1
|
Brown G, Marchwicka A, Marcinkowska E. Vitamin D and immune system. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:1-41. [PMID: 38777411 DOI: 10.1016/bs.afnr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The active metabolite of vitamin D 1,25(OH)2D is well known for its role in regulating calcium-phosphate homeostasis of the human body. However, the immunomodulating activity of 1,25(OH)2D has been known for many years. There are numerous reports correlating low vitamin D levels in blood serum with the onset of autoimmune diseases and with the severe course of acute infections. In this chapter, we address the role of 1,25(OH)2D in these diseases, and we discuss the possible mechanisms of action of 1,25(OH)2D in immune cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksandra Marchwicka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
2
|
Tornyi I, Lazar J, Pettko-Szandtner A, Hunyadi-Gulyas E, Takacs L. Epitomics: Analysis of Plasma C9 Epitope Heterogeneity in the Plasma of Lung Cancer Patients and Control Subjects. Int J Mol Sci 2023; 24:14359. [PMID: 37762663 PMCID: PMC10531758 DOI: 10.3390/ijms241814359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The human proteome is more complex than the genetic code predicts it to be. Epitomics, or protein epitome profiling, is a tool for understanding sub-protein level variation. With the ultimate goal to explore C9 proteoforms and their relevance to lung cancer, here we report plasma C9 epitope-associated molecular heterogeneity in plasma samples of lung cancer patients and control subjects. We show three C9 epitopes (BSI0449, BSI0581, BSI0639) with markedly different association with lung cancer ("unaltered", "upregulated" and "downregulated"). In order to exclude confounding effects, we show first that the three epitope-defining mAbs recognize C9 in purified form and in the natural context, in the human plasma. Then, we present data demonstrating the lack of major epitope interdependence or overlap. The next experiments represent a quest toward the understanding of the molecular basis of apparent disparate association with lung cancer. Using immunochemistry, SDS PAGE and LC-MS/MS technologies, we demonstrate that epitope-specific immunoprecipitates of plasma C9 seem identical regarding peptide sequence. However, we found epitope-specific posttranslational modification and coprecipitated protein composition differences with respect to control and lung cancer plasma. Epitope profiling enabled the classification of hypothetical C9 proteoforms through differential association with lung cancer.
Collapse
Affiliation(s)
- Ilona Tornyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Biosystems Immunolab Zrt., 4025 Debrecen, Hungary;
| | - Jozsef Lazar
- Biosystems Immunolab Zrt., 4025 Debrecen, Hungary;
- Biosystems International Kft., 4025 Debrecen, Hungary
| | - Aladar Pettko-Szandtner
- Proteomics Laboratory, Biological Research Center, 6726 Szeged, Hungary; (A.P.-S.); (E.H.-G.)
| | - Eva Hunyadi-Gulyas
- Proteomics Laboratory, Biological Research Center, 6726 Szeged, Hungary; (A.P.-S.); (E.H.-G.)
| | - Laszlo Takacs
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
3
|
Messana I, Manconi B, Cabras T, Boroumand M, Sanna MT, Iavarone F, Olianas A, Desiderio C, Rossetti DV, Vincenzoni F, Contini C, Guadalupi G, Fiorita A, Faa G, Castagnola M. The Post-Translational Modifications of Human Salivary Peptides and Proteins Evidenced by Top-Down Platforms. Int J Mol Sci 2023; 24:12776. [PMID: 37628956 PMCID: PMC10454625 DOI: 10.3390/ijms241612776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.
Collapse
Affiliation(s)
- Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | | | - Maria Teresa Sanna
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Antonella Fiorita
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa e del Collo, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gavino Faa
- Unit of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy;
| |
Collapse
|
4
|
Lazar J, Antal-Szalmas P, Kurucz I, Ferenczi A, Jozsi M, Tornyi I, Muller M, Fekete JT, Lamont J, FitzGerald P, Gall-Debreceni A, Kadas J, Vida A, Tardieu N, Kieffer Y, Jullien A, Guergova-Kuras M, Hempel W, Kovacs A, Kardos T, Bittner N, Csanky E, Szilasi M, Losonczy G, Szondy K, Galffy G, Csada E, Szalontai K, Somfay A, Malka D, Cottu P, Bogos K, Takacs L. Large-Scale Plasma Proteome Epitome Profiling is an Efficient Tool for the Discovery of Cancer Biomarkers. Mol Cell Proteomics 2023; 22:100580. [PMID: 37211046 PMCID: PMC10319867 DOI: 10.1016/j.mcpro.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Current proteomic technologies focus on the quantification of protein levels, while little effort is dedicated to the development of system approaches to simultaneously monitor proteome variability and abundance. Protein variants may display different immunogenic epitopes detectable by monoclonal antibodies. Epitope variability results from alternative splicing, posttranslational modifications, processing, degradation, and complex formation and possesses dynamically changing availability of interacting surface structures that frequently serve as reachable epitopes and often carry different functions. Thus, it is highly likely that the presence of some of the accessible epitopes correlates with function under physiological and pathological conditions. To enable the exploration of the impact of protein variation on the immunogenic epitome first, here, we present a robust and analytically validated PEP technology for characterizing immunogenic epitopes of the plasma. To this end, we prepared mAb libraries directed against the normalized human plasma proteome as a complex natural immunogen. Antibody producing hybridomas were selected and cloned. Monoclonal antibodies react with single epitopes, thus profiling with the libraries is expected to profile many epitopes which we define by the mimotopes, as we present here. Screening blood plasma samples from control subjects (n = 558) and cancer patients (n = 598) for merely 69 native epitopes displayed by 20 abundant plasma proteins resulted in distinct cancer-specific epitope panels that showed high accuracy (AUC 0.826-0.966) and specificity for lung, breast, and colon cancer. Deeper profiling (≈290 epitopes of approximately 100 proteins) showed unexpected granularity of the epitope-level expression data and detected neutral and lung cancer-associated epitopes of individual proteins. Biomarker epitope panels selected from a pool of 21 epitopes of 12 proteins were validated in independent clinical cohorts. The results demonstrate the value of PEP as a rich and thus far unexplored source of protein biomarkers with diagnostic potential.
