1
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
2
|
Xiong LH, Wang J, Yang F, Tang BZ, He X. Synchronously Sensitive Immunoassay and Efficient Inactivation of Living Zika Virus via DNAzyme Catalytic Amplification and In Situ Aggregation-Induced Emission Photosensitizer Generation. Anal Chem 2024; 96:9244-9253. [PMID: 38773697 DOI: 10.1021/acs.analchem.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.3 PFU/mL and 100% accuracy. Furthermore, robust reactive oxygen species generated in situ by oxidized Amplex Red upon irradiation can completely kill the virus. This sensitive and efficient detection-inactivation integrated system will expand the viral diagnostic tools and reduce the risk of virus transmission in the environment.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiao Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang N, Zhang J, Xiao B, Sun X, Chen J, Huang F, Chen A. Amplification-free quantitative detection of genomic DNA using lateral flow strips for milk authentication. Biosens Bioelectron 2024; 252:116140. [PMID: 38394702 DOI: 10.1016/j.bios.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
With the globalization and complexity of the food supply chain, the market is becoming increasingly competitive and food fraudulent activities are intensifying. The current state of food detection faced two primary challenges. Firstly, existing testing methods were predominantly laboratory-based, requiring complex procedures and precision instruments. Secondly, there was a lack of accurate and efficient quantitative detection methods. Taking cow's milk as an example, this study introduced a novel method for nucleic acid quantification in dairy products, based on lateral flow strips (LFS). The core idea of this method is to design single-stranded DNA (ssDNA) probes to hybridize with mitochondrial genes, which are abundant, stable, and species-specific in dairy products, as detection targets. Drawing inspiration from the principles of nucleic acid amplification, this research innovatively established a new DNA hybridization method, named LAMP-Like Hybridization (HybLAMP-Like). Leveraging the denaturation and DNA polymerization functions of the bst enzyme, efficient binding of the probe and template strand was achieved. This method eliminated the need for nucleic acid amplification, simplifying the procedure and mitigating aerosol contamination, thereby ensuring the accuracy of the detection results. The method exhibited exceptional sensitivity, capable of detecting extremely low to 12.5 ng in visual inspection and 3.125 ng when using a reader. In terms of practicality, it could achieve visual detection of cow's milk content as low as 1% in adulterated dairy products. When combined with a portable LFS reader, it also enabled precise quantitative analysis of milk adulteration.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Kim D, DeBriere TJ, Eastmond BH, Alomar AA, Yaren O, McCarter J, Bradley KM, Benner SA, Alto BW, Burkett-Cadena ND. Rapid detection of West Nile and Dengue viruses from mosquito saliva by loop-mediated isothermal amplification and displaced probes. PLoS One 2024; 19:e0298805. [PMID: 38394282 PMCID: PMC10889885 DOI: 10.1371/journal.pone.0298805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Arthropod-borne viruses are major causes of human and animal disease, especially in endemic low- and middle-income countries. Mosquito-borne pathogen surveillance is essential for risk assessment and vector control responses. Sentinel chicken serosurveillance (antibody testing) and mosquito pool screening (by RT-qPCR or virus isolation) are currently used to monitor arbovirus transmission, however substantial time lags of seroconversion and/or laborious mosquito identification and RNA extraction steps sacrifice their early warning value. As a consequence, timely vector control responses are compromised. Here, we report on development of a rapid arbovirus detection system whereby adding sucrose to reagents of loop-mediated isothermal amplification with displaced probes (DP-LAMP) elicits infectious mosquitoes to feed directly upon the reagent mix and expectorate viruses into the reagents during feeding. We demonstrate that RNA from pathogenic arboviruses (West Nile and Dengue viruses) transmitted in the infectious mosquito saliva was detectable rapidly (within 45 minutes) without RNA extraction. Sucrose stabilized viral RNA at field temperatures for at least 48 hours, important for transition of this system to practical use. After thermal treatment, the DP-LAMP could be reliably visualized by a simple optical image sensor to distinguish between positive and negative samples based on fluorescence intensity. Field application of this technology could fundamentally change conventional arbovirus surveillance methods by eliminating laborious RNA extraction steps, permitting arbovirus monitoring from additional sites, and substantially reducing time needed to detect circulating pathogens.
Collapse
Affiliation(s)
- Dongmin Kim
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | | | - Bradley H. Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Abdullah A. Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Ozlem Yaren
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Jacquelyn McCarter
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Steven A. Benner
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| |
Collapse
|
5
|
Oh C, Xun G, Lane ST, Petrov VA, Zhao H, Nguyen TH. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168701. [PMID: 37992833 DOI: 10.1016/j.scitotenv.2023.168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Argonaute protein from the archaeon Pyrococcus furiosus (PfAgo) is a DNA-guided nuclease that targets DNA with any sequence. We designed a virus detection assay in which the PfAgo enzyme cleaves the reporter probe, thus generating fluorescent signals when amplicons from a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay contain target sequences. We confirmed that the RT-LAMP-PfAgo assay for the SARS-CoV-2 Delta variant produced significantly higher fluorescent signals (p < 0.001) when a single nucleotide polymorphism (SNP), exclusive to the Delta variant, was present, compared to the samples without the SNP. Additionally, the duplex assay for Pepper mild mottle virus (PMMOV) and SARS-CoV-2 detection produced specific fluorescent signals (FAM or ROX) only when the corresponding sequences were present. Furthermore, the RT-LAMP-PfAgo assay does not require dilution to reduce the impact of environmental inhibitors. The limit of detection of the PMMOV assay, determined with 30 wastewater samples, was 28 gc/μL, with a 95 % confidence interval of [11,103]. Finally, using a point-of-use device, the RT-LAMP-PfAgo assay successfully detected PMMOV in wastewater samples. Based on our findings, we conclude that the RT-LAMP-PfAgo assay can be used as a portable, SNP-specific duplex assay, which will significantly improve virus surveillance in wastewater.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Vassily Andrew Petrov
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Seok Y, Mauk MG, Li R, Qian C. Trends of respiratory virus detection in point-of-care testing: A review. Anal Chim Acta 2023; 1264:341283. [PMID: 37230728 DOI: 10.1016/j.aca.2023.341283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Ruijie Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
7
|
Song Z, Zhang QY, Li JJ, Su JL, Liu YH, Yang GJ, Wang HS. Visual and Electrochemical Detection of let-7a: A Tumor Suppressor and Biomarker. J Med Chem 2023. [PMID: 37248170 DOI: 10.1021/acs.jmedchem.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Let-7a, a type of low-expressed microRNAs in cancer cells, has been investigated as a promising biomarker and therapeutic target for tumor suppression. Developing simple and sensitive detection methods for let-7a is important for cancer diagnosis and treatment. In this work, the hybridization chain reaction (HCR) was initiated by let-7a via two hairpin primers (H1 and H2). After the HCR, the remaining hairpin H1 was further detected by lateral flow assay (LFA) and electrochemical impedance spectroscopy. For LFA, biotin-modified H1(bio-H1) and free H2 were used for HCR. With the decrease of let-7a concentration, the color of T line gradually increased. As for electrochemical methods, the H1'-AuNP-modified electrode was used for detection of bio-H1 based on the difference of impedance (ΔRct) detected without and with different concentrations of let-7a participating in the HCR. This method could detect let-7a in the range of 10.0 fM and 1.0 nM with detection limits of 4.2 fM.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiang-Yan Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jia-Jing Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jing-Lian Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Hua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P. R. China
| | - Gong-Jun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Simon DS, Yew CW, Kumar VS. Multiplexed Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Nucleic Acid-Based Lateral Flow Dipstick as a Rapid Diagnostic Method to Detect SARS-CoV-2. Microorganisms 2023; 11:1233. [PMID: 37317207 PMCID: PMC10223058 DOI: 10.3390/microorganisms11051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the high reproduction rate of COVID-19, it is important to identify and isolate infected patients at the early stages of infection. The limitations of current diagnostic methods are speed, cost, and accuracy. Furthermore, new viral variants have emerged with higher rates of infectivity and mortality, many with mutations at various primer binding sites, which may evade detection via conventional PCR kits. Therefore, a rapid method that is sensitive, specific, and cost-effective is needed for a point-of-care molecular test. Accordingly, we developed a rapid molecular SARS-CoV-2 detection kit with high specificity and sensitivity, RT-PCR, taking advantage of the loop-mediated isothermal amplification (LAMP) technique. Four sets of six primers were designed based on conserved regions of the SARS-CoV-2 genome: two outer, two inner and two loop primers. Using the optimized protocol, SARS-CoV-2 genes were detected as quickly as 10 min but were most sensitive at 30 min, detecting as little as 100 copies of template DNA. We then coupled the RT-LAMP with a lateral flow dipstick (LFD) for multiplex detection. The LFD could detect two genic amplifications on a single strip, making it suitable for multiplexed detection. The development of a multiplexed RT-LAMP-LFD reaction on crude VTM samples would be suitable for the point-of-care diagnosis of COVID-19 in diagnostic laboratories as well as in private homes.
