collapse
|
16
|
Li M, Peng X, Han Y, Fan L, Liu Z, Guo Y. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zhang L, Zhang Q, Liu Q, Wu X, Dong Y, Wang GL. Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets. Talanta 2021; 228:122268. [PMID: 33773716 DOI: 10.1016/j.talanta.2021.122268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Smart nanozymes that can be facile and rapidly produced, while with efficiently bio-regulated activity, are attractive for biosensing applications. Herein, a smart nanozyme, silver hexacyanoferrate (Ag4[Fe(CN)6]), was constructed in situ via the rapid, direct reaction between silver(I) and K4[Fe(CN)6]. And the activity of the nanozyme can be rationally modulated by different enzymatic reactions including the glucose oxidase (GOx, taken as a model oxidoreductase), alkaline phosphatase (ALP), and acetylcholinesterase (AChE). On the basis of which, a multiple function platform for the highly sensitive detection of glucose, ALP and AChE were developed through colorimetry. Corresponding detection limits for the above three targets were found to be as low as 0.32 μM, 3.3 U/L and 0.083 U/L (S/N = 3), respectively. The present study provides a novel nanozyme that can be produced in situ, which rules out the harsh, cumbersome, and time-consuming synthesis/purification procedures. In addition, it establishes a multiple function platform for the amplified detection of versatile targets by the aid of the developed nanozyme, whose detection has the advantages of low cost, ease-of-use, high sensitivity, and good selectivity.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qi Zhang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Tunable Microstructure and Morphology of the Self-Assembly Hydroxyapatite Coatings on ZK60 Magnesium Alloy Substrates Using Hydrothermal Methods. COATINGS 2020. [DOI: 10.3390/coatings11010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite coatings have been widely used to improve the corrosion resistance of biodegradable magnesium alloys. In this paper, in order to manufacture the ideal hydroxyapatite (HA) coating on the ZK60 magnesium substrate by hydrothermal method, formation mechanism of enhanced hydroxyapatite (HA) coatings, influence of pH values of the precursor solution on the HA morphology, corrosion resistance and cytotoxicity of HA coatings have been investigated. Results show that the growth pattern of the HA is influenced by the local pH value. HA has a preferential c-axis and higher crystallinity in the alkaline environment developing a nanorod-like structure, while in acid and neutral environments it has a preferential growth along the a(b)-plane with a lower crystallinity, developing a nanosheet-like structure. The different morphology and microstructure lead to different degradation behavior and performance of HA coatings. Immersion and electrochemical tests show that the neutral environment promote formation of HA coatings with high corrosion resistance. The cell culture experiments confirm that the enhanced corrosion resistance assure the biocompatibility of the substrate-coating system. In general, the HA coating prepared in neutral environment shows great potential in surface modification of magnesium alloys.
Collapse
|
19
|
Clinical Applications of Visual Plasmonic Colorimetric Sensing. SENSORS 2020; 20:s20216214. [PMID: 33143365 PMCID: PMC7663786 DOI: 10.3390/s20216214] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Colorimetric analysis has become of great importance in recent years to improve the operationalization of plasmonic-based biosensors. The unique properties of nanomaterials have enabled the development of a variety of plasmonics applications on the basis of the colorimetric sensing provided by metal nanoparticles. In particular, the extinction of localized surface plasmon resonance (LSPR) in the visible range has permitted the exploitation of LSPR colorimetric-based biosensors as powerful tools for clinical diagnostics and drug monitoring. This review summarizes recent progress in the biochemical monitoring of clinical biomarkers by ultrasensitive plasmonic colorimetric strategies according to the distance- or the morphology/size-dependent sensing modes. The potential of colorimetric nanosensors as point of care devices from the perspective of naked-eye detection is comprehensively discussed for a broad range of analytes including pharmaceuticals, proteins, carbohydrates, nucleic acids, bacteria, and viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The practical suitability of plasmonic-based colorimetric assays for the rapid visual readout in biological samples, considering current challenges and future perspectives, is also reviewed.
