1
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
2
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
3
|
Zeng C, Li Y, Zhu M, Du Z, Liang H, Chen Q, Ye H, Li R, Liu W. Simultaneous detection of norepinephrine and 5-hydroxytryptophan using poly-alizarin/multi-walled carbon nanotubes-graphene modified carbon fiber microelectrode array sensor. Talanta 2024; 270:125565. [PMID: 38154355 DOI: 10.1016/j.talanta.2023.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Multi-walled carbon nanotubes, graphene and alizarin polymer composites coated carbon fiber microelectrode array sensor (p-AZ/MWCNT-GR/CFMEA) was constructed and used for the simultaneous detection of norepinephrine (NE) and 5-hydroxytryptophan (5-HT). The morphology and structural characteristics of sensor are characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Its electrochemical behavior has been studied with cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibits excellent electrochemical activity for the oxidation of NE and 5-HT, two well separated oxidation peaks with the peak potential difference of 220 mV are observed on the cyclic voltammogram. NE and 5-HT both show two electrons and two protons electrochemical reaction on the p-AZ/MWCNT-GR/CFMEA. Under the optimized experiment conditions, the linear ranges of the sensor for NE and 5-HT are 0. 08- 8 μM and 0. 1-20 μM with detection limits of 4. 22 nM and 14. 2 nM (S/N = 3), respectively. In addition, the microsensor array show good reproducibility, stability and selectivity for the determination of NE and 5-HT. Finally, the p-AZ/MWCNT-GR/CFMEA is applied to the simultaneous detection of NE and 5-HT in human serum samples and macrophages.
Collapse
Affiliation(s)
- Chaoying Zeng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yulan Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zengcheng Du
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qiqing Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Wenhao Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
5
|
de Almeida JPB, de A Carvalho V, da Silva LP, do Nascimento ML, de Oliveira SB, Maia MV, Suarez WT, Garcia CD, Dos Santos VB. Lab-on-a-Drone: remote voltammetric analysis of lead in water with real-time data transmission. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4827-4833. [PMID: 37587794 DOI: 10.1039/d3ay01088k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The present work describes a laboratory-on-a-drone (Lab-on-a-Drone) developed to perform in situ detection of contaminants in environmental water samples. Toward this goal, the system was mounted on an unmanned aerial vehicle (UAV) (drone) and remotely controlled via Wi-Fi to acquire a water sample, perform the electrochemical detection step, and then send the voltammetry data to a smartphone. This Lab-on-a-Drone system was also able to recharge its battery using a solar cell, greatly increasing the autonomy of the system, even in the absence of a power line. As a proof of concept, the Lab-on-a-Drone was employed for the detection of Pb2+ in environmental waters, using a simple electrochemical cell containing a miniaturized screen-printed boron-doped diamond electrode (SP-BDDE) as a working electrode, an Ag/AgCl as a reference electrode, and a graphite ink as a counter electrode. For quantification purposes, analytical curves were constructed covering a concentration range from 1.0 μg L-1 (4.83 nmol L-1) to 80.0 μg L-1 (386.10 nmol L-1), featuring a detection limit of 0.062 μg L-1 (0.30 nmol L-1). The Lab-on-a-Drone was applied to monitor a water reservoir in the Metropolitan Region of Recife, Brazil. To evaluate its performance regarding accuracy and precision, a reference method based on inductively coupled plasma optical emission spectrometry (ICP-OES) was applied, and the results obtained by both methods showed no statistical differences (t-test at 95% confidence level, n = 3). These results represent the first demonstration of the capabilities of an adapted UAV for the quantification of electroactive environmental contaminant using voltammetry, with real-time data transmission. Thus, the Lab-on-a-Drone makes it possible to reach difficult-to-access environmental reserves and to monitor potentially polluting activity in distant water bodies. Thus, this tool can be used by governments and non-profit organizations to monitor environmental waters using fast, low-cost, process autonomy with accurate and precise data useful to decision making.
Collapse
Affiliation(s)
- João Paulo B de Almeida
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Vinicius de A Carvalho
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Leandro P da Silva
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Maysa L do Nascimento
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
- Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | - Vagner B Dos Santos
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| |
Collapse
|
6
|
Ficek M, Cieślik M, Janik M, Brodowski M, Sawczak M, Bogdanowicz R, Ryl J. Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Mikrochim Acta 2023; 190:410. [PMID: 37736868 PMCID: PMC10516795 DOI: 10.1007/s00604-023-05991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.