Collapse
Affiliation(s)
| | | | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (D.S.S.); (C.-W.Y.)
| |
Collapse
|
9
|
Varghese J, De Silva I, Millar DS. Latest Advances in Arbovirus Diagnostics. Microorganisms 2023; 11:1159. [PMID: 37317133 DOI: 10.3390/microorganisms11051159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Arboviruses are a diverse family of vector-borne pathogens that include members of the Flaviviridae, Togaviridae, Phenuviridae, Peribunyaviridae, Reoviridae, Asfarviridae, Rhabdoviridae, Orthomyxoviridae and Poxviridae families. It is thought that new world arboviruses such as yellow fever virus emerged in the 16th century due to the slave trade from Africa to America. Severe disease-causing viruses in humans include Japanese encephalitis virus (JEV), yellow fever virus (YFV), dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), Crimean-Congo hemorrhagic fever virus (CCHFV), severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV). Numerous methods have been developed to detect the presence of these pathogens in clinical samples, including enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs) and reverse transcriptase-polymerase chain reaction (RT-PCR). Most of these assays are performed in centralized laboratories due to the need for specialized equipment, such as PCR thermal cyclers and dedicated infrastructure. More recently, molecular methods have been developed which can be performed at a constant temperature, termed isothermal amplification, negating the need for expensive thermal cycling equipment. In most cases, isothermal amplification can now be carried out in as little as 5-20 min. These methods can potentially be used as inexpensive point of care (POC) tests and in-field deployable applications, thus decentralizing the molecular diagnosis of arboviral disease. This review focuses on the latest developments in isothermal amplification technology and detection techniques that have been applied to arboviral diagnostics and highlights future applications of these new technologies.
Collapse
Affiliation(s)
- Jano Varghese
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Imesh De Silva
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Douglas S Millar
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| |
Collapse
|
10
|
Gulinaizhaer A, Zou M, Ma S, Yao Y, Fan X, Wu G. Isothermal nucleic acid amplification technology in HIV detection. Analyst 2023; 148:1189-1208. [PMID: 36825492 DOI: 10.1039/d2an01813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nucleic acid testing for HIV plays an important role in the early diagnosis and monitoring of antiretroviral therapy outcomes in HIV patients and HIV-infected infants. Currently, the main molecular diagnostic methods employed are complex, time-consuming, and expensive to operate in resource-limited areas. Isothermal nucleic acid amplification technology overcomes some of the shortcomings of traditional assays and makes it possible to use point-of-care tests for molecular HIV detection. Here, we summarize and discuss the latest technological advances in isothermal nucleic acid amplification for HIV detection, with the intent of providing guidance for the development of subsequent HIV assays with high sensitivity and specificity.
Collapse
Affiliation(s)
- Abudushalamu Gulinaizhaer
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China. .,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
11
|
Jang YO, Kim NH, Roh Y, Koo B, Lee HJ, Kim JY, Kim SH, Shin Y. Self-directed molecular diagnostics (SdMDx) system for COVID-19 via one-pot processing. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133193. [PMID: 36570722 PMCID: PMC9759472 DOI: 10.1016/j.snb.2022.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Rapid, sensitive, and specific detection of the severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 during early infection is pivotal in controlling the spread and pathological progression of Coronavirus Disease 2019 (COVID-19). Thus, highly accurate, affordable, and scalable point-of-care (POC) diagnostic technologies are necessary. Herein, we developed a rapid and efficient self-directed molecular diagnostic (SdMDx) system for SARS-CoV-2. This system combines the sample preparation step, including virus enrichment and extraction processes, which involve dimethyl suberimidate dihydrochloride and diatomaceous earth functionalized with 3-aminopropyl(diethoxy)methylsilane, and the detection step using loop-mediated isothermal amplification-lateral flow assay (LAMP-LFA). Using the SdMDx system, SARS-CoV-2 could be detected within 47 min by hand without the need for any larger instruments. The SdMDx system enabled detection as low as 0.05 PFU in the culture fluid of SARS-CoV-2-infected VeroE6 cells. We validated the accuracy of the SdMDx system on 38 clinical nasopharyngeal specimens. The clinical utility of the SdMDx system for targeting the S gene of SARS-CoV-2 showed 94.4% sensitivity and 100% specificity. This system is more sensitive than antigen and antibody assays, and it minimizes the use of complicated processes and reduces contamination risks. Accordingly, we demonstrated that the SdMDx system enables a rapid, accurate, simple, efficient, and inexpensive detection of SARS-CoV-2 at home, in emergency facilities, and in low-resource sites as a pre-screening platform and POC testing through self-operation and self-diagnosis.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Nam Hun Kim
- INFUSIONTECH, 38 Heungan-daero, 427 beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
13
|
Yuan B, Yuan C, Li L, Long M, Chen Z. Application of the CRISPR/Cas System in Pathogen Detection: A Review. Molecules 2022; 27:molecules27206999. [PMID: 36296588 PMCID: PMC9610700 DOI: 10.3390/molecules27206999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
Early and rapid diagnosis of pathogens is important for the prevention and control of epidemic disease. The polymerase chain reaction (PCR) technique requires expensive instrument control, a special test site, complex solution treatment steps and professional operation, which can limit its application in practice. The pathogen detection method based on the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) system is characterized by strong specificity, high sensitivity and convenience for detection, which is more suitable for practical applications. This article first reviews the CRISPR/Cas system, and then introduces the application of the two types of systems represented by Type II (cas9), Type V (cas12a, cas12b, cas14a) and Type VI (cas13a) in pathogen detection. Finally, challenges and prospects are proposed.