Collapse
|
20
|
Fang W, Zhang B, Han FY, Qin ZN, Feng YQ, Hu JM, Shen AG. On-Site and Quantitative Detection of Trace Methamphetamine in Urine/Serum Samples with a Surface-Enhanced Raman Scattering-Active Microcavity and Rapid Pretreatment Device. Anal Chem 2020; 92:13539-13549. [DOI: 10.1021/acs.analchem.0c03041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Fang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Laboratory of Microwave and Vacuum Technology, Ji Hua Laboratory, Foshan 528000, P. R. China
| | - Biao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fang-Yuan Han
- Electric Power Research Institute, Guangxi Power Grid Company, Ltd., Nanning 530023, P. R. China
| | - Zhang-Na Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, P. R. China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
21
|
Xia N, Wu D, Yu H, Sun W, Yi X, Liu L. Magnetic bead-based electrochemical and colorimetric assays of circulating tumor cells with boronic acid derivatives as the recognition elements and signal probes. Talanta 2020; 221:121640. [PMID: 33076160 DOI: 10.1016/j.talanta.2020.121640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023]
Abstract
Simple, sensitive and rapid detection of circulating tumor cells (CTCs) is of great importance for early diagnosis and therapy of cancers. Overexpression of sugar units on cell surface is related to the phenotypes of many cancers. Based on the boronate ester interaction, we reported the electrochemical and colorimetric detection of CTCs with high simplicity and sensitivity. Specifically, ferroceneboronic acid (FcBA) can be measured by differential pulse voltammetry and 4-mercaptophenylboronic acid (MPBA) can induce the aggregation and color change of gold nanoparticles (AuNPs). CTCs captured by the aptamer-modified magnetic beads (Apt-MBs) can sequestrate FcBA or MPBA molecules by the formation of boronate ester bonds, thus leading to the decrease in the electrochemical signal of FcBA or preventing the MPBA-triggered aggregation of AuNPs. Due to the overexpression of sugar groups on the surface of CTCs, the amplification-free methods exhibited high sensitivity and obviated the use of additional antibody or aptamer for the recognition of captured cells. With MCF-7 cancer cell as the model, 50 cells can be readily determined by the electrochemical and colorimetric methods. The proposed strategy is valuable for probing of cell glycosylation and designing of novel sensing devices for detection of sugar-containing biological macromolecules and cells.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Daohong Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Haiqing Yu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Wanwan Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| |
Collapse
|
22
|
TMB-assembly as nanosubstrate construction colorimetric kit for highly sensitive and selective detection of H2O2 and monoamine oxidase-A based on Fenton reaction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Tan F, Wang Z, Yang Y, Xie X, Hua X, Yang X, Huang H. Facile preparation of peroxidase-like core-shell nanorods and application as platform for colorimetric determination of glucose, insulin and glucose/insulin ratio. Talanta 2019; 204:285-293. [PMID: 31357295 DOI: 10.1016/j.talanta.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022]
Abstract
To obtain sensitive analytical detection methods, many unique materials have been developed and made them promising candidates for biosensing. In this study, a type of core-shell gold nanorods, GNR@Au2S/AuAgS/CuS, possessing peroxidase-like activity was prepared in a simple, facile manner. A colorimetric strategy for detection of blood glucose, insulin and differentiating type 1 and type 2 diabetes was developed based on the unique GNR@Au2S/AuAgS/CuS. The sensitive colorimetric approach for detection of glucose in the dynamic range of 2.5-200 μM was first established based on the catalytic performance of GNR@Au2S/AuAgS/CuS. Meanwhile, the catalytic activity of the peroxidase-like GNR@Au2S/AuAgS/CuS can be regulated by introducing the high affinity and specific reaction between DNA aptamer and insulin on the surface of GNR@Au2S/AuAgS/CuS, which allows the colorimetric assay to be extended to the detection of insulin, and a quantitative analysis of insulin based on the specific recognition can be implemented at the range from 0.014 to 1.08 μU/mL. Furthermore, colorimetric approach coupling peroxidase-like performance and specific recognition on the surface of GNR@Au2S/AuAgS/CuS nanoparticles was developed to measure glucose/insulin ratio and directly differentiate type 1 and type 2 diabetes mellitus. Practical human serum samples were tested and only the glucose/insulin ratio greater than 2.2 (μU/mL) may lead to the appearance of color change. The coupling of this different bioassay on the same nanoparticles reflects the versatility and integration characteristics of the colorimetric assay and is highly promising for improving diabetes management.
