1
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
2
|
Kirschbaum C, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K, Urner LH. Structure and Conformation Determine Gas-Phase Infrared Spectra of Detergents. Chempluschem 2024; 89:e202400340. [PMID: 39031638 DOI: 10.1002/cplu.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Native mass spectrometry of membrane proteins relies on non-ionic detergents which protect the protein during transfer from solution into the gas phase. Once in the gas phase, the detergent micelle must be efficiently removed, which is usually achieved by collision-induced dissociation (CID). Recently, infrared multiple photon dissociation (IRMPD) has emerged as an alternative activation method for the analysis of membrane proteins, which has led to a growing interest in detergents that efficiently absorb infrared light. Here we investigate whether the absorption properties of synthetic detergents can be tailored by merging structural motifs of existing detergents into new hybrid detergents. We combine gas-phase infrared ion spectroscopy with density functional theory to investigate and rationalize the absorption properties of three established detergents and two hybrid detergents with fused headgroups. We show that, although the basic intramolecular interactions in the parent and hybrid detergents are similar, the three-dimensional structures differ significantly and so do the infrared spectra. Our results outline a roadmap for guiding the synthesis of tailored detergents with computational chemistry for future mass spectrometry applications.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Rd., Oxford, OX1 3QU, United Kingdom
| | - Kim Greis
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 10, 8093, Zürich, Switzerland
| | - Sandy Gewinner
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Leonhard H Urner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Xu T, Wang Q, Wang Q, Sun L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4664-4682. [PMID: 38973469 PMCID: PMC11257149 DOI: 10.1039/d4ay00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Proteoforms are all forms of protein molecules from the same gene because of variations at the DNA, RNA, and protein levels, e.g., alternative splicing and post-translational modifications (PTMs). Delineation of proteins in a proteoform-specific manner is crucial for understanding their biological functions. Mass spectrometry (MS)-intensive top-down proteomics (TDP) is promising for comprehensively characterizing intact proteoforms in complex biological systems. It has achieved substantial progress in technological development, including sample preparation, proteoform separations, MS instrumentation, and bioinformatics tools. In a single TDP study, thousands of proteoforms can be identified and quantified from a cell lysate. It has also been applied to various biomedical research to better our understanding of protein function in regulating cellular processes and to discover novel proteoform biomarkers of diseases for early diagnosis and therapeutic development. This review covers the most recent technological development and biomedical applications of MS-intensive TDP.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Le J, Loo JA. Detection of Lipid-Bound Bacteriorhodopsin Trimer Complex Directly from Purple Membrane by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2620-2624. [PMID: 37975648 PMCID: PMC10947533 DOI: 10.1021/jasms.3c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Native mass spectrometry (MS) was used to detect the membrane protein, bacteriorhodopsin (bR), in its 27 kDa monomeric form and trimeric assemblies directly from lipid-containing purple membranes (PMs) from the halophilic archaeon, Halobacterium salinarum. Trimer bR ion populations bound to lipid molecules were detected with n-octyl β-d-glucopyranoside as the solubilizing detergent; the use of octyl tetraethylene glycol monooctyl ether or n-dodecyl-β-d-maltopyranoside resulted in only detection of monomeric bR. The archaeal lipids phosphotidylglycerolphosphate methyl ester and 3-HSO3-Galp-β1,6-Manp-α1,2-Glcp-α1,1-sn-2,3-diphytanylglycerol were the only lipids in the PMs found to bind to bR, consistent with previous high-resolution structural studies. Removal of the lipids from the sample resulted in the detection of only the bR monomer, highlighting the importance of specific lipids for stabilizing the bR trimer. To the best of our knowledge, this is the first report of the detection of the bR trimer with resolved lipid-bound species by MS.