Collapse
|
14
|
Chatterjee S, Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need”. J Immunoassay Immunochem 2022; 43:579-604. [DOI: 10.1080/15321819.2022.2122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Susraba Chatterjee
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R.Avenue, Kolkata 700073, West Bengal
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R.Avenue, Kolkata 700073, West Bengal
| |
Collapse
|
15
|
Cardona-Trujillo MC, Ocampo-Cárdenas T, Tabares-Villa FA, Zuluaga-Vélez A, Sepúlveda-Arias JC. Recent molecular techniques for the diagnosis of Zika and Chikungunya infections: A systematic review. Heliyon 2022; 8:e10225. [PMID: 36033321 PMCID: PMC9404361 DOI: 10.1016/j.heliyon.2022.e10225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) and Chikungunya virus (CHIKV) are arboviruses that cause important viral diseases affecting the world population. Both viruses can produce remarkably similar clinical manifestations, co-circulate in a geographic region, and coinfections have been documented, thus making clinical diagnosis challenging. Therefore, it is urgent to have better molecular techniques that allow a differential, sensitive and rapid diagnosis from body fluid samples. This systematic review explores evidence in the literature regarding the advances in the molecular diagnosis of Zika and Chikungunya in humans, published from 2010 to March 2021. Four databases were consulted (Scopus, PubMed, Web of Science, and Embase) and a total of 31 studies were included according to the selection criteria. Our analysis highlights the need for standardization in the report and interpretation of new promising diagnostic methods. It also examines the benefits of new alternatives for the molecular diagnosis of these arboviruses, in contrast to established methods.
Collapse
Affiliation(s)
- María C Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Tatiana Ocampo-Cárdenas
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Fredy A Tabares-Villa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
16
|
Sullivan BP, Chou YS, Bender AT, Martin CD, Kaputa ZG, March H, Song M, Posner JD. Quantitative isothermal amplification on paper membranes using amplification nucleation site analysis. LAB ON A CHIP 2022; 22:2352-2363. [PMID: 35548880 PMCID: PMC9202034 DOI: 10.1039/d2lc00007e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative nucleic acid amplification tests (qNAATs) are critical in treating infectious diseases, such as in HIV viral load monitoring or SARS-CoV-2 testing, in which viral load indicates viral suppression or infectivity. Quantitative PCR is the gold standard tool for qNAATs; however, there is a need to develop point-of-care (POC) qNAATs to manage infectious diseases in outpatient clinics, low- and middle-income countries, and the home. Isothermal amplification methods are an emerging tool for POC NAATs as an alternative to traditional PCR-based workflows. Previous works have focused on relating isothermal amplification bulk fluorescence signals to input copies of target nucleic acids for sample quantification with limited success. In this work, we show that recombinase polymerase amplification (RPA) reactions on paper membranes exhibit discrete fluorescent amplification nucleation sites. We demonstrate that the number of nucleation sites can be used to quantify HIV-1 DNA and viral RNA in less than 20 minutes. An image-analysis algorithm quantifies nucleation sites and determines the input nucleic acid copies in the range of 67-3000 copies per reaction. We demonstrate a mobile phone-based system for image capture and onboard processing, illustrating that this method may be used at the point-of-care for qNAATs with minimal instrumentation.
Collapse
Affiliation(s)
- Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Yu-Shan Chou
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Coleman D Martin
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Zoe G Kaputa
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Hugh March
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Minyung Song
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Islam MM, Koirala D. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Anal Chim Acta 2022; 1209:339338. [PMID: 35569864 PMCID: PMC8633689 DOI: 10.1016/j.aca.2021.339338] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.
Collapse
|
18
|
Li Z, Wu S, Ji J, Bai Y, Jia P, Gong Y, Feng S, Li F. Ball pen writing-without-ink: a truly simple and accessible method for sensitivity enhancement in lateral flow assays. RSC Adv 2022; 12:2068-2073. [PMID: 35425219 PMCID: PMC8979190 DOI: 10.1039/d1ra07684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
Lateral flow assays (LFAs), a popular point-of-care testing platform, have found widespread applications from laboratory to clinics. However, LFA-based testing is still subject to limited detection sensitivity, especially for classical gold nanoparticle-based LFAs. Inspired by traditional pen-based writing technologies, we developed a ball pen writing-without-ink method to amplify the detection signal of LFAs through controlling fluid flow rate. An enhancement of detection sensitivity by two times was obtained. Since the underlying mechanism of this method to improve detection sensitivity is to control the flow rate of the liquid on paper, it may be suitable for most paper-based platforms.
Collapse
Affiliation(s)
- Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shuang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jingcheng Ji
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Pengpeng Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yan Gong
- Suzhou DiYinAn Biotechnology Co., Ltd. Suzhou 215010 P. R. China
| | - Shangsheng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
19
|
Zhang T, Zhao W, Zhao W, Si Y, Chen N, Chen X, Zhang X, Fan L, Sui G. Universally Stable and Precise CRISPR-LAMP Detection Platform for Precise Multiple Respiratory Tract Virus Diagnosis Including Mutant SARS-CoV-2 Spike N501Y. Anal Chem 2021; 93:16184-16193. [PMID: 34818890 PMCID: PMC8672426 DOI: 10.1021/acs.analchem.1c04065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Nowadays, rapid and accurate diagnosis of respiratory tract viruses is an urgent need to prevent another epidemic outbreak. To overcome this problem, we have developed a clustered, regularly interspaced short palindromic repeats (CRISPR) loop mediated amplification (LAMP) technology to detect influenza A virus, influenza B virus, respiratory syncytial A virus, respiratory syncytial B virus, and severe acute respiratory syndrome coronavirus 2, including variants of concern (B.1.1.7), which utilized CRISPR-associated protein 12a (Cas12a) to advance LAMP technology with the sensitivity increased 10 times. To reduce aerosol contamination in CRISPR-LAMP technology, an uracil-DNA-glycosylase-reverse transcription-LAMP system was also developed which can effectively remove dUTP-incorporated LAMP amplicons. In vitro Cas12a cleavage reaction with 28 crRNAs showed that there were no position constraints for Cas12a/CRISPR RNA (crRNA) recognition and cleavage in LAMP amplicons, and even the looped position of LAMP amplicons could be effectively recognized and cleaved. Wild-type or spike N501Y can be detected with a limit of detection of 10 copies/μL (wild-type) even at a 1% ratio level on the background (spike N501Y). Combining UDG-RT-LAMP technology, CRISPR-LAMP design, and mutation detection design, we developed a CRISPR-LAMP detection platform that can precisely diagnose pathogens with better stability and significantly improved point mutation detection efficiency.