Collapse
Affiliation(s)
- Jozsef Lazar
- Biosystems International Kft., Debrecen, Hungary; Biosystems Immunolab Zrt., Debrecen, Hungary.
| | - Peter Antal-Szalmas
- Biosystems Immunolab Zrt., Debrecen, Hungary; Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Kurucz
- Biosystems International Kft., Debrecen, Hungary; Biosystems Immunolab Zrt., Debrecen, Hungary
| | | | - Mihaly Jozsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Ilona Tornyi
- Biosystems Immunolab Zrt., Debrecen, Hungary; Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - John Lamont
- Randox Laboratories Ltd, Crumlin, United Kingdom
| | | | | | - Janos Kadas
- Biosystems International Kft., Debrecen, Hungary
| | - Andras Vida
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | - Tamas Kardos
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nora Bittner
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Csanky
- Department of Pulmonology, Miskolc Semmelweis Hospital and University Hospital, Miskolc, Hungary
| | - Maria Szilasi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Losonczy
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Klara Szondy
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabriella Galffy
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Edit Csada
- Csongrád County Hospital of Chest Diseases, Deszk, Hungary
| | | | - Attila Somfay
- Department of Pulmonology, Faculty of Medicine, University of Szeged, Deszk, Hungary
| | - David Malka
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Krisztina Bogos
- National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Laszlo Takacs
- Biosystems International Kft., Debrecen, Hungary; Biosystems Immunolab Zrt., Debrecen, Hungary; Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Biosystems International SAS, Evry, France.
| |
Collapse
|
5
|
Cramer DAT, Franc V, Heidenreich AK, Hook M, Adibzadeh M, Reusch D, Heck AJR, Haberger M. Characterization of high-molecular weight by-products in the production of a trivalent bispecific 2+1 heterodimeric antibody. MAbs 2023; 15:2175312. [PMID: 36799476 PMCID: PMC9980510 DOI: 10.1080/19420862.2023.2175312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The development of increasingly complex antibody formats, such as bispecifics, can lead to the formation of increasingly complex high- and low-molecular-weight by-products. Here, we focus on the characterization of high molecular weight species (HMWs) representing the highest complexity of size variants. Standard methods used for product release, such as size exclusion chromatography (SEC), can separate HMW by-products from the main product, but cannot distinguish smaller changes in mass. Here, for the identification of the diverse and complex HMW variants of a trivalent bispecific CrossMAb antibody, offline fractionation, as well as production of HMW by-products combined with comprehensive analytical testing, was applied. Furthermore, HMW variants were analyzed regarding their chemical binding nature and tested in functional assays regarding changes in potency of the variants. Changes in potency were explained by detailed characterization using mass photometry, SDS-PAGE analysis, native mass spectrometry (MS) coupled to SEC and bottom-up proteomics. We identified a major portion of the HMW by-products to be non-covalently linked, leading to dissociation and changes in activity. We also identified and localized high heterogeneity of a by-product of concern and applied a CD3 affinity column coupled to native MS to annotate unexpected by-products. We present here a multi-method approach for the characterization of complex HMW by-products. A better understanding of these by-products is beneficial to guide analytical method development and proper specification setting for therapeutic bispecific antibodies to ensure constant efficacy and patient safety of the product through the assessment of by-products.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Michaela Hook
- Pharma Technical Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Mahdi Adibzadeh
- Pharma Technical Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Markus Haberger
- Pharma Technical Development, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
6
|
Li H, Xie X, Bai G, Qiang D, Zhang L, Liu H, He Y, Tang Y, Li L. Vitamin D deficiency leads to the abnormal activation of the complement system. Immunol Res 2023; 71:29-38. [PMID: 36178657 PMCID: PMC9845165 DOI: 10.1007/s12026-022-09324-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023]
Abstract
Vitamin D deficiency can damage the human immune system, and the complement system is a key component of the immune system. This study aimed to elucidate the mechanism by which vitamin D affects the immune system by analyzing the changes in the protein expression of the complement system under different vitamin D levels. We selected 40 participants and divided them into three groups according to their serum levels of 25-hydroxyvitamin D (25(OH)VD): group A, 25(OH)VD ≥ 40 ng/mL; group B, 30 ng/mL ≤ 25(OH)VD < 40 ng/mL; and group C, 25(OH)VD < 30 ng/mL. Serum samples were subjected to biochemical analysis, followed by proteomic analysis using high-throughput untargeted proteomic techniques. Vitamin D deficiency increased the levels of fasting blood sugar, fasting serum insulin, and homeostasis model assessment (HOMA) of insulin resistance and decreased the secretion of HOMA of β-cell function, which led to insulin resistance and glucose metabolism disorder. Moreover, vitamin D deficiency resulted in the abnormal expression of 56 differential proteins, among which the expression levels of complement factor B, complement component C9, inducible co-stimulator ligand, and peptidase inhibitor 16 significantly changed with the decrease in vitamin D content. Functional enrichment analysis of these differential proteins showed that they were mainly concentrated in functions and pathways related to insulin secretion and inflammation. In conclusion, vitamin D deficiency not only contributes to insulin resistance and glucose metabolism disorder but also causes abnormal protein expression, resulting in the abnormal activation of the complement system. This study provides a novel theoretical basis for further studies on the relationship between vitamin D and the immune system.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001, China.