Collapse
Affiliation(s)
- Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
5
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
6
|
Juliano BR, Keating JW, Ruotolo BT. Infrared Photoactivation Enables Improved Native Top-Down Mass Spectrometry of Transmembrane Proteins. Anal Chem 2023; 95:13361-13367. [PMID: 37610409 PMCID: PMC11081007 DOI: 10.1021/acs.analchem.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane proteins are often challenging targets for native top-down mass spectrometry experimentation. The requisite use of membrane mimetics to solubilize such proteins necessitates the application of supplementary activation methods to liberate protein ions prior to sequencing, which typically limits the sequence coverage achieved. Recently, infrared photoactivation has emerged as an alternative to collisional activation for the liberation of membrane proteins from surfactant micelles. However, much remains unknown regarding the mechanism by which IR activation liberates membrane protein ions from such micelles, the extent to which such methods can improve membrane protein sequence coverage, and the degree to which such approaches can be extended to support native proteomics. Here, we describe experiments designed to evaluate and probe infrared photoactivation for membrane protein sequencing, proteoform identification, and native proteomics applications. Our data reveal that infrared photoactivation can dissociate micelles composed of a variety of detergent classes, without the need for a strong IR chromophore by leveraging the relatively weak association energies of such detergent clusters in the gas phase. Additionally, our data illustrate how IR photoactivation can be extended to include membrane mimetics beyond micelles and liberate proteins from nanodiscs, liposomes, and bicelles. Finally, our data quantify the improvements in membrane protein sequence coverage produced through the use of IR photoactivation, which typically leads to membrane protein sequence coverage values ranging from 40 to 60%.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Lutomski CA, El‐Baba TJ, Hinkle JD, Liko I, Bennett JL, Kalmankar NV, Dolan A, Kirschbaum C, Greis K, Urner LH, Kapoor P, Yen H, Pagel K, Mullen C, Syka JEP, Robinson CV. Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors. Angew Chem Int Ed Engl 2023; 62:e202305694. [PMID: 37329506 PMCID: PMC7615181 DOI: 10.1002/anie.202305694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Tarick J. El‐Baba
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | | | | | - Jack L. Bennett
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Neha V. Kalmankar
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Andrew Dolan
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Leonhard H. Urner
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityDortmund44227Germany
| | | | - Hsin‐Yung Yen
- OMass TherapeuticsOxfordOX4 2GXUK
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | | | | | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
8
|
Lutomski CA, El‐Baba TJ, Hinkle JD, Liko I, Bennett JL, Kalmankar NV, Dolan A, Kirschbaum C, Greis K, Urner LH, Kapoor P, Yen H, Pagel K, Mullen C, Syka JEP, Robinson CV. Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202305694. [PMID: 38516403 PMCID: PMC10953453 DOI: 10.1002/ange.202305694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 03/23/2024]
Abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Tarick J. El‐Baba
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | | | | | - Jack L. Bennett
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Neha V. Kalmankar
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Andrew Dolan
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Leonhard H. Urner
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityDortmund44227Germany
| | | | - Hsin‐Yung Yen
- OMass TherapeuticsOxfordOX4 2GXUK
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlin14195Germany
- Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | | | | | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
9
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
10
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Conformation Changes of Enkephalin in Coordination with Pb2+ Investigated by Gas Phase Hydrogen/Deuterium Exchange Mass Spectrometry Combined with Theoretical Calculations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Abstract
Intact protein, top-down, and native mass spectrometry (MS) generally requires the deconvolution of electrospray ionization (ESI) mass spectra to assign the mass of components from their charge state distribution. For small, well-resolved proteins, the charge can usually be assigned based on the isotope distribution. However, it can be challenging to determine charge states with larger proteins that lack isotopic resolution, in complex mass spectra with overlapping charge states, and in native spectra that show adduction. To overcome these challenges, UniDec uses Bayesian deconvolution to assign charge states and to create a zero-charge mass distribution. UniDec is fast, user-friendly, and includes a range of advanced tools to assist in intact protein, top-down, and native MS data analysis. This chapter provides a step-by-step protocol and an in-depth explanation of the UniDec algorithm, and highlights the parameters that affect the deconvolution. It also covers advanced data analysis tools, such as macromolecular mass defect analysis and tools for assigning potential PTMs and bound ligands. Overall, this chapter provides users with a deeper understanding of UniDec, which will enhance the quality of deconvolutions and allow for more intricate MS experiments.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
McCabe JW, Jones BJ, Walker TE, Schrader RL, Huntley AP, Lyu J, Hoffman NM, Anderson GA, Reilly PTA, Laganowsky A, Wysocki VH, Russell DH. Implementing Digital-Waveform Technology for Extended m/ z Range Operation on a Native Dual-Quadrupole FT-IM-Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2812-2820. [PMID: 34797072 PMCID: PMC9026758 DOI: 10.1021/jasms.1c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz., salts, buffers, detergents, and/or endogenous ligands. The second quadrupole (Q) is used to mass-select ions of interest for further interrogation by ion mobility spectrometry and/or collision-induced dissociation (CID). Q is operated using digital-waveform technology (DWT) to improve the mass selection compared to that achieved using traditional sinusoidal waveforms at floated DC potentials (>500 V DC). DWT allows for increased precision of the waveform for a fraction of the cost of conventional RF drivers and with readily programmable operation and precision (Hoffman, N. M. . A comparison-based digital-waveform generator for high-resolution duty cycle. Review of Scientific Instruments 2018, 89, 084101).