Collapse
Affiliation(s)
- Mateusz Ficek
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Cieślik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Monika Janik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Mateusz Brodowski
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mirosław Sawczak
- Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Ryl
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
7
|
Filippidou MK, Chatzandroulis S. Microfluidic Devices for Heavy Metal Ions Detection: A Review. MICROMACHINES 2023; 14:1520. [PMID: 37630055 PMCID: PMC10456312 DOI: 10.3390/mi14081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The contamination of air, water and soil by heavy metal ions is one of the most serious problems plaguing the environment. These metal ions are characterized by a low biodegradability and high chemical stability and can affect humans and animals, causing severe diseases. In addition to the typical analysis methods, i.e., liquid chromatography (LC) or spectrometric methods (i.e., atomic absorption spectroscopy, AAS), there is a need for the development of inexpensive, easy-to-use, sensitive and portable devices for the detection of heavy metal ions at the point of interest. To this direction, microfluidic and lab-on-chip (LOC) devices fabricated with novel materials and scalable microfabrication methods have been proposed as a promising approach to realize such systems. This review focuses on the recent advances of such devices used for the detection of the most important toxic metal ions, namely, lead (Pb), mercury (Hg), arsenic (As), cadmium (Cd) and chromium (Cr) ions. Particular emphasis is given to the materials, the fabrication methods and the detection methods proposed for the realization of such devices in order to provide a complete overview of the existing technology advances as well as the limitations and the challenges that should be addressed in order to improve the commercial uptake of microfluidic and LOC devices in environmental monitoring applications.
Collapse
Affiliation(s)
| | - Stavros Chatzandroulis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| |
Collapse
|
8
|
Zhu F, Xue Y, Ji W, Li X, Ma W, Yu P, Jiang Y, Mao L. Galvanic Redox Potentiometry for Fouling-Free and Stable Serotonin Sensing in a Living Animal Brain. Angew Chem Int Ed Engl 2023; 62:e202212458. [PMID: 36688872 DOI: 10.1002/anie.202212458] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Serotonin (5-HT) is a major neurotransmitter broadly involved in many aspects of feeling and behavior. Although its electro-activity makes it a promising candidate for electrochemical sensing, the persistent generation of fouling layers on the electrode by its oxidation products presents a hurdle for reliable sensing. Here, we present a fouling-free 5-HT sensor based on galvanic redox potentiometry. The sensor efficiently minimizes electrode fouling as revealed by in situ Raman spectroscopy, ensuring a less than 3 % signal change in a 2 hour continuous experiment, whereas amperometric sensors losing 90 % within 30 min. Most importantly, the sensor is highly amenable for in vivo studies, permitting real-time 5-HT monitoring, and supporting the mechanism associated with serotonin release in brain. Our system offers an effective way for sensing different neurochemicals having significant fouling issues, thus facilitating the molecular-level understanding of brain function.
Collapse
Affiliation(s)
- Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Boonkaew S, Dettlaff A, Sobaszek M, Bogdanowicz R, Jönsson-Niedziółka M. Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
11
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
12
|
Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. NANOMATERIALS 2021; 12:nano12010064. [PMID: 35010014 PMCID: PMC8746347 DOI: 10.3390/nano12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Diamond electrodes have long been a well-known candidate in electrochemical analyte detection. Nano- and micro-level modifications on the diamond electrodes can lead to diverse analytical applications. Doping of crystalline diamond allows the fabrication of suitable electrodes towards specific analyte monitoring. In particular, boron-doped diamond (BDD) electrodes have been reported for metal ions, anions, biomolecules, drugs, beverage hazards, pesticides, organic molecules, dyes, growth stimulant, etc., with exceptional performance in discriminations. Therefore, numerous reviews on the diamond electrode-based sensory utilities towards the specified analyte quantifications were published by many researchers. However, reviews on the nanodiamond-based electrodes for metal ions and anions are still not readily available nowadays. To advance the development of diamond electrodes towards the detection of diverse metal ions and anions, it is essential to provide clear and focused information on the diamond electrode synthesis, structure, and electrical properties. This review provides indispensable information on the diamond-based electrodes towards the determination of metal ions and anions.
Collapse
|
13
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
14
|
Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. SENSORS 2021; 21:s21185998. [PMID: 34577205 PMCID: PMC8472957 DOI: 10.3390/s21185998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.