Collapse
Affiliation(s)
- Tong Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wei Zhao
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wang Zhao
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Yuying Si
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Nianzhen Chen
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Xi Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xinlian Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Lieying Fan
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Guodong Sui
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
- Jiangsu
Collaborative Innovation Center of Atmospheric Environment and Equipment
Technology (CICAEET), Nanjing University
of Information Science & Technology, Nanjing 210044, PR China
| |
Collapse
|
20
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|
21
|
Manning BJ, Khan WA, Peña JM, Fiore ES, Boisvert H, Tudino MC, Barney RE, Wilson MK, Singh S, Mowatt JA, Thompson HJ, Tsongalis GJ, Blake WJ. High-Throughput CRISPR-Cas13 SARS-CoV-2 Test. Clin Chem 2021; 68:172-180. [PMID: 34718481 DOI: 10.1093/clinchem/hvab238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The ability to control the spread of COVID-19 continues to be hampered by a lack of rapid, scalable, and easily deployable diagnostic solutions. METHODS : We developed a diagnostic method based on CRISPR that can deliver sensitive, specific, and high-throughput detection of Sudden Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The assay utilizes SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for the qualitative detection of SARS-CoV-2 RNA and may be performed directly on a swab or saliva sample without nucleic acid extraction. The assay uses a 384-well format and provides results in less than one hour. RESULTS Assay performance was evaluated with 105 (55 negative, 50 positive) remnant SARS-CoV-2 specimens previously identified as positive using Food and Drug Administration emergency use authorized assays and re-tested with a modified version of the Centers for Disease Control and Prevention (CDC) RT-qPCR assay. When combined with magnetic bead-based extraction, the high throughput SHERLOCK SARS-CoV-2 assay was 100% concordant (n = 60) with the CDC RT-qPCR. When used with direct sample addition the high throughput assay was also 100% concordant with the CDC RT-qPCR direct method (n = 45). With direct saliva sample addition, the negative and positive percent agreements were 100% (15/15, 95% CI : 81.8-100%) and 88% (15/17, 95% CI : 63.6-98.5%), respectively, compared with results from a collaborating clinical laboratory. CONCLUSIONS This high throughput assay identifies SARS-CoV-2 from patient samples with or without nucleic acid extraction with high concordance to RT-qPCR methods. This test enables high complexity laboratories to rapidly increase their testing capacities with simple equipment.
Collapse
Affiliation(s)
- Brendan J Manning
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Wahab A Khan
- Department of Pathology and Laboratory Medicine, The Audrey and Theodore Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA.,Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Jennifer M Peña
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Elizabeth S Fiore
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Heike Boisvert
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Marisa C Tudino
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Rachael E Barney
- Department of Pathology and Laboratory Medicine, The Audrey and Theodore Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Mary K Wilson
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Subha Singh
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Joel A Mowatt
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Hannah J Thompson
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, The Audrey and Theodore Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA.,Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - William J Blake
- R&D Department, Sherlock Biosciences, 40 Guest Street, 3rd Floor, Boston, MA, 02135, USA
| |
Collapse
|
22
|
Jang M, Kim S, Song J, Kim S. Highly sensitive and rapid detection of porcine circovirus 2 by avidin-biotin complex based lateral flow assay coupled to isothermal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4429-4436. [PMID: 34486596 DOI: 10.1039/d1ay01189h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a new platform for the detection of porcine circovirus 2 was developed by avidin-biotin complex based lateral flow assay (LAMP-LFA). Improved detection sensitivity was attained by using loop mediated isothermal amplification (LAMP) with a low limit of detection (LOD), so the platform can be used to detect even early or asymptomatic stages of infection. LFA, which requires no specialized equipment, facilitates the use of point-of-care (POC) tests. Therefore, by applying LFA, the result can be confirmed accurately with the naked eye. Moreover, this platform has a unique structure using a single-tag detection system. The avidin-biotin interaction is the strongest interaction between proteins and has a higher Kd value than antigen-antibody interactions. Thus, the results are stable and can be clearly confirmed. The high sensitivity of LAMP-LFA enables all steps to be completed in 30 min. As a result, it could be applied to different targets, such as other pathogens. Future POC diagnostic studies are expected to be of great practical benefit.
Collapse
Affiliation(s)
- Minju Jang
- Department of Bionanotechnology, Gachon University, Seongnam, 461-70, Republic of Korea.
| | - SeJin Kim
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| | - Junkyu Song
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam, 461-70, Republic of Korea.
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| |
Collapse
|
23
|
Jang YO, Lee HJ, Koo B, Cha HH, Kwon JS, Kim JY, Kim MG, Kim HS, Kim SH, Shin Y. Rapid COVID-19 Molecular Diagnostic System Using Virus Enrichment Platform. BIOSENSORS-BASEL 2021; 11:bios11100373. [PMID: 34677329 PMCID: PMC8534047 DOI: 10.3390/bios11100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, is rapidly spreading and severely straining the capacities of public health communities and systems around the world. Therefore, accurate, rapid, and robust diagnostic tests for COVID-19 are crucial to prevent further spread of the infection, alleviate the burden on healthcare and diagnostic facilities, and ensure timely therapeutic intervention. To date, several detection methods based on nucleic acid amplification have been developed for the rapid and accurate detection of SARS-CoV-2. Despite the myriad of advancements in the detection methods for SARS-CoV-2, rapid sample preparation methods for RNA extraction from viruses have rarely been explored. Here, we report a rapid COVID-19 molecular diagnostic system that combines a self-powered sample preparation assay and loop-mediated isothermal amplification (LAMP) based naked-eye detection method for the rapid and sensitive detection of SARS-CoV-2. The self-powered sample preparation assay with a hydrophilic polyvinylidene fluoride filter and dimethyl pimelimidate can be operated by hand, without the use of any sophisticated instrumentation, similar to the reverse transcription (RT)-LAMP-based lateral flow assay for the naked-eye detection of SARS-CoV-2. The COVID-19 molecular diagnostic system enriches the virus population, extracts and amplifies the target RNA, and detects SARS-CoV-2 within 60 min. We validated the accuracy of the system by using 23 clinical nasopharyngeal specimens. We envision that this proposed system will enable simple, facile, efficient, and inexpensive diagnosis of COVID-19 at home and the clinic as a pre-screening platform to reduce the burden on the medical staff in this pandemic era.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
| | - Hye-Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea
| | - Hyun Soo Kim
- INFUSIONTECH, 38, Heungan-daero 427 beon-gil, Dongan-gu, Anyang-si 14059, Korea;
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
- Correspondence: (S.-H.K.); (Y.S.)
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Correspondence: (S.-H.K.); (Y.S.)
| |
Collapse
|
24
|
Lee D, Ozkaya-Ahmadov T, Chu CH, Boya M, Liu R, Sarioglu AF. Capillary flow control in lateral flow assays via delaminating timers. SCIENCE ADVANCES 2021; 7:eabf9833. [PMID: 34597143 PMCID: PMC10938491 DOI: 10.1126/sciadv.abf9833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Lateral flow assays (LFAs) use capillary flow of liquids for simple detection of analytes. While useful for spontaneously wicking samples, the capillary flow inherently limits performing complex reactions that require timely application of multiple solutions. Here, we introduce a technique to control capillary flow on paper by imprinting roadblocks on the flow path with water-insoluble ink and using the gradual formation of a void between a wetted paper and a sheath polymer tape to create timers. Timers are drawn at strategic nodes to hold the capillary flow for a desired period and thereby enable multiple liquids to be introduced into multistep chemical reactions following a programmed sequence. Using our technique, we developed (i) an LFA with built-in signal amplification to detect human chorionic gonadotropin with an order of magnitude higher sensitivity than the conventional assay and (ii) a device to extract DNA from bodily fluids without relying on laboratory instruments.