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert L Schrader
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Adam P Huntley
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nathan M Hoffman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | | | - Peter T A Reilly
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
15
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Hoi KK, Bada Juarez JF, Judge PJ, Yen HY, Wu D, Vinals J, Taylor GF, Watts A, Robinson CV. Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins. NANO LETTERS 2021; 21:2824-2831. [PMID: 33787280 PMCID: PMC8050825 DOI: 10.1021/acs.nanolett.0c04911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
Integral membrane proteins pose considerable challenges to mass spectrometry (MS) owing to the complexity and diversity of the components in their native environment. Here, we use native MS to study the post-translational maturation of bacteriorhodopsin (bR) and archaerhodopsin-3 (AR3), using both octyl-glucoside detergent micelles and lipid-based nanoparticles. A lower collision energy was required to obtain well-resolved spectra for proteins in styrene-maleic acid copolymer (SMA) Lipodisqs than in membrane scaffold protein (MSP) Nanodiscs. By comparing spectra of membrane proteins prepared using the different membrane mimetics, we found that SMA may favor selective solubilization of correctly folded proteins and better preserve native lipid interactions than other membrane mimetics. Our spectra reveal the correlation between the post-translation modifications (PTMs), lipid-interactions, and protein-folding states of bR, providing insights into the process of maturation of the photoreceptor proteins.
Collapse
Affiliation(s)
- Kin Kuan Hoi
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Juan Francisco Bada Juarez
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Peter J. Judge
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Hsin-Yung Yen
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- OMass
Therapeutics, The Schrödinger
Building, Oxford Science Park, Oxford OX4
4GE, United Kingdom
| | - Di Wu
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Javier Vinals
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Garrick F. Taylor
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anthony Watts
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carol V. Robinson
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
17
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
19
|
Barth M, Schmidt C. Native mass spectrometry-A valuable tool in structural biology. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4578. [PMID: 32662584 DOI: 10.1002/jms.4578] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein-ligand complexes essential. Classical techniques of structural biology include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo-electron microscopy. However, protein-ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high-resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Cleary SP, Prell JS. Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. Analyst 2020; 145:4688-4697. [PMID: 32459233 PMCID: PMC8483610 DOI: 10.1039/d0an00726a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native electrospray mass spectrometry is a powerful method for determining the native stoichiometry of many polydisperse multi-subunit biological complexes, including multi-subunit protein complexes and lipid-bound transmembrane proteins. However, when polydispersity results from incorporation of multiple copies of two or more different subunits, it can be difficult to analyze subunit stoichiometry using conventional mass spectrometry analysis methods, especially when m/z distributions for different charge states overlap in the mass spectrum. It was recently demonstrated by Marty and co-workers (K. K. Hoi, et al., Anal. Chem., 2016, 88, 6199-6204) that Fourier Transform (FT)-based methods can determine the bulk average lipid composition of protein-lipid Nanodiscs assembled with two different lipids, but a detailed statistical description of the composition of more general polydisperse two-subunit populations is still difficult to achieve. This results from the vast number of ways in which the two types of subunit can be distributed within the analyte ensemble. Here, we present a theoretical description of three common classes of heterogeneity for mixed-subunit analytes and demonstrate how to differentiate and analyze them using mass spectrometry and FT methods. First, we first describe FT-based analysis of mass spectra corresponding to simple superpositions, convolutions, and multinomial distributions for two or more different subunit types using model data sets. We then apply these principles with real samples, including mixtures of single-lipid Nanodiscs in the same solution (superposition), mixed-lipid Nanodiscs and copolymers (convolutions), and isotope distribution for ubiquitin (multinomial distribution). This classification scheme and the FT method used to study these analyte classes should be broadly useful in mass spectrometry as well as other techniques where overlapping, periodic signals arising from analyte mixtures are common.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA.