Collapse
|
15
|
Zhou C, Cui K, Liu Y, Hao S, Zhang L, Ge S, Yu J. Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal Chem 2021; 93:5459-5467. [PMID: 33755444 DOI: 10.1021/acs.analchem.0c05134] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective signal amplification strategy is essential to enhance the analytical performance of microfluidic paper-based analytical devices (μPADs) for tracing biomarkers. Here, a simple but efficient approach with superior electrocatalytic performance of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for regulating the efficacious signal amplification process was utilized to realize the detection of prostate-specific antigen (PSA). By rationally designing the core-shell structure of ZIF67/ZIF8 with hollow characteristics on the nanoscale and introducing the noble metal element Pd into the cavity, the diffusion limitation and porous confinement reduction of the obtained nanomaterials with uniform morphology and satisfactory chemical stability could be realized, which endowed it with better catalytic performance than solid metal-organic frameworks (MOFs) and ensured effective signal amplification of H2O2 reduction for achieving enhanced electrochemical signals. Moreover, with the assistance of signal probes, the remaining H2O2 could flow to the color area to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine to form a colored product by changing the spatial configuration of the μPAD, thus realizing the visual detection of PSA. On the basis of this novel analytical device, dual-mode ultrasensitive detection of PSA could be achieved with a lower limit of detection of 0.78 pg/mL (S/N = 3) and a wider linear range from 5 pg/mL to 50 ng/mL. This work provided the opportunity of introducing the noble metal element Pd into the cavity of the MOF hollow structure to improve its electrocatalytic efficiency and construct a high-performance μPAD for clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
16
|
Kondo T. Conductive Boron-doped Diamond Powder/Nanoparticles for Electrochemical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Noda, Chiba 278-8510, Japan
| |
Collapse
|
17
|
Abstract
Heavy metal pollution of water has become a global issue and is especially problematic in some developing countries. Heavy metals are toxic to living organisms, even at very low concentrations. Therefore, effective and reliable heavy metal detection in environmental water is very important. Current laboratory-based methods used for analysis of heavy metals in water require sophisticated instrumentation and highly trained technicians, making them unsuitable for routine heavy metal monitoring in the environment. Consequently, there is a growing demand for autonomous detection systems that could perform in situ or point-of-use measurements. Microfluidic detection systems, which are defined by their small size, have many characteristics that make them suitable for environmental analysis. Some of these advantages include portability, high sample throughput, reduced reagent consumption and waste generation, and reduced production cost. This review focusses on developments in the application of microfluidic detection systems to heavy metal detection in water. Microfluidic detection strategies based on optical techniques, electrochemical techniques, and quartz crystal microbalance are discussed.
Collapse
|
18
|
Ding R, Cheong YH, Ahamed A, Lisak G. Heavy Metals Detection with Paper-Based Electrochemical Sensors. Anal Chem 2021; 93:1880-1888. [DOI: 10.1021/acs.analchem.0c04247] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ruiyu Ding
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| | - Yi Heng Cheong
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| | - Ashiq Ahamed
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku, Finland
| | - Grzegorz Lisak
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| |
Collapse
|
19
|
Kava AA, Henry CS. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta 2021; 221:121553. [PMID: 33076109 PMCID: PMC7575823 DOI: 10.1016/j.talanta.2020.121553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Stencil-printing conductive carbon inks has revolutionized the development of inexpensive, disposable and portable electrochemical sensors. However, stencil-printed carbon electrodes (SPCEs) typically suffer from poor electrochemical properties. While many surface pretreatments and modifications have been tested to improve the electrochemical activity of SPCEs, the bulk composition of the inks used for printing has been largely ignored. Recent studies of other carbon composite electrode materials show significant evidence that the conductive carbon particle component is strongly related to electrochemical performance. However, such a study has not been carried out with SPCEs. In this work, we perform a systematic characterization of SPCEs made with different carbon particle types including graphite particles, glassy carbon microparticles and carbon black. The relationship between carbon particle characteristics including particle size, particle purity, and particle morphology as well as particle mass loading on the fabrication and electrochemical properties of SPCEs is studied. SPCEs were plasma treated for surface activation and the electrochemical properties of both untreated and plasma treated SPCEs are also compared. SPCEs displayed distinct analytical utilities characterized through solvent window and double layer capacitance. Cyclic voltammetry (CV) of several standard redox probes, FcTMA+, ferri/ferrocyanide, and pAP was used to establish the effects of carbon particle type and plasma treatment on electron transfer kinetics of SPCEs. CV of the biologically relevant molecules uric acid, NADH and dopamine was employed to further illustrate the differences in sensing and fouling characteristics of SPCEs fabricated with different carbon particle types. SEM imaging revealed significant differences in the SPCE surface microstructures. This systematic study demonstrates that the electrochemical properties of SPCEs can be tuned and significantly improved through careful selection of carbon particle type and plasma cleaning with a goal toward the development of better performing electrochemical point-of-need sensors.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
20
|
Khamcharoen W, Siangproh W. A multilayer microfluidic paper coupled with an electrochemical platform developed for sample separation and detection of dopamine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02271g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new construction of a multilayer electrochemical microfluidic paper-based analytical device using a single drop of the sample solution was performed for highly selective detection of dopamine in the presence of ascorbic acid interference.
Collapse
Affiliation(s)
- Wisarut Khamcharoen
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| | - Weena Siangproh
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| |
Collapse
|
21
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
22
|
Brycht M, Baluchová S, Taylor A, Mortet V, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Comparison of electrochemical performance of various boron-doped diamond electrodes: Dopamine sensing in biomimicking media used for cell cultivation. Bioelectrochemistry 2020; 137:107646. [PMID: 32957020 DOI: 10.1016/j.bioelechem.2020.107646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Chemically inert and biocompatible boron-doped diamond (BDD) has been successfully used in neuroscience for sensitive neurochemicals sensing and/or as a growth substrate for neurons. In this study, several types of BDD differing in (i) fabrication route, i.e. conventional microwave plasma enhanced chemical vapour deposition