Collapse
Affiliation(s)
- Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - A. Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Lee D, Chu CH, Sarioglu AF. Point-of-Care Toolkit for Multiplex Molecular Diagnosis of SARS-CoV-2 and Influenza A and B Viruses. ACS Sens 2021; 6:3204-3213. [PMID: 34523904 PMCID: PMC8456773 DOI: 10.1021/acssensors.1c00702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is still spreading around the globe causing immense public health and socioeconomic problems. As the infection can progress with mild symptoms that can be misinterpreted as the flu, self-testing methods that can positively identify SARS-CoV-2 are needed to effectively track and prevent the transmission of the virus. In this work, we report a point-of-care toolkit for multiplex molecular diagnosis of SARS-CoV-2 and influenza A and B viruses in saliva samples. Our assay is physically programmed to run a sequence of chemical reactions on a paper substrate and internally generate heat to drive these reactions for an autonomous extraction, purification, and amplification of the viral RNA. Using our assay, we could reliably detect SARS-CoV-2 and influenza viruses at concentrations as low as 50 copies/μL visually from a colorimetric analysis. The capability to autonomously perform a traditionally labor-intensive genetic assay on a disposable platform will enable frequent, on-demand self-testing, a critical need to track and contain this and future outbreaks.
Collapse
Affiliation(s)
- Dohwan Lee
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chia-Heng Chu
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - A. Fatih Sarioglu
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute
for Electronics and Nanotechnology, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Carboxamide and N-alkylcarboxamide additives can greatly reduce non specific amplification in Loop-Mediated Isothermal Amplification for Foot-and-Mouth disease Virus (FMDV) using Bst 3.0 polymerase. J Virol Methods 2021; 298:114284. [PMID: 34520810 DOI: 10.1016/j.jviromet.2021.114284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Foot-and-Mouth disease Virus (FMDV) is a highly infectious RNA virus that causes severe economic losses in cloven-hoofed animals. Early detection is needed to control epidemics, and loop-mediated isothermal amplification (LAMP) can be performed using inexpensive and commonly available equipment with a short processing time, but existing assays for FMDV still require an additional reverse transcriptase enzyme to convert RNA to cDNA prior to amplification. We sought to develop a novel RT-LAMP assay for FMDV with carboxamide and N-alkylcarboxamide additives to reduce non-specific amplification in combination with an improved commercially available polymerase (Bst 3.0) with efficient reverse transcriptase activity. SYBR Green I dye was used for sensitive visual detection of amplification products from our LAMP assay within 15 min without the need for a colorimeter. In the presence of a carefully titrated mixture of carboxamide and N-alkylcarboxamide additives, longer reactions of up to 1 h were also possible on both RNA and cDNA without the appearance of non-specific amplification products, thereby increasing the potential robustness of the assay by allowing a greater window of time in which to detect weak positives.
Collapse
|
27
|
Lin Q, Fang X, Chen H, Weng W, Liu B, Kong J. Dual-modality loop-mediated isothermal amplification for pretreatment-free detection of Septin9 methylated DNA in colorectal cancer. Mikrochim Acta 2021; 188:307. [PMID: 34453211 PMCID: PMC8396143 DOI: 10.1007/s00604-021-04979-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022]
Abstract
Currently, the determination of DNA methylation is still a challenge due to the limited efficiency of enrichment, bisulfite modification, and detection. In this study, a dual-modality loop-mediated isothermal amplification integrated with magnetic bead isolation is proposed for the determination of methylated Septin9 gene in colorectal cancer. Magnetic beads modified with anti-methyl cytosine antibody were prepared for fast enrichment of methylated DNA through specific immunoaffinity (30 min). One-pot real-time fluorescence and colorimetric loop-mediated isothermal amplification were simultaneously developed for detecting methylated Septin9 gene (60 min). The real-time fluorescence generating by SYTO-9 dye (excitation: 470 nm and emission: 525 nm) and pH indicator (neutral red) was used for quantitative and visualized detection of methylated DNA. This method was demonstrated to detect methylated DNA from HCT 116 cells ranging from 2 to 0.02 ng/μL with a limit of detection of 0.02 ± 0.002 ng/μL (RSD: 9.75%). This method also could discriminate methylated Septin9 in 0.1% HCT 116 cells (RSD: 6.60%), suggesting its high specificity and sensitivity. The feasibility of this assay was further evaluated by clinical plasma samples from 20 colorectal cancer patients and 20 healthy controls, which shows the potential application in simple, low cost, quantitative, and visualized detection of methylated nucleic acids.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200438, People's Republic of China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Baohong Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, People's Republic of China
- Shanghai Stomatological Hospital, Shanghai, 200438, People's Republic of China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
28
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
29
|
Mori A, Pomari E, Deiana M, Perandin F, Caldrer S, Formenti F, Mistretta M, Orza P, Ragusa A, Piubelli C. Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review. Expert Rev Mol Diagn 2021; 21:591-612. [PMID: 33910444 DOI: 10.1080/14737159.2021.1924059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Molecular technology has played an important role in arboviruses diagnostics. PCR-based methods stand out in terms of sensitivity, specificity, cost, robustness, and accessibility, and especially the isothermal amplification (IA) method is ideal for field-adaptable diagnostics in resource-limited settings (RLS).Areas covered: In this review, we provide an overview of the various molecular methods for West Nile, Zika, Dengue and Chikungunya. We summarize literature works reporting the assessment and use of in house and commercial assays. We describe limitations and challenges in the usage of methods and opportunities for novel approaches such as NNext-GenerationSequencing (NGS).Expert opinion: The rapidity and accuracy of differential diagnosis is essential for a successful clinical management, particularly in co-circulation area of arboviruses. Several commercial diagnostic molecular assays are available, but many are not affordable by RLS and not usable as Point-of-care/Point-of-need (POC/PON) such as RReal-TimeRT-PCR, Array-based methods and NGS. In contrast, the IA-based system fits better for POC/PON but it is still not ideal for the multiplexing detection system. Improvement in the characterization and validation of current molecular assays is needed to optimize their translation to the point of care.