| | | |
Collapse
|
21
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
22
|
Campuzano IDG, Nshanian M, Spahr C, Lantz C, Netirojjanakul C, Li H, Wongkongkathep P, Wolff JJ, Loo JA. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1155-1162. [PMID: 32196330 PMCID: PMC7261417 DOI: 10.1021/jasms.0c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions was typically performed using time-of-flight (ToF) analyzers, due to their routine high m/z transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based mass spectrometers to transmit and detect a range of high molecular weight species is well documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15 T FT-ICR MS) is more than capable of analyzing a wide range of ions in the high m/z scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic cesium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); an IgG1-mertansine drug conjugate (148.5 kDa, drug-to-antibody ratio; DAR 2.26); an IgG1-siRNA conjugate (159.1 kDa; ribonucleic acid to antibody ratio; RAR 1); the membrane protein aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc (142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer at 1.6 MDa). We also investigate different regions of the FT-ICR MS that impact ion transmission and desolvation. Finally, we demonstrate how the transmission of these species and resultant spectra are highly consistent with those previously generated on both quadrupole-ToF (Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Christopher Spahr
- Amgen Research, Amgen Inc, Thousand Oaks, California 91320, United States
| | - Carter Lantz
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Huilin Li
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jeremy J. Wolff
- Bruker Daltonics Inc, Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Xia D, Liu B, Xu X, Ding Y, Zheng Q. Drug target discovery by magnetic nanoparticles coupled mass spectrometry. J Pharm Anal 2020; 11:122-127. [PMID: 33717618 PMCID: PMC7930636 DOI: 10.1016/j.jpha.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/24/2019] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
Drug target discovery is the basis of drug screening. It elucidates the cause of disease and the mechanism of drug action, which is the essential of drug innovation. Target discovery performed in biological systems is complicated as proteins are in low abundance and endogenous compounds may interfere with drug binding. Therefore, methods to track drug-target interactions in biological matrices are urgently required. In this work, a Fe3O4 nanoparticle-based approach was developed for drug-target screening in biofluids. A known ligand-protein complex was selected as a principle-to-proof example to validate the feasibility. After incubation in cell lysates, ligand-modified Fe3O4 nanoparticles bound to the target protein and formed complexes that were separated from the lysates by a magnet for further analysis. The large surface-to-volume ratio of the nanoparticles provides more active sites for the modification of chemical drugs. It enhances the opportunity for ligand-protein interactions, which is beneficial for capturing target proteins, especially for those with low abundance. Additionally, a one-step magnetic separation simplifies the pre-processing of ligand-protein complexes, so it effectively reduces the endogenous interference. Therefore, the present nanoparticle-based approach has the potential to be used for drug target screening in biological systems. Fe3O4 NPs were made hydrophilic to adequately disperse in the cell lysate and fully contact with target proteins. The magnetic property of the NPs allowed one-step isolation while maintaining ligand-protein non-covalent bindings. It enabled the capture of low abundant targets in biological matrices while eliminated the endogenous interference.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Baoling Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuling Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
24
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Lippold S, Nicolardi S, Domínguez-Vega E, Heidenreich AK, Vidarsson G, Reusch D, Haberger M, Wuhrer M, Falck D. Glycoform-resolved FcɣRIIIa affinity chromatography-mass spectrometry. MAbs 2019; 11:1191-1196. [PMID: 31276431 PMCID: PMC6748599 DOI: 10.1080/19420862.2019.1636602] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/20/2023] Open
Abstract