Collapse
Affiliation(s)
- Fang Tan
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhifang Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yan Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinyi Hua
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
24
|
Luo Y, Shen R, Li T, Xiong C, Li G, Ling L. The peroxidase-mimicking function of acetate and its application in single-enzyme-based glucose test paper. Talanta 2019; 196:493-497. [PMID: 30683396 DOI: 10.1016/j.talanta.2018.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 01/21/2023]
Abstract
Acetate ion was widely used in pH buffer to control pH environment. Here we firstly found that acetate ion had mimic peroxidase activity. Acetate ions are capable of catalyzing the decomposition of hydrogen peroxide and play a similar role to that of horseradish peroxidase (HRP). Acetate catalyzes the oxidation of tetramethylbenzidine (TMB) by H2O2, which is the product of the reaction of glucose and glucose oxidase. A colorimetric sensor for H2O2 and glucose was developed using acetate ions. The linear regression equation for H2O2 was A = 0.0029 C + 0.0530 (C (μmolL-1), R = 0.9978), and the detection limit was 3.0 μmolL-1, whereas that for glucose was A = 0.0021 C + 0.0709 (C (μmol L-1), R = 0.9977), and the detection limit was 4.0 μmol L-1. Moreover, the proposed method was successfully applied for the detection of H2O2 in human urine and glucose in human serum; thus, the proposed method could be used for the diagnosis of illness or disease. A single-enzyme-based glucose test paper was firstly prepared and tested for semi-quantitative analysis of glucose.
Collapse
Affiliation(s)
- Yanwei Luo
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Cen Xiong
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
25
|
Lin L, Xiao Y, Wang Y, Zeng Y, Lin Z, Chen X. Hydrothermal synthesis of nitrogen and copper co-doped carbon dots with intrinsic peroxidase-like activity for colorimetric discrimination of phenylenediamine isomers. Mikrochim Acta 2019; 186:288. [DOI: 10.1007/s00604-019-3404-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
26
|
Wang SS, Zhao XP, Liu FF, Younis MR, Xia XH, Wang C. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Anal Chem 2019; 91:4413-4420. [PMID: 30816698 DOI: 10.1021/acs.analchem.8b04908] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we developed a simple electrochemical method for ultrasensitive and label-free detection of circulating tumor cells (CTCs) based on direct plasmon-enhanced electrochemistry (DPEE). After plasmonic gold nanostars (AuNSs) were modified on the glassy carbon (GC) electrode, the aptamer probe was immobilized on the AuNSs surface, which can selectively capture the CTCs in samples. Upon localized surface plasmon resonance (LSPR) excitation, the electrochemical current response can be enhanced remarkably due to efficient hot electrons transport from AuNSs to the external circuit. The captured cells on the AuNSs surface will influence the hot electrons transport efficiency, leading to a decreased current response. Using ascorbic acid (AA) as the electroactive probe, it was found that the current responses of the AuNSs/GC electrode upon light irradiation decrease with the cell concentration. Due to the special molecular recognition of the aptamer and enhanced electrochemical performance of the plasmon, the proposed method enables an ultrasensitive and label-free detection of CTCs with excellent selectivity. The experimental results show that CCRF-CEM cell concentrations as low as 5 cells/mL can be successfully detected, which is superior to most reported work up to now. Using the present method, MCF-7 cells as low as 10 cells/mL can be also successfully detected, indicating the universality of the proposed method for CTCs detection. Furthermore, the cytosensor can successfully distinguish CTCs from normal cells in blood samples. The as-proposed strategy provides a promising application of DPEE in the development of novel biosensors for nondestructive analysis of biological samples.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xiao-Ping Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Fei-Fei Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| |
Collapse
|
27
|
A copper(II)/cobalt(II) organic gel with enhanced peroxidase-like activity for fluorometric determination of hydrogen peroxide and glucose. Mikrochim Acta 2019; 186:168. [DOI: 10.1007/s00604-019-3290-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/30/2019] [Indexed: 11/27/2022]
|
28
|
Guo QJ, Pan ZY, Men C, Lv WY, Zou HY, Huang CZ. Visual detection of cancer cells by using in situ grown functional Cu2−xSe/reduced graphene oxide hybrids acting as an efficient nanozyme. Analyst 2019; 144:716-721. [DOI: 10.1039/c8an01849a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2−xSe nanoparticles grown in situ on reduced graphene oxide (Cu2−xSe/rGO) acted as an efficient nanozyme. Using the Cu2−xSe/rGO as a signal transducer, a colorimetric assay for cancer cells with the naked eye has been developed.