Collapse
Affiliation(s)
- Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Francesca Perandin
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sara Caldrer
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Fabio Formenti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Manuela Mistretta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Pierantonio Orza
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Andrea Ragusa
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
30
|
Yadav S, Sharma NN, Akhtar J. Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. Analyst 2021; 146:3422-3439. [PMID: 33904559 DOI: 10.1039/d1an00214g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cost-effective rapid diagnosis of infectious diseases is an essential and important factor for curing such diseases in the global public health care picture. Owing to poor infrastructure and lack of sanitation, these diseases have an extreme impact on remote and rural areas, especially in developing countries, and there are unresolved challenges. Molecular diagnosis, such as nucleic acid analysis, plays a key role in the significant treatment of numerous infectious diseases. Current molecular diagnostic assays require a sophisticated laboratory setup with expensive components. Molecular diagnosis on a microfluidic point-of-care (POC) platform is attractive to researchers for disease detection with proper prevention. Compared to various microfluidic substrate materials, paper-based POC technologies offer significant cost-effective solutions over high-cost clinical instruments to fill the gap between the needs of users and affordability. Low-cost paper-based microfluidic POC technologies provide portable and disposable diagnostic systems for multiple disease detection that may be extremely useful in remote areas. This article presents a critical review of paper-based microfluidic device technology which has become an imminent platform to adjust the current health scenario for the detection of diseases using different stages of nucleic acid analysis, such as extraction, amplification and detection of nucleic acid, with future perspectives for paper substrates.
Collapse
Affiliation(s)
- Supriya Yadav
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Niti Nipun Sharma
- Department of Mechanical Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Jamil Akhtar
- Department of Electronics & Communication Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| |
Collapse
|
31
|
Golabi M, Flodrops M, Grasland B, Vinayaka AC, Quyen TL, Nguyen T, Bang DD, Wolff A. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and On-Site Detection of Avian Influenza Virus. Front Cell Infect Microbiol 2021; 11:652048. [PMID: 33954120 PMCID: PMC8092359 DOI: 10.3389/fcimb.2021.652048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Avian influenza virus (AIV) outbreaks occur frequently worldwide, causing a potential public health risk and great economic losses to poultry industries. Considering the high mutation rate and frequent genetic reassortment between segments in the genome of AIVs, emerging new strains are a real threat that may infect and spread through the human population, causing a pandemic. Therefore, rapid AIV diagnostic tests are essential tools for surveillance and assessing virus spreading. Real-time reverse transcription PCR (rRT-PCR), targeting the matrix gene, is the main official standard test for AIV detection, but the method requires well-equipped laboratories. Reverse transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has been reported as a rapid method and an alternative to PCR in pathogen detection. The high mutation rate in the AIV genome increases the risk of false negative in nucleic acid amplification methods for detection, such as PCR and LAMP, due to possible mismatched priming. In this study, we analyzed 800 matrix gene sequences of newly isolated AIV in the EU and designed a highly efficient LAMP primer set that covers all AIV subtypes. The designed LAMP primer set was optimized in real-time RT-LAMP (rRT-LAMP) assay. The rRT-LAMP assay detected AIV samples belonging to nine various subtypes with the specificity and sensitivity comparable to the official standard rRT-PCR assay. Further, a two-color visual detection RT-LAMP assay protocol was adapted with the aim to develop on-site diagnostic tests. The on-site testing successfully detected spiked AIV in birds oropharyngeal and cloacal swabs samples at a concentration as low as 100.8 EID50 per reaction within 30 minutes including sample preparation. The results revealed a potential of this newly developed rRT-LAMP assay to detect AIV in complex samples using a simple heat treatment step without the need for RNA extraction.
Collapse
Affiliation(s)
- Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Marion Flodrops
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Beatrice Grasland
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Aaydha C Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Than Linh Quyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trieu Nguyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Anders Wolff
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Kabir MDA, Ahmed R, Iqbal SMA, Chowdhury R, Paulmurugan R, Demirci U, Asghar W. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn 2021; 21:269-288. [PMID: 33621145 PMCID: PMC7938658 DOI: 10.1080/14737159.2021.1894930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19), a respiratory illness caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had its first detection in December 2019 in Wuhan (China) and spread across the world. In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic disease. The utilization of prompt and accurate molecular diagnosis of SARS-CoV-2 virus, isolating the infected patients, and treating them are the keys to managing this unprecedented pandemic. International travel acted as a catalyst for the widespread transmission of the virus.Areas covered: This review discusses phenotype, structural, and molecular evolution of recognition elements and primers, its detection in the laboratory, and at point of care. Further, market analysis of commercial products and their performance are also evaluated, providing new ways to confront the ongoing global public health emergency.Expert commentary: The outbreak for COVID-19 created mammoth chaos in the healthcare sector, and still, day by day, new epicenters for the outbreak are being reported. Emphasis should be placed on developing more effective, rapid, and early diagnostic devices. The testing laboratories should invest more in clinically relevant multiplexed and scalable detection tools to fight against a pandemic like this where massive demand for testing exists.
Collapse
Affiliation(s)
- MD Alamgir Kabir
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Sheikh Muhammad Asher Iqbal
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
| | | | - Ramasamy Paulmurugan
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Waseem Asghar
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
- Department of Biological Sciences (Courtesy Appointment, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
33
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
34
|
Alam MA, Hasan MR, Anzar N, Suleman S, Narang J. Diagnostic approaches for the rapid detection of Zika virus–A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Ahn G, Lee S, Lee SH, Baek YH, Song MS, Kim YH, Ahn JY. Zika virus lateral flow assays using reverse transcription-loop-mediated isothermal amplification. RSC Adv 2021; 11:17800-17808. [PMID: 35480212 PMCID: PMC9033246 DOI: 10.1039/d1ra01227d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our study suggest that ZIKV RT-LAMP combined with LFA could serve as a rapid, accurate, and independent point-of-care detection method for ZIKV outbreaks.
Collapse
Affiliation(s)
- Gna Ahn
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - SeonHyung Lee
- Department of Biological Sciences and Biotechnology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Se Hee Lee
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Yun Hee Baek
- College of Medicine
- Medical Research Institute
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Min-Suk Song
- College of Medicine
- Medical Research Institute
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Yang-Hoon Kim
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
- Department of Biological Sciences and Biotechnology
| | - Ji-Young Ahn
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
- Department of Biological Sciences and Biotechnology
| |
Collapse
|
36
|
Paper-Based Biosensors with Lateral/Vertical Flow Assay. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Sharma S, Kabir MA, Asghar W. Lab-on-a-Chip Zika Detection With Reverse Transcription Loop-Mediated Isothermal Amplification-Based Assay for Point-of-Care Settings. Arch Pathol Lab Med 2020; 144:1335-1343. [PMID: 32886758 DOI: 10.5858/arpa.2019-0667-oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Zika virus (ZIKV) infection, primarily transmitted by mosquitoes, causes various neurologic disorders. To differentiate ZIKV from other arboviruses, such as dengue, chikungunya, and yellow fever viruses, a highly specific, sensitive, and automated detection system is needed for point-of-care (POC) settings. OBJECTIVE.— To detect ZIKV at POC settings, we have developed a fully automated lab-on-a-chip microfluidic platform for rapid disease detection by using reverse transcription loop-mediated isothermal amplification. DESIGN.— The developed setup consists of a microfluidic chip, a platform for magnetic actuation, and a heater along with the sensor to precisely control the temperature for the target amplification. The platform accurately controls the movement of the magnetic beads that enable the isolation and purification of the target nucleotides adhered to their surface for the amplification and disease detection on the microfluidic chip. RESULTS.— Within 40 minutes, change in color due to the presence of ZIKV amplicons was visually observed with the spiked plasma samples in the end point analysis. Also, we have accurately and specifically identified ZIKV in a small number of de-identified clinical samples. CONCLUSIONS.— All-inclusive, the developed fully automated POC ZIKV diagnostic chip is rapid, simple, easy to use, inexpensive, and suitable for the areas where facilities are limited.