Determination of the impact of individual antibody glycoforms on FcɣRIIIa affinity, and consequently antibody-dependent cell-mediated cytotoxicity (ADCC) previously required high purity glycoengineering. We hyphenated FcɣRIIIa affinity chromatography to mass spectrometry, which allowed direct affinity comparison of glycoforms of intact monoclonal antibodies. The approach enabled reproduction and refinement of known glycosylation effects, and insights on afucosylation pairing as well as on low-abundant, unstudied glycoforms. Our method greatly improves the understanding of individual glycoform structure-function relationships. Thus, it is highly relevant for assessing Fc-glycosylation critical quality attributes related to ADCC.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Campuzano IDG, Robinson JH, Hui JO, Shi SDH, Netirojjanakul C, Nshanian M, Egea PF, Lippens JL, Bagal D, Loo JA, Bern M. Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody-Drug Conjugates to Polydisperse Membrane Proteins and Beyond. Anal Chem 2019; 91:9472-9480. [PMID: 31194911 PMCID: PMC6703902 DOI: 10.1021/acs.analchem.9b00062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the m/z scale, either positive [M + nH]n+ or negative [M - nH]n- depending on the ionization polarity. The manual calculation of the neutral molecular weight (MW) of single proteins measured by ESI-MS is simple; however, algorithmic deconvolution is required for more complex protein mixtures to derive accurate MWs. Multiple deconvolution algorithms have evolved over the past two decades, all of which have their advantages and disadvantages, in terms of speed, user-input parameters (or ideally lack thereof), and whether they perform optimally on proteins analyzed under denatured or native-MS and solution conditions. Herein, we describe the utility of a parsimonious deconvolution algorithm (explaining the observed spectra with a minimum number of masses) to process a wide range of highly diverse biopharma relevant and research grade proteins and complexes (PEG-GCSF; an IgG1k; IgG1- and IgG2-biotin covalent conjugates; the membrane protein complex AqpZ; a highly polydisperse empty MSP1D1 nanodisc and the tetradecameric chaperone protein complex GroEL) analyzed under native-MS, denaturing LC-MS, and positive and negative modes of ionization, using multiple instruments and therefore multiple data formats. The implementation of a comb filter and peak sharpening option is also demonstrated to be highly effective for deconvolution of highly polydisperse and enhanced separation of a low level lysine glycation post-translational modification (+162.1 Da), partially processed heavy chain lysine residues (+128.1 Da), and loss of N-acetylglucosamine (GlcNAc; -203.1 Da).
Collapse
Affiliation(s)
- Iain D. G. Campuzano
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John H. Robinson
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John O. Hui
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Stone D.-H. Shi
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Chawita Netirojjanakul
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Michael Nshanian
- University of California-Los Angeles, Dept. Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Pascal F. Egea
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | - Jennifer L. Lippens
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Discovery Attribute Sciences, Veterans Ways, South San Francisco, CA, 94080, USA
| | - Joseph A. Loo
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | | |
Collapse
|
27
|
Schachner LF, Ives AN, McGee JP, Melani RD, Kafader JO, Compton PD, Patrie SM, Kelleher NL. Standard Proteoforms and Their Complexes for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1190-1198. [PMID: 30963455 PMCID: PMC6592724 DOI: 10.1007/s13361-019-02191-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 05/09/2023]
Abstract
Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.
Collapse
Affiliation(s)
- Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA.
| |
Collapse
|
28
|
Humphreys SC, Thayer MB, Campuzano IDG, Netirojjanakul C, Rock BM. Quantification of siRNA-Antibody Conjugates in Biological Matrices by Triplex-Forming Oligonucleotide ELISA. Nucleic Acid Ther 2019; 29:161-166. [PMID: 30801231 DOI: 10.1089/nat.2018.0770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The potential repertoire of short interfering RNA (siRNA) therapeutics is expanding as targeting strategies evolve. One approach to enable organ-specific delivery has been to directly conjugate siRNA to a monoclonal antibody (siRNA-mAb), analogous to antibody-drug conjugates. Detection of intact siRNA-mAb conjugates presents a bioanalytical challenge given that certain synthetic nucleotide chemical modifications and low-temperature requirements render common oligonucleotide detection assays, such as reverse transcription-polymerase chain reaction, incompatible with the immunoassay component. To circumvent these issues, we developed a triplex-forming oligonucleotide ELISA using locked nucleic acid (LNA) containing oligonucleotide probes. We demonstrate that the incorporation of these LNAs allow for an enrichment and immobilization of siRNA directly conjugated to an antibody at nondenaturing temperatures. Without further requirement for extraction or amplification, we can sensitively and specifically detect intact siRNA-mAb conjugates in complex matrices such as serum and tissue homogenate.