| | - Guirong Bai
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Dan Qiang
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Li Zhang
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Huili Liu
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Yanting He
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Yanpan Tang
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| | - Ling Li
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, No. 2, Liqun West Street, Xingqing District, Yinchuan, 750001 China
| |
Collapse
|
7
|
Crine SL, Acharya KR. Molecular basis of C-mannosylation - a structural perspective. FEBS J 2022; 289:7670-7687. [PMID: 34741587 DOI: 10.1111/febs.16265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023]
Abstract
The structural and functional diversity of proteins can be enhanced by numerous post-translational modifications. C-mannosylation is a rare form of glycosylation consisting of a single alpha or beta D-mannopyranose forming a carbon-carbon bond with the pyrrole ring of a tryptophan residue. Despite first being discovered in 1994, C-mannosylation is still poorly understood and 3D structures are available for only a fraction of the total predicted C-mannosylated proteins. Here, we present the first comprehensive review of C-mannosylated protein structures by analysing the data for all 10 proteins with C-mannosylation/s deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB). We analysed in detail the WXXW/WXXWXXW consensus motif and the highly conserved pair of arginine residues in thrombospondin type 1 repeat C-mannosylation sites or homologous arginine residues in other domains. Furthermore, we identified a conserved PXP sequence C-terminal of the C-mannosylation site. The PXP motif forms a tight turn region in the polypeptide chain and its universal conservation in C-mannosylated protein is worthy of further experimental study. The stabilization of C-mannopyranosyl groups was demonstrated through hydrogen bonding with arginine and other charged or polar amino acids. Where possible, the structural findings were linked to other functional studies demonstrating the role of C-mannosylation in protein stability, secretion or function. With the current technological advances in structural biology, we hope to see more progress in the study of C-mannosylation that may correspond to discoveries of novel C-mannosylation pathways and functions with implications for human health and biotechnology.
Collapse
Affiliation(s)
- Samuel L Crine
- Department of Biology and Biochemistry, University of Bath, UK
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
8
|
Sharma A, Gupta S, Patil AB, Vijay N. Birth and death in terminal complement pathway. Mol Immunol 2022; 149:174-187. [PMID: 35908437 DOI: 10.1016/j.molimm.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
The cytolytic activity of the membrane attack complex (MAC) is pivotal in the complement-mediated elimination of pathogens. Terminal complement pathway (TCP) genes encode the proteins that form the MAC. Although the TCP genes are well conserved within most vertebrate species, the early evolution of the TCP genes is poorly understood. Based on the comparative genomic analysis of the early evolutionary history of the TCP homologs, we evaluated four possible scenarios that could have given rise to the vertebrate TCP. Currently available genomic data support a scheme of complex sequential protein domain gains that may be responsible for the birth of the vertebrate C6 gene. The subsequent duplication and divergence of this vertebrate C6 gene formed the C7, C8α, C8β, and C9 genes. Compared to the widespread conservation of TCP components within vertebrates, we discovered that C9 has disintegrated in the genomes of galliform birds. Publicly available genome and transcriptome sequencing datasets of chicken from Illumina short read, PacBio long read, and Optical mapping technologies support the validity of the genome assembly at the C9 locus. In this study, we have generated a > 120X coverage whole-genome Chromium 10x linked-read sequencing dataset for the chicken and used it to verify the loss of the C9 gene in the chicken. We find multiple CR1 (chicken repeat 1) element insertions within and near the remnant exons of C9 in several galliform bird genomes. The reconstructed chronology of events shows that the CR1 insertions occurred after C9 gene loss in an early galliform ancestor. Loss of C9 in galliform birds, in contrast to conservation in other vertebrates, may have implications for host-pathogen interactions. Our study of C6 gene birth in an early vertebrate ancestor and C9 gene death in galliform birds provides insights into the evolution of the TCP.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Saumya Gupta
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
9
|
Qin R, Kurz E, Chen S, Zeck B, Chiribogas L, Jackson D, Herchen A, Attia T, Carlock M, Rapkiewicz A, Bar-Sagi D, Ritchie B, Ross TM, Mahal LK. α2,6-Sialylation is Upregulated in Severe COVID-19 Implicating the Complement Cascade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.06.22275981. [PMID: 35702159 PMCID: PMC9196116 DOI: 10.1101/2022.06.06.22275981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Better understanding of the mechanisms of COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein is unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find α2,6-sialylation is upregulated in plasma of patients with severe COVID-19 and in the lung. This glycan motif is enriched on members of the complement cascade, which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, 550 1st Avenue, New York, New York, USA
| | - Shuhui Chen
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA
| | - Briana Zeck
- Center for Biospecimen Research and Development, NYU Langone, New York, New York, USA
| | - Luis Chiribogas
- Center for Biospecimen Research and Development, NYU Langone, New York, New York, USA
| | - Dana Jackson
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Alex Herchen
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Tyson Attia
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Michael Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Bruce Ritchie