Collapse
Affiliation(s)
- Sandhya Sharma
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| | - Md Alamgir Kabir
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| | - Waseem Asghar
- From the Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton
| |
Collapse
|
38
|
Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, Khor CS, Abd-Jamil J, Zainal N, Wilder-Smith A, Zandi K, AbuBakar S. A reverse transcription loop-mediated isothermal amplification for broad coverage detection of Asian and African Zika virus lineages. BMC Infect Dis 2020; 20:947. [PMID: 33308203 PMCID: PMC7731766 DOI: 10.1186/s12879-020-05585-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required. METHODS In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay. RESULTS The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P < 0.001). CONCLUSION The RT-LAMP assay is applicable for the broad coverage detection of both the Asian and African ZIKV strains in resource-deficient settings.
Collapse
Affiliation(s)
- Boon-Teong Teoh
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Kim-Ling Chin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.,Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur-Izyan Samsudin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih-Keng Loong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chee-Sieng Khor
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Juraina Abd-Jamil
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Annelies Wilder-Smith
- Department of Public Health and Clinical Medicine, Epidemiology and Global Health, Umeå University, Umeå, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Keivan Zandi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Mao K, Zhang H, Yang Z. An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosens Bioelectron 2020; 169:112617. [PMID: 32998066 PMCID: PMC7492834 DOI: 10.1016/j.bios.2020.112617] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has caused a significant public health challenge worldwide. A lack of effective methods for screening potential patients, rapidly diagnosing suspected cases, and accurately monitoring of the epidemic in real time to prevent the rapid spread of COVID-19 raises significant difficulties in mitigating the epidemic in many countries. As effective point-of-care diagnosis tools, simple, low-cost and rapid sensors have the potential to greatly accelerate the screening and diagnosis of suspected patients to improve their treatment and care. In particular, there is evidence that multiple pathogens have been detected in sewage, including SARS-CoV-2, providing significant opportunities for the development of advanced sensors for wastewater-based epidemiology that provide an early warning of the pandemic within the population. Sensors could be used to screen potential carriers, provide real-time monitoring and control of the epidemic, and even support targeted drug screening and delivery within the integration of emerging mobile health (mHealth) technology. In this communication, we discuss the feasibility of an integrated point-of-care biosensor system with mobile health for wastewater-based epidemiology (iBMW) for early warning of COVID-19, screening and diagnosis of potential infectors, and improving health care and public health. The iBMW will provide an effective approach to prevent, evaluate and intervene in a fast, affordable and reliable way, thus enabling real-time guidance for the government in providing effective intervention and evaluating the effectiveness of intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|
40
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Wang L, Shen X, Wang T, Chen P, Qi N, Yin BC, Ye BC. A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection. Biosens Bioelectron 2020; 165:112364. [PMID: 32729496 DOI: 10.1016/j.bios.2020.112364] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023]
Abstract
Nucleic acid-based detection methods are accurate and rapid, which are widely-used in food-borne pathogen detection. However, traditional nucleic acid-based detection methods usually rely on special instruments, weakening their practicality for on-site tests in resource-limited locations. In this work, we developed a convenient and affordable method for food-borne pathogen detection based on a lateral flow strip combined with Cas9 nickase-triggered isothermal DNA amplification, which allows instrument-free and dual target detection. The genomic DNAs of two most common foodborne pathogens, Salmonella typhimurium and Escherichia coli, were simultaneously amplified in a one-pot reaction using specific sgRNAs and primers. The amplicons of genomic DNAs were double-labelled by digoxin/biotin and FITC/biotin tags, respectively, and directly visualized on a simple lateral flow strip. Our method exhibited a high specificity and sensitivity with a detection limit of 100 copies for genomic DNAs and 100 CFU/mL for bacteria. We believe that this method has potential to provide a convenient and low-cost point-of-care test for pathogen detection in the food quality surveillance.
Collapse
Affiliation(s)
- Luying Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xingying Shen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ting Wang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| |
Collapse
|
42
|
Landaverde L, Wong W, Hernandez G, Fan A, Klapperich C. Method for the elucidation of LAMP products captured on lateral flow strips in a point of care test for HPV 16. Anal Bioanal Chem 2020; 412:6199-6209. [PMID: 32488390 PMCID: PMC7266737 DOI: 10.1007/s00216-020-02702-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Loop-mediated amplification (LAMP) is an isothermal amplification technique favored in diagnostics and point-of-care work due to its high sensitivity and ability to run in isothermal conditions. In addition, a visual readout by lateral flow strips (LFS) can be used in conjunction with LAMP, making the assay accessible at the point-of-care. However, the amplicons resulting from a LAMP reaction varied in length and shape, making them undiscernible on a double-stranded DNA intercalating dye stained gel. Standard characterization techniques also do not identify which amplicons specifically bind to the LFS, which generate the visual readout. We aimed to standardize our characterization of LAMP products during assay development by using fluorescein amidite (FAM) and biotin-tagged loop forward and backward primers during assay development. A pvuII restriction enzyme digest is applied to the LAMP products. FAM-tagged bands are directly correlated with the LFS visual readout. We applied this assay development workflow for an HPV 16 assay using both plasmid DNA and clinical samples to demonstrate proof of concept for generalized assay development work.
Collapse
Affiliation(s)
- Lena Landaverde
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Winnie Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Gabriela Hernandez
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Andy Fan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Catherine Klapperich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
43
|
Park GS, Ku K, Baek SH, Kim SJ, Kim SI, Kim BT, Maeng JS. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Mol Diagn 2020; 22:729-735. [PMID: 32276051 DOI: 10.1101/2020.03.09.983064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic now has >2,000,000 confirmed cases worldwide. COVID-19 is currently diagnosed using quantitative RT-PCR methods, but the capacity of quantitative RT-PCR methods is limited by their requirement of high-level facilities and instruments. We developed and evaluated reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays to detect genomic RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. RT-LAMP assays reported in this study can detect as low as 100 copies of SARS-CoV-2 RNA. Cross-reactivity of RT-LAMP assays to other human coronaviruses was not observed. A colorimetric detection method was adapted for this RT-LAMP assay to enable higher throughput.
Collapse
Affiliation(s)
- Gun-Soo Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Republic of Korea.
| | - Keunbon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seung-Hwa Baek
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seung Il Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Soo Maeng
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
44
|
Park GS, Ku K, Baek SH, Kim SJ, Kim SI, Kim BT, Maeng JS. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Mol Diagn 2020; 22:729-735. [PMID: 32276051 PMCID: PMC7144851 DOI: 10.1016/j.jmoldx.2020.03.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/19/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic now has >2,000,000 confirmed cases worldwide. COVID-19 is currently diagnosed using quantitative RT-PCR methods, but the capacity of quantitative RT-PCR methods is limited by their requirement of high-level facilities and instruments. We developed and evaluated reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays to detect genomic RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. RT-LAMP assays reported in this study can detect as low as 100 copies of SARS-CoV-2 RNA. Cross-reactivity of RT-LAMP assays to other human coronaviruses was not observed. A colorimetric detection method was adapted for this RT-LAMP assay to enable higher throughput.