Collapse
Affiliation(s)
- Sara C Humphreys
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| | - Mai B Thayer
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| | - Iain D G Campuzano
- 2 Amgen, Inc., Discovery Attribute Sciences, Amgen Research, Thousand Oaks, California
| | | | - Brooke M Rock
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| |
Collapse
|
29
|
Cleary SP, Prell JS. Liberating Native Mass Spectrometry from Dependence on Volatile Salt Buffers by Use of Gábor Transform. Chemphyschem 2019; 20:519-523. [DOI: 10.1002/cphc.201900022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sean P. Cleary
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
| | - James S. Prell
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
- Materials Science Institute 1252 University of Oregon Eugene OR 97403-1252 USA
| |
Collapse
|
30
|
Polasky DA, Dixit SM, Fantin SM, Ruotolo BT. CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data. Anal Chem 2019; 91:3147-3155. [DOI: 10.1021/acs.analchem.8b05762] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Polasky
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sugyan M. Dixit
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah M. Fantin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
32
|
Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA, Montfort WR, Marty MT. MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:118-127. [PMID: 29667162 PMCID: PMC6192864 DOI: 10.1007/s13361-018-1951-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 05/11/2023]
Abstract
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica M Diesing
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Matthew A Miller
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Scott M Perry
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
33
|
Ren C, Bailey AO, VanderPorten E, Oh A, Phung W, Mulvihill MM, Harris SF, Liu Y, Han G, Sandoval W. Quantitative Determination of Protein–Ligand Affinity by Size Exclusion Chromatography Directly Coupled to High-Resolution Native Mass Spectrometry. Anal Chem 2018; 91:903-911. [DOI: 10.1021/acs.analchem.8b03829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Aaron O. Bailey
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cleary SP, Li H, Bagal D, Loo JA, Campuzano IDG, Prell JS. Extracting Charge and Mass Information from Highly Congested Mass Spectra Using Fourier-Domain Harmonics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2067-2080. [PMID: 30003534 PMCID: PMC6330157 DOI: 10.1007/s13361-018-2018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
Native mass spectra of large, polydisperse biomolecules with repeated subunits, such as lipoprotein Nanodiscs, can often be challenging to analyze by conventional methods. The presence of tens of closely spaced, overlapping peaks in these mass spectra can make charge state, total mass, or subunit mass determinations difficult to measure by traditional methods. Recently, we introduced a Fourier Transform-based algorithm that can be used to deconvolve highly congested mass spectra for polydisperse ion populations with repeated subunits and facilitate identification of the charge states, subunit mass, charge-state-specific, and total mass distributions present in the ion population. Here, we extend this method by investigating the advantages of using overtone peaks in the Fourier spectrum, particularly for mass spectra with low signal-to-noise and poor resolution. This method is illustrated for lipoprotein Nanodisc mass spectra acquired on three common platforms, including the first reported native mass spectrum of empty "large" Nanodiscs assembled with MSP1E3D1 and over 300 noncovalently associated lipids. It is shown that overtone peaks contain nearly identical stoichiometry and charge state information to fundamental peaks but can be significantly better resolved, resulting in more reliable reconstruction of charge-state-specific mass spectra and peak width characterization. We further demonstrate how these parameters can be used to improve results from Bayesian spectral fitting algorithms, such as UniDec. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - Huilin Li
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Amgen, Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Iain D G Campuzano
- Molecular Structure and Characterization, Amgen, Inc., Thousand Oaks, CA, 91320, USA
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.
| |
Collapse
|
35
|
Huang KH, Tu TH, Wang SC, Chan YT, Hsu CC. Micelles Protect Intact Metallo-supramolecular Block Copolymer Complexes from Solution to Gas Phase during Electrospray Ionization. Anal Chem 2018; 90:7691-7699. [DOI: 10.1021/acs.analchem.8b01576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Gupta K, Li J, Liko I, Gault J, Bechara C, Wu D, Hopper JTS, Giles K, Benesch JLP, Robinson CV. Identifying key membrane protein lipid interactions using mass spectrometry. Nat Protoc 2018; 13:1106-1120. [PMID: 29700483 PMCID: PMC6049616 DOI: 10.1038/nprot.2018.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.