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Xu Y, Zhang H. Putting the pieces together: mapping the O-glycoproteome. Curr Opin Biotechnol 2021; 71:130-136. [PMID: 34358979 PMCID: PMC8629430 DOI: 10.1016/j.copbio.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Protein glycosylation is the most diverse and omnipresent protein modification. Glycosylation provides glycoproteins with important structural and functional properties to facilitate critical biological processes. Despite the significance of protein glycosylation, the investigation of glycoproteome, especially O-linked glycoproteome, remains elusive due to the lack of a comprehensive methodology to conform with the diversity of O-linked glycoforms of O-linked glycoproteins. In recent years, mass spectrometry has become an indispensable tool for the characterization of O-linked glycosylated proteins across biological systems. We herein highlight the recent developments in MS-based O-linked glycoproteomic technologies, quantitative data acquisition strategy and bioinformatic tools, with a special focus on mucin-type O-linked glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
Chen S, Wu D, Robinson CV, Struwe WB. Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Anal Chem 2021; 93:10435-10443. [PMID: 34279906 DOI: 10.1021/acs.analchem.1c01460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins are inherently heterogeneous and therefore resolving structures in their entirety remains a major challenge in structural biology. Native mass spectrometry has transformed our ability to study glycoproteins, and despite advances in high-resolution instrumentation, there are comparatively a few studies demonstrating its potential with data largely limited to an overall measure of monosaccharide composition for all glycans across glycosylation sites for a given protein. Clearly, these readouts lack glycan topology information, namely, monosaccharide linkage and glycan branching. To address this deficiency, we developed a new approach that joins native mass spectrometry with glycan exoglycosidase sequencing, the combination of which provides remarkable glycoprotein structural details. We show how N-glycan branching, terminal fucosylation, LacNAc extensions, and N- and O-glycan occupancy (i.e., total number of glycans) can be directly characterized on intact glycoproteins with minimal sample preparation. Taken together, native exoglycosidase sequencing mass spectrometry (NES-MS) notably improves our ability to characterize protein glycosylation, addressing a significant need in structural biology that will enable new routes to understand glycoprotein function.
Collapse
Affiliation(s)
- Siyun Chen
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Di Wu
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Carol V Robinson
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Weston B Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| |
Collapse
|
14
|
Lukassen MV, Franc V, Hevler JF, Heck AJR. Similarities and differences in the structures and proteoform profiles of the complement proteins C6 and C7. Proteomics 2021; 21:e2000310. [PMID: 34241972 DOI: 10.1002/pmic.202000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022]
Abstract
The human complement system provides a first line of defence against pathogens. It requires a well-orchestrated sequential assembly of an array of terminal complement components (C5, C6, C7, C8, and C9), ultimately forming the membrane attack complex (MAC). Although much information about MAC assembly is available, the structure of the soluble C7 has remained elusive. The complement proteins C7 and C6 share very high sequence homology and exhibit several conserved domains, disulphide bridges, and C-mannosylation sites. Here, we used an integrative structural MS-based approach combining native MS, glycopeptide-centric MS, in-gel cross-linking MS (IGX-MS) and structural modelling to describe structural features, including glycosylation, of human serum soluble C7. We compare this data with structural and glycosylation data for human serum C6. The new structural model for C7 shows that it adopts a compact conformation in solution. Although C6 and C7 share many similarities, our data reveals distinct O-, and N-linked glycosylation patterns in terms of location and glycan composition. Cumulatively, our data provide valuable new insight into the structure and proteoforms of C7, solving an essential piece of the puzzle in our understanding of MAC assembly.
Collapse
Affiliation(s)
- Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| |
Collapse
|
15
|
Webster JA, Wuethrich A, Shanmugasundaram KB, Richards RS, Zelek WM, Shah AK, Gordon LG, Kendall BJ, Hartel G, Morgan BP, Trau M, Hill MM. Development of EndoScreen Chip, a Microfluidic Pre-Endoscopy Triage Test for Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:2865. [PMID: 34201241 PMCID: PMC8229863 DOI: 10.3390/cancers13122865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
The current endoscopy and biopsy diagnosis of esophageal adenocarcinoma (EAC) and its premalignant condition Barrett's esophagus (BE) is not cost-effective. To enable EAC screening and patient triaging for endoscopy, we developed a microfluidic lectin immunoassay, the EndoScreen Chip, which allows sensitive multiplex serum biomarker measurements. Here, we report the proof-of-concept deployment for the EAC biomarker Jacalin lectin binding complement C9 (JAC-C9), which we previously discovered and validated by mass spectrometry. A monoclonal C9 antibody (m26 3C9) was generated and validated in microplate ELISA, and then deployed for JAC-C9 measurement on EndoScreen Chip. Cohort evaluation (n = 46) confirmed the expected elevation of serum JAC-C9 in EAC, along with elevated total serum C9 level. Next, we asked if the small panel of serum biomarkers improves detection of EAC in this cohort when used in conjunction with patient risk factors (age, body mass index and heartburn history). Using logistic regression modeling, we found that serum C9 and JAC-C9 significantly improved EAC prediction from AUROC of 0.838 to 0.931, with JAC-C9 strongly predictive of EAC (vs. BE OR = 4.6, 95% CI: 1.6-15.6, p = 0.014; vs. Healthy OR = 4.1, 95% CI: 1.2-13.7, p = 0.024). This proof-of-concept study confirms the microfluidic EndoScreen Chip technology and supports the potential utility of blood biomarkers in improving triaging for diagnostic endoscopy. Future work will expand the number of markers on EndoScreen Chip from our list of validated EAC biomarkers.