Collapse
Affiliation(s)
- Gun-Soo Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Republic of Korea.
| | - Keunbon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seung-Hwa Baek
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seung Il Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Soo Maeng
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
45
|
da Silva SJR, Pardee K, Pena L. Loop-Mediated Isothermal Amplification (LAMP) for the Diagnosis of Zika Virus: A Review. Viruses 2019; 12:v12010019. [PMID: 31877989 PMCID: PMC7019470 DOI: 10.3390/v12010019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
The recent outbreak of Zika virus (ZIKV) in the Americas and its devastating developmental and neurological manifestations has prompted the development of field-based diagnostics that are rapid, reliable, handheld, specific, sensitive, and inexpensive. The gold standard molecular method for lab-based diagnosis of ZIKV, from either patient samples or insect vectors, is reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The method, however, is costly and requires lab-based equipment and expertise, which severely limits its use as a point-of-care (POC) tool in resource-poor settings. Moreover, given the lack of antivirals or approved vaccines for ZIKV infection, a POC diagnostic test is urgently needed for the early detection of new outbreaks and to adequately manage patients. Loop-mediated isothermal amplification (LAMP) is a compelling alternative to RT-qPCR for ZIKV and other arboviruses. This low-cost molecular system can be freeze-dried for distribution and exhibits high specificity, sensitivity, and efficiency. A growing body of evidence suggests that LAMP assays can provide greater accessibility to much-needed diagnostics for ZIKV infections, especially in developing countries where the ZIKV is now endemic. This review summarizes the different LAMP methods that have been developed for the virus and summarizes their features, advantages, and limitations.
Collapse
Affiliation(s)
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Brazil;
- Correspondence: ; Tel.: +55-81-2123-7849
| |
Collapse
|
46
|
Lin Q, Ye X, Huang Z, Yang B, Fang X, Chen H, Kong J. Graphene Oxide-Based Suppression of Nonspecificity in Loop-Mediated Isothermal Amplification Enabling the Sensitive Detection of Cyclooxygenase-2 mRNA in Colorectal Cancer. Anal Chem 2019; 91:15694-15702. [PMID: 31725282 DOI: 10.1021/acs.analchem.9b03861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase-2 (COX2) mRNA represents a key biomarker for identifying subjects with colorectal cancer (CRC), while there is still no rapid and sensitive detection method for COX2 mRNA. Loop-mediated isothermal amplification (LAMP) is extensively developed for the amplification of nucleic acids; however, its application is frequently hindered by serious nonspecific amplification. Herein, this work reported a graphene oxide (GO)-based LAMP method to enable the one-step detection of COX2 mRNA in cancer cells and serum samples. We found that GO greatly enhanced the specificity of LAMP through decreasing nonspecific hybridization and the fluorescence background signal because of the simultaneous adsorption of single-stranded primers and DNA staining dyes on GO. The detection limit of developed GO-based LAMP was 2 orders of magnitude more sensitive compared to that of classical LAMP. Then a GO-based reverse transcription (RT)-LAMP strategy was further developed and applied to detect COX2 mRNA in CRC cancer cells and serum samples with high specificity. The GO-based LAMP platform with advantages of low cost, simplicity, high specificity, and sensitivity holds considerable potential for real-time fluorescence monitoring of nucleic acid amplification in a wide range of fields.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Xin Ye
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Zhipeng Huang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Bin Yang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Xueen Fang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Hui Chen
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Jilie Kong
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| |
Collapse
|
47
|
Sharma V, Sharma M, Dhull D, Sharma Y, Kaushik S, Kaushik S. Zika virus: an emerging challenge to public health worldwide. Can J Microbiol 2019; 66:87-98. [PMID: 31682478 DOI: 10.1139/cjm-2019-0331] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that was first isolated from Zika forest, Uganda, in 1947. Since its inception, major and minor outbreaks have been documented from several parts of world. Aedes spp. mosquitoes are the primary vectors of ZIKV, but the virus can also be transmitted through sexual practices, materno-fetal transmission, and blood transfusion. The clinical presentations of symptomatic ZIKV infections are similar to dengue and chikungunya, including fever, headache, arthralgia, retro-orbital pain, conjunctivitis, and rash. ZIKV often causes mild illness in the majority of cases, but in some instances, it is linked with congenital microcephaly and autoimmune disorders like Guillain-Barré syndrome. The recent Indian ZIKV outbreak suggests that the virus is circulating in the South East Asian region and may cause new outbreaks in future. At present, no specific vaccines or antivirals are available to treat ZIKV, so management and control of ZIKV infections rely mostly on preventive measures.
Collapse
Affiliation(s)
- Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Manisha Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005, Himachal Pradesh, India
| | - Divya Dhull
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Yashika Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
48
|
The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo− DNA Polymerase. Appl Biochem Biotechnol 2019; 190:758-771. [DOI: 10.1007/s12010-019-03127-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
|
49
|
Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res 2019; 46:5753-5763. [PMID: 29750267 PMCID: PMC6009661 DOI: 10.1093/nar/gky341] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
Collapse
Affiliation(s)
| | - Xiaoqing Fu
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- Dalian University of Technology, School of Life Science and Biotechnology, Dalian, Liaoning 116021, China
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Nathan A Tanner
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- To whom correspondence should be addressed. Tel: +1 978 380 7448; Fax: +1 978 921 1350;
| |
Collapse
|
50
|
Goncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM, Harris E, Murtagh M, Chua A, Rodriguez W, Kelly C, Wilder-Smith A. Innovative and New Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis 2019; 217:1060-1068. [PMID: 29294035 DOI: 10.1093/infdis/jix678] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Epidemics of dengue, Zika, and other arboviral diseases are increasing in frequency and severity. Current efforts to rapidly identify and manage these epidemics are limited by the short diagnostic window in acute infection, the extensive serologic cross-reactivity among flaviviruses, and the lack of point-of-care diagnostic tools to detect these viral species in primary care settings. The Partnership for Dengue Control organized a workshop to review the current landscape of Flavivirus diagnostic tools, identified current gaps, and developed strategies to accelerate the adoption of promising novel technologies into national programs. The rate-limiting step to bringing new diagnostic tools to the market is access to reference materials and well-characterized clinical samples to facilitate performance evaluation. We suggest the creation of an international laboratory-response consortium for flaviviruses with a decentralized biobank of well-characterized samples to facilitate assay validation. Access to proficiency panels are needed to ensure quality control, in additional to in-country capacity building.
Collapse
Affiliation(s)
| | | | - May C Chu
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Center, Aurora
| | - Duane J Gubler
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | | | | | | | | | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Singapore.,Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, University of Umea, Sweden
| |
Collapse
|