Collapse
Affiliation(s)
- Kallol Gupta
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Cherine Bechara
- Department of Chemistry, University of Oxford, Oxford, UK
- Institut de Genomique Fonctionnelle, CNRS UMR-5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
37
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
38
|
Susa AC, Lippens JL, Xia Z, Loo JA, Campuzano IDG, Williams ER. Submicrometer Emitter ESI Tips for Native Mass Spectrometry of Membrane Proteins in Ionic and Nonionic Detergents. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:203-206. [PMID: 29027132 PMCID: PMC5786471 DOI: 10.1007/s13361-017-1793-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 05/11/2023]
Abstract
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m /z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. Graphical Abstract.
Collapse
Affiliation(s)
- Anna C Susa
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | | | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
39
|
Lippens JL, Nshanian M, Spahr C, Egea PF, Loo JA, Campuzano IDG. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:183-193. [PMID: 28971338 PMCID: PMC5786498 DOI: 10.1007/s13361-017-1799-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 05/18/2023]
Abstract
Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chris Spahr
- Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, 91320, USA
| | - Pascal F Egea
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
40
|
Campuzano IDG, Netirojjanakul C, Nshanian M, Lippens JL, Kilgour DPA, Van Orden S, Loo JA. Native-MS Analysis of Monoclonal Antibody Conjugates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2017; 90:745-751. [DOI: 10.1021/acs.analchem.7b03021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Michael Nshanian
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| | | | - David P. A. Kilgour
- Department
of Chemistry and Forensics, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Steve Van Orden
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Reid DJ, Keener JE, Wheeler AP, Zambrano DE, Diesing JM, Reinhardt-Szyba M, Makarov A, Marty MT. Engineering Nanodisc Scaffold Proteins for Native Mass Spectrometry. Anal Chem 2017; 89:11189-11192. [PMID: 29048874 DOI: 10.1021/acs.analchem.7b03569] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipoprotein nanodiscs are ideally suited for native mass spectrometry because they provide a relatively monodisperse nanoscale lipid bilayer environment for delivering membrane proteins into the gas phase. However, native mass spectrometry of nanodiscs produces complex spectra that can be challenging to assign unambiguously. To simplify interpretation of nanodisc spectra, we engineered a series of mutant membrane scaffold proteins (MSP) that do not affect nanodisc formation but shift the masses of nanodiscs in a controllable way, eliminating isobaric interference from the lipids. Moreover, by mixing two different belts before assembly, the stoichiometry of MSP is encoded in the peak shape, which allows the stoichiometry to be assigned unambiguously from a single spectrum. Finally, we demonstrate the use of mixed belt nanodiscs with embedded membrane proteins to confirm the dissociation of MSP prior to desolvation.
Collapse
Affiliation(s)
- Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - James E Keener
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Andrew P Wheeler
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Dane Evan Zambrano
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Jessica M Diesing
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Kar UK, Simonian M, Whitelegge JP. Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 2017; 14:715-723. [PMID: 28737967 DOI: 10.1080/14789450.2017.1359545] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Integral membrane proteins and lipids constitute the bilayer membranes that surround cells and sub-cellular compartments, and modulate movements of molecules and information between them. Since membrane protein drug targets represent a disproportionately large segment of the proteome, technical developments need timely review. Areas covered: Publically available resources such as Pubmed were surveyed. Bottom-up proteomics analyses now allow efficient extraction and digestion such that membrane protein coverage is essentially complete, making up around one third of the proteome. However, this coverage relies upon hydrophilic loop regions while transmembrane domains are generally poorly covered in peptide-based strategies. Top-down mass spectrometry where the intact membrane protein is fragmented in the gas phase gives good coverage in transmembrane regions, and membrane fractions are yielding to high-throughput top-down proteomics. Exciting progress in native mass spectrometry of membrane protein complexes is providing insights into subunit stoichiometry and lipid binding, and cross-linking strategies are contributing critical in-vivo information. Expert commentary: It is clear from the literature that integral membrane proteins have yielded to advanced techniques in protein chemistry and mass spectrometry, with applications limited only by the imagination of investigators. Key advances toward translation to the clinic are emphasized.
Collapse
Affiliation(s)
- Upendra K Kar
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Margaret Simonian
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| | - Julian P Whitelegge
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
43
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|