Collapse
Affiliation(s)
- Julie A. Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
| | - Karthik B. Shanmugasundaram
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
| | - Renee S. Richards
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Wioleta M. Zelek
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF10 3AX, UK; (W.M.Z.); (B.P.M.)
| | - Alok K. Shah
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Louisa G. Gordon
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Bradley J. Kendall
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4102, Australia
- Department of Gastroenterolgy and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - B. Paul Morgan
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF10 3AX, UK; (W.M.Z.); (B.P.M.)
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4102, Australia
| |
Collapse
|
16
|
Stewart TJ, Takahashi K, Xu N, Prakash A, Brown R, Raska M, Renfrow MB, Novak J. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology 2021; 31:540-556. [PMID: 33295603 PMCID: PMC8176776 DOI: 10.1093/glycob/cwaa111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Aichi, Toyoake 470-1192, Japan
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Nuo Xu
- Department of Management, Information Systems & Quantitative Methods, 710 13th Street South, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amol Prakash
- Optys Tech Corporation, Shrewsbury, MA 01545, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Immunology, Palacky University and University Hospital, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, KAUL 524, Birmingham, AL 35294, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Wu D, Robinson CV. Connecting ‘multi-omics’ approaches to endogenous protein complexes. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Spicer BA, Dunstone MA. Going full circle: Determining the structures of complement component 9. Methods Enzymol 2021; 649:103-123. [PMID: 33712184 DOI: 10.1016/bs.mie.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pore forming proteins (PFPs) undergo dramatic conformational changes to punch holes in the target membrane. These PFPs have the ability to self-assemble, by way of oligomerization, and have the capacity to transform from a water soluble state (commonly referred to as fluid phase) to a membrane adhered form. Accordingly, PFPs are metastable, that is they are inert until the right conditions cause the release of potential energy stored in the conformational fold leading to a vast structural rearrangement into a membrane-inserted oligomeric form. However, the metastable state of PFPs poses a problem of leading to aggregation and precipitation in conditions typically required for structural biology techniques. Here, we discuss the protein chemistry of the MACPF protein complement component 9 (C9). C9 is part of a larger complex assembly known as the membrane attack complex (MAC) that has been studied extensively for its ability to form pores in bacteria. An unusual artifact of human C9 is the ability to form a soluble oligomeric state of the channel portion of the MAC, called polyC9. PolyC9 formation does not require the presence of membranes or other complement factors. It is only in recent years that structural studies of the MAC have become successful owing to improved recombinant DNA expression systems and the improvement of high-resolution techniques (both X-ray crystallography and single particle cryo-EM). We discuss the expression and purification of recombinant C9, crystallization of the soluble monomeric form of C9 and the preparation of the oligomeric polyC9.
Collapse
Affiliation(s)
- Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
19
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
20
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
21
|
Riley N, Malaker SA, Driessen MD, Bertozzi CR. Optimal Dissociation Methods Differ for N- and O-Glycopeptides. J Proteome Res 2020; 19:3286-3301. [PMID: 32500713 PMCID: PMC7425838 DOI: 10.1021/acs.jproteome.0c00218] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Site-specific characterization of glycosylation requires intact glycopeptide analysis, and recent efforts have focused on how to best interrogate glycopeptides using tandem mass spectrometry (MS/MS). Beam-type collisional activation, i.e., higher-energy collisional dissociation (HCD), has been a valuable approach, but stepped collision energy HCD (sceHCD) and electron transfer dissociation with HCD supplemental activation (EThcD) have emerged as potentially more suitable alternatives. Both sceHCD and EThcD have been used with success in large-scale glycoproteomic experiments, but they each incur some degree of compromise. Most progress has occurred in the area of N-glycoproteomics. There is growing interest in extending this progress to O-glycoproteomics, which necessitates comparisons of method performance for the two classes of glycopeptides. Here, we systematically explore the advantages and disadvantages of conventional HCD, sceHCD, ETD, and EThcD for intact glycopeptide analysis and determine their suitability for both N- and O-glycoproteomic applications. For N-glycopeptides, HCD and sceHCD generate similar numbers of identifications, although sceHCD generally provides higher quality spectra. Both significantly outperform EThcD methods in terms of identifications, indicating that ETD-based methods are not required for routine N-glycoproteomics even if they can generate higher quality spectra. Conversely, ETD-based methods, especially EThcD, are indispensable for site-specific analyses of O-glycopeptides. Our data show that O-glycopeptides cannot be robustly characterized with HCD-centric methods that are sufficient for N-glycopeptides, and glycoproteomic methods aiming to characterize O-glycopeptides must be constructed accordingly.