Collapse
Affiliation(s)
- Qing Juan Guo
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Zi Yu Pan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Chen Men
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Hong Yan Zou
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| |
Collapse
|
29
|
Tan F, Xie X, Xu A, Deng K, Zeng Y, Yang X, Huang H. Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B. Talanta 2018; 194:634-642. [PMID: 30609584 DOI: 10.1016/j.talanta.2018.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Fluorescent eggshell membrane-templated gold nanoclusters (Au-ESM) can be obtained in a facile and low-cost manner in this study. The fluorescence of the Au-ESM may be significantly quenched by mercapto-compounds and peroxidase-like activity of Au-ESM could be regulated by the reaction process with glutathione. Moreover, the catalytic activity of the mimetic enzyme membrane could be modulated by immunoreactions. An immunoassay for colorimetric determination of staphylococcal enterotoxins B (SE-B) using colored gold nanoparticles was established based on the catalytic activity adjusted by the target molecules. This colorimetric assay can detect SE-B at the concentration range of 0.4-20 ng/mL and the limit of detection (LOD) is 0.12 ng/mL. As a practical application, the proposed colorimetric assay was further utilized to detect SE-B in food samples such as flour, corn and rice, requiring very low volume of sample and exhibiting great sensitivity and high accuracy, which provides promising platform for development of point-of-care diagnostic devices with biomedical and food safety applications.
Collapse
Affiliation(s)
- Fang Tan
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Aiqing Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yunlong Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
30
|
Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10321-10332. [PMID: 30089209 DOI: 10.1021/acs.langmuir.8b01255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugates of carbon nanoparticles and aptamers have great potential in many areas of biomedicine. In order to be implemented in practice, such conjugates should keep their properties throughout long storage period in commonly available conditions. In this work, we prepared conjugates of carbon nanoparticles (CNP) with DNA aptamers using streptavidin-biotin reaction. Obtained conjugates possess superior stability and kept their physical-chemical and functional properties during 30 days at +4 °C and -20 °C. Proposed approach to conjugation allows loading of about 100-120 pM of biotinylated aptamer per 1 mg of streptavidin-coated CNP (CNP-Str). Aptamer-functionalized CNP-Str have zeta potential of -34 mV at pH 7, mean diameter of 168-177 nm, and polydispersity index of 0.080-0.140. High reproducibility of functionalization was confirmed by preparation of several batches of CNP-aptamer with the same size distribution and aptamer loading using independently synthesized parent CNP-Str nanoparticles. Stability of CNP-aptamer conjugates was significantly enhanced by postsynthesis addition of EDTA that prevents nuclease degradation of immobilized aptamers. Obtained nanoparticles were stable at pH ranging from 6 to 10. Optical properties of CNP-aptamer nanoparticles were also studied and their ability to quench fluorescence via Förster resonance energy transfer was shown. Taking into account properties of CNP-aptamer conjugates, we suppose they may be used in both homo- and heterogeneous colorimetric, fluorescent, and aggregation-based assays.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Maria Kropaneva
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Tatyana Kalashnikova
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
| | - Maria Bochkova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Valeria Timganova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Svetlana Zamorina
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Mikhail Rayev
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| |
Collapse
|
31
|