Collapse
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Stacy A. Malaker
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Marc D. Driessen
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
- Howard
Hughes Medical Institute, Stanford, California 94305-6104, United States
| |
Collapse
|
22
|
Lee JH, Jung JH, Kim J, Baek WK, Rhee J, Kim TH, Kim SH, Kim KP, Son CN, Kim JS. Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis. Clin Proteomics 2020; 17:20. [PMID: 32518534 PMCID: PMC7269004 DOI: 10.1186/s12014-020-09281-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting the axial skeleton and peripheral joints. The etiology of this disease remains poorly understood, but interactions between genetic and environmental factors have been implicated. The present study identified differentially expressed proteins in the synovial fluid (SF) of AS patients to elucidate the underlying cause of AS. METHODS A cohort of 40 SF samples from 10 AS and 10 each of rheumatoid arthritis (RA), gout, and osteoarthritis (OA) patients were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins specific to AS. The label-free LC-MS/MS results were verified by western blotting. RESULTS We identified 8 proteins that were > 1.5-fold upregulated in the SF of AS patients compared to that of the disease control groups, including HP, MMP1, MMP3, serum amyloid P-component (APCS), complement factor H-related protein 5 (CFHR5), mannose-binding lectin 2 (MBL2), complement component C9 (C9), and complement C4-A (C4A). CFHR5 and C9 were previously found in serum from AS patients, while APCS was previously found in SF as well as in serum. However, the present study has identified C4A, and MBL2 as potential AS biomarkers for the first time. The expression levels of MMP3, C9, and CFHR5 were verified in AS SF using western blotting. CONCLUSION We performed quantitative comparative proteomic analysis using by LC-MS/MS of the SF from four disease states: RA, gout, and OA. This systematic comparison revealed novel differentially expressed proteins in AS SF, as well as two previously reported candidate biomarkers. We further verified the expression of MMP3, C9 and CFHR5 by western blot. These proteins may serve as diagnostic or prognostic biomarkers in patients with AS, and may thus improve the clinical outcomes of this serious disease.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826 South Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jinseol Rhee
- New Drug R&D Center, ARIBIO Co. Ltd., Seongnam, South Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, South Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Chang-Nam Son
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826 South Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
23
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
24
|
Abstract
Glycosylation is one of the most ubiquitous and complex post-translational modifications (PTMs). It plays pivotal roles in various biological processes. Studies at the glycopeptide level are typically considered as a downstream work resulting from enzymatic digested glycoproteins. Less attention has been focused on glycosylated endogenous signaling peptides due to their low abundance, structural heterogeneity and the lack of enabling analytical tools. Here, protocols are presented to isolate and characterize glycosylated neuropeptides utilizing nanoflow liquid chromatography coupled with mass spectrometry (LC-MS). We first demonstrate how to extract neuropeptides from raw tissues and perform further separation/cleanup before MS analysis. Then we describe hybrid MS methods for glycosylated neuropeptide profiling and site-specific analysis. We also include recommendations for data analysis to identify glycosylated neuropeptides in crustaceans where a complete neuropeptide database is still lacking. Other strategies and future directions are discussed to provide readers with alternative approaches and further unravel biological complexity rendered by glycosylation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
25
|
Lin YH, Zhu J, Meijer S, Franc V, Heck AJR. Glycoproteogenomics: A Frequent Gene Polymorphism Affects the Glycosylation Pattern of the Human Serum Fetuin/α-2-HS-Glycoprotein. Mol Cell Proteomics 2019; 18:1479-1490. [PMID: 31097672 PMCID: PMC6683009 DOI: 10.1074/mcp.ra119.001411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Fetuin, also known as α-2-HS-glycoprotein (gene name: AHSG), is one of the more abundant glycoproteins secreted into the bloodstream. There are two frequently occurring alleles of human AHSG, resulting in three genotypes (AHSG*1, AHSG*2, and heterozygous AHSG1/2). The backbone amino acid sequences of fetuin coded by the AHSG*1 and AHSG*2 genes differ in two amino acids including one known O-glycosylation site (aa position 256). Although fetuin levels have been extensively studied, the originating genotype is often ignored in such analysis. As fetuin has been suggested repeatedly as a potential biomarker for several disorders, the question whether the gene polymorphism affects the fetuin profile is of great interest. In this work, we describe detailed proteoform profiles of fetuin, isolated from serum of 10 healthy and 10 septic patient individuals and investigate potential glycoproteogenomics correlations, e.g. how gene polymorphisms affect glycosylation. We established an efficient method for fetuin purification from individuals' serum using ion-exchange chromatography. Subsequently, we performed hybrid mass spectrometric approaches integrating data from native mass spectra and peptide-centric MS analysis. Our data reveal a crucial effect of the gene polymorphism on the glycosylation pattern of fetuin. Moreover, we clearly observed increased fucosylation in the samples derived from the septic patients. Our serum proteoform analysis, targeted at one protein obtained from 20 individuals, exposes the wide variability in proteoform profiles, which should be taken into consideration when using fetuin as biomarker. Importantly, focusing on a single or few proteins, the quantitative proteoform profiles can provide, as shown here, already ample data to classify individuals by genotype and disease state.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sander Meijer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam 1066 CX, the Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
26
|
Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. Curr Opin Struct Biol 2019; 58:241-248. [PMID: 31326232 PMCID: PMC7104348 DOI: 10.1016/j.sbi.2019.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most complex and prevalent protein modification that influences attributes ranging from cellular localization and signaling to half-life and proteolysis. Glycoconjugates are fundamental for cellular function and alterations in their structure are often observed in pathological states. Most biotherapeutic proteins are glycosylated, which influences drug safety and efficacy. Therefore, the ability to characterize glycoproteins is important in all areas of biomolecular and medicinal research. Here we discuss recent advances in native mass spectrometry that have significantly improved our ability to characterize heterogeneous glycoproteins and to relate glycan structure to protein function.
Collapse
|
27
|
|
28
|
Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, Bubeck D. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun 2018; 9:5316. [PMID: 30552328 PMCID: PMC6294249 DOI: 10.1038/s41467-018-07653-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
The membrane attack complex (MAC) is one of the immune system's first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant β-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how β-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions.
Collapse
Affiliation(s)
- Anaïs Menny
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Marina Serna
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
- Spanish National Cancer Research Centre, CNIO, Melchor Fernández Almagro, 3.28029, Madrid, Spain
| | - Courtney M Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Scott Gardner
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, OX11 0FA, UK
| | - B Paul Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
29
|
|
30
|
Shah AK, Hartel G, Brown I, Winterford C, Na R, Cao KAL, Spicer BA, Dunstone MA, Phillips WA, Lord RV, Barbour AP, Watson DI, Joshi V, Whiteman DC, Hill MM. Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus. Mol Cell Proteomics 2018; 17:2324-2334. [PMID: 30097534 DOI: 10.1074/mcp.ra118.000734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is thought to develop from asymptomatic Barrett's esophagus (BE) with a low annual rate of conversion. Current endoscopy surveillance of BE patients is probably not cost-effective. Previously, we discovered serum glycoprotein biomarker candidates which could discriminate BE patients from EAC. Here, we aimed to validate candidate serum glycoprotein biomarkers in independent cohorts, and to develop a biomarker candidate panel for BE surveillance. Serum glycoprotein biomarker candidates were measured in 301 serum samples collected from Australia (4 states) and the United States (1 clinic) using previously established lectin magnetic bead array (LeMBA) coupled multiple reaction monitoring mass spectrometry (MRM-MS) tier 3 assay. The area under receiver operating characteristic curve (AUROC) was calculated as a measure of discrimination, and multivariate recursive partitioning was used to formulate a multi-marker panel for BE surveillance. Complement C9 (C9), gelsolin (GSN), serum paraoxonase/arylesterase 1 (PON1) and serum paraoxonase/lactonase 3 (PON3) were validated as diagnostic glycoprotein biomarkers in lectin pull-down samples for EAC across both cohorts. A panel of 10 serum glycoprotein biomarker candidates discriminated BE patients not requiring intervention (BE± low grade dysplasia) from those requiring intervention (BE with high grade dysplasia (BE-HGD) or EAC) with an AUROC value of 0.93. Tissue expression of C9 was found to be induced in BE, dysplastic BE and EAC. In longitudinal samples from subjects that have progressed toward EAC, levels of serum C9 were significantly (p < 0.05) increased with disease progression in EPHA (erythroagglutinin from Phaseolus vulgaris) and NPL (Narcissus pseudonarcissus lectin) pull-down samples. The results confirm alteration of complement pathway glycoproteins during BE-EAC pathogenesis. Further prospective clinical validation of the confirmed biomarker candidates in a large cohort is warranted, prior to development of a first-line BE surveillance blood test.
Collapse
Affiliation(s)
- Alok K Shah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian Brown
- Envoi Pathology, Brisbane, Queensland, Australia
| | - Clay Winterford
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Renhua Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Melbourne Integrative Genomics and School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Reginald V Lord
- St Vincent's Centre for Applied Medical Research and University of Notre Dame School of Medicine, Sydney, Australia
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David I Watson
- Discipline of Surgery, Flinders University, Adelaide, South Australia, Australia
| | - Virendra Joshi
- Ochsner Health System, Gastroenterology, New Orleans, LA
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Lin YH, Franc V, Heck AJR. Similar Albeit Not the Same: In-Depth Analysis of Proteoforms of Human Serum, Bovine Serum, and Recombinant Human Fetuin. J Proteome Res 2018; 17:2861-2869. [PMID: 29966421 PMCID: PMC6079914 DOI: 10.1021/acs.jproteome.8b00318] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fetuin,
also known as alpha-2-Heremans Schmid glycoprotein (AHSG),
belongs to some of the most abundant glycoproteins secreted into the
bloodstream. In blood, fetuins exhibit functions as carriers of metals
and small molecules. Bovine fetuin, which harbors 3 N-glycosylation
sites and a suggested half dozen O-glycosylation sites, has been used
often as a model glycoprotein to test novel analytical workflows in
glycoproteomics. Here we characterize and compare fetuin in depth,
using protein from three different biological sources: human serum,
bovine serum, and recombinant human fetuin expressed in HEK-293 cells,
with the aim to elucidate similarities and differences between these
proteins and the post-translational modifications they harbor. Combining
data from high-resolution native mass spectrometry and glycopeptide
centric LC-MS analysis, we qualitatively and quantitatively gather
information on fetuin protein maturation, N-glycosylation, O-glycosylation,
and phosphorylation. We provide direct experimental evidence that
both the human serum and part of the recombinant proteins are processed
into two chains (A and B) connected by a single interchain disulfide
bridge, whereas bovine fetuin remains a single-chain protein. Although
two N-glycosylation sites, one O-glycosylation site, and a phosphorylation
site are conserved from bovine to human, the stoichiometry of the
modifications and the specific glycoforms they harbor are quite distinct.
Comparing serum and recombinant human fetuin, we observe that the
serum protein harbors a much simpler proteoform profile, indicating
that the recombinant protein is not ideally engineered to mimic human
serum fetuin. Comparing the proteoform profile and post-translational
modifications of human and bovine serum fetuin, we observe that, although
the gene structures of these two proteins are alike, they represent
quite distinct proteins when their glycoproteoform profile is also
taken into consideration.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
32
|
Franc V, Zhu J, Heck AJR. Comprehensive Proteoform Characterization of Plasma Complement Component C8αβγ by Hybrid Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1099-1110. [PMID: 29532326 PMCID: PMC6003997 DOI: 10.1007/s13361-018-1901-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 09/27/2023]
Abstract
The human complement hetero-trimeric C8αβγ (C8) protein assembly (~ 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least ~ 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Skala W, Wohlschlager T, Senn S, Huber GE, Huber CG. MoFi: A Software Tool for Annotating Glycoprotein Mass Spectra by Integrating Hybrid Data from the Intact Protein and Glycopeptide Level. Anal Chem 2018; 90:5728-5736. [DOI: 10.1021/acs.analchem.8b00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wolfgang Skala
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Stefan Senn
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriel E. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
34
|
Bern M, Caval T, Kil YJ, Tang W, Becker C, Carlson E, Kletter D, Sen KI, Galy N, Hagemans D, Franc V, Heck AJR. Parsimonious Charge Deconvolution for Native Mass Spectrometry. J Proteome Res 2018; 17:1216-1226. [PMID: 29376659 PMCID: PMC5838638 DOI: 10.1021/acs.jproteome.7b00839] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new "parsimonious" charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies.
Collapse
Affiliation(s)
- Marshall Bern
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Tomislav Caval
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yong J. Kil
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Wilfred Tang
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | | | - Eric Carlson
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Doron Kletter
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - K. Ilker Sen
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Nicolas Galy
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dominique Hagemans
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
35
|
Shi Q, Hashimoto R, Otsubo T, Ikeda K, Todoroki K, Mizuno H, Jin D, Toyo’oka T, Jiang Z, Min JZ. A novel, simplified strategy of relative quantification N-glycan: Quantitative glycomics using electrospray ionization mass spectrometry through the stable isotopic labeling by transglycosylation reaction of mutant enzyme Endo-M-N175Q. J Pharm Biomed Anal 2018; 149:365-373. [DOI: 10.1016/j.jpba.2017.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
36
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
37
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
38
|
Yang Y, Franc V, Heck AJ. Glycoproteomics: A Balance between High-Throughput and In-Depth Analysis. Trends Biotechnol 2017; 35:598-609. [DOI: 10.1016/j.tibtech.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022]
|
39
|
Stümer J, Biermann MHC, Knopf J, Magorivska I, Kastbom A, Svärd A, Janko C, Bilyy R, Schett G, Sjöwall C, Herrmann M, Muñoz LE. Altered glycan accessibility on native immunoglobulin G complexes in early rheumatoid arthritis and its changes during therapy. Clin Exp Immunol 2017; 189:372-382. [PMID: 28509333 DOI: 10.1111/cei.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/31/2022] Open
Abstract
The goal of this study was to investigate the glycosylation profile of native immunoglobulin (Ig)G present in serum immune complexes in patients with rheumatoid arthritis (RA). To accomplish this, lectin binding assays, detecting the accessibility of glycans present on IgG-containing immune complexes by biotinylated lectins, were employed. Lectins capturing fucosyl residues (AAL), fucosylated tri-mannose N-glycan core sites (LCA), terminal sialic acid residues (SNA) and O-glycosidically linked galactose/N-acetylgalactosamine (GalNac-L) were used. Patients with recent-onset RA at baseline and after 3-year follow-up were investigated. We found that native IgG was complexed significantly more often with IgM, C1q, C3c and C-reactive protein (CRP) in RA patients, suggesting alterations of the native structure of IgG. The total accessibility of fucose residues on captured immune complexes to the respective lectin was significantly higher in patients with RA. Moreover, fucose accessibility on IgG-containing immune complexes correlated positively with the levels of antibodies to cyclic citrullinated peptides (anti-CCP). We also observed a significantly higher accessibility to sialic acid residues and galactose/GalNAc glyco-epitopes in native complexed IgG of patients with RA at baseline. While sialic acid accessibility increased during treatment, the accessibility of galactose/GalNAc decreased. Hence, successful treatment of RA was associated with an increase in the SNA/GalNAc-L ratio. Interestingly, the SNA/GalNAc-L ratio in particular rises after glucocorticoid treatment. In summary, this study shows the exposure of glycans in native complexed IgG of patients with early RA, revealing particular glycosylation patterns and its changes following pharmaceutical treatment.
Collapse
Affiliation(s)
- J Stümer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M H C Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - J Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - I Magorivska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - A Kastbom
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Svärd
- Rheumatology Clinic, Falun Hospital, Falun, Sweden
| | - C Janko
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, Erlangen, Germany
| | - R Bilyy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - G Schett
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - C Sjöwall
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - L E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|