Shi Y, Liu L, Yu Y, Long Y, Zheng H. Acidic amino acids: A new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:367-375. [PMID: 29772516 DOI: 10.1016/j.saa.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nanomaterials have triggered tremendous interest to mimick peroxidase but rarely attention has been paid to small molecules. Herein we first found that acidic amino acids including l-glutamic acid (L-Glu) and l-aspartic acid (L-Asp) exhibited an intrinsic peroxidase-like activity, endowing acidic amino acids with the capability of catalysing the oxidation of the peroxidase substrates 3,3',5,5'-tetramethylbenzidine (TMB) to produce color reaction in the presence of H2O2. Reaction mechanism was further investigated by means of electron spin resonance spectroscopy (ESR), enzyme kinetics assay and quantum theoretical calculations, to verify and provide a good deal of insight into the catalytic process. Based on the above discovery, a colorimetric platform was successfully developed for sensing glucose in the range of 0.10 μM to 10 μM with a detection limit of 40 nM, as well as evaluating the inhibitory effect of antioxidants on reactive oxygen species. This extraordinary finding not only extends the new biological function of acidic amino acids, but also opens new opportunities to deepen the knowledge of the new class of small molecule enzymes.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Beibei, Chongqing 400715, China
| | - Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Beibei, Chongqing 400715, China; College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Yuanyuan Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Beibei, Chongqing 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Beibei, Chongqing 400715, China.
| |
Collapse
|
32
|
Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y. Near-Infrared Fluorescent Ag 2S Nanodot-Based Signal Amplification for Efficient Detection of Circulating Tumor Cells. Anal Chem 2018; 90:6702-6709. [PMID: 29722265 DOI: 10.1021/acs.analchem.8b00514] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The level of circulating tumor cells (CTCs) plays a critical role in tumor metastasis and personalized therapy, but it is challenging for highly efficient capture and detection of CTCs because of the extremely low concentration in peripheral blood. Herein, we report near-infrared fluorescent Ag2S nanodot-based signal amplification combing with immune-magnetic spheres (IMNs) for highly efficient magnetic capture and ultrasensitive fluorescence labeling of CTCs. The near-infrared fluorescent Ag2S nanoprobe has been successfully constructed through hybridization chain reactions using aptamer-modified Ag2S nanodots, which can extremely improve the imaging sensitivity and reduce background signal of blood samples. Moreover, the antiepithelial-cell-adhesion-molecule (EpCAM) antibody-labeled magnetic nanospheres have been used for highly capture rare tumor cells in whole blood. The near-infrared nanoprobe with signal amplification and IMNs platform exhibits excellent performance in efficient capture and detection of CTCs, which shows great potential in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Caiping Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Xueyang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Xuanyu Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Meifang Cai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
33
|
Li WL, Kong FZ, Zhang Q, Liu WW, Kong H, Liu XP, Khan MI, Wahid A, Saud S, Xiao H, Cao CX, Fan LY. Simple Chip Electrophoresis Titration of Neutralization Boundary with EDTA Photocatalysis for Distance-Based Sensing of Melamine in Dairy Products. Anal Chem 2018; 90:6710-6717. [DOI: 10.1021/acs.analchem.8b00543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen-Lin Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Zhi Kong
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Wen Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Kong
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Ping Liu
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad-Idrees Khan
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Amir Wahid
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shah Saud
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Xi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu-Yin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Wang X, Zhang B, Li J, Chang H, Wei W. A simple and fast chromogenic reaction based on Ag3PO4/Ag nanocomposite for tumor marker detection. Talanta 2017; 175:229-234. [DOI: 10.1016/j.talanta.2017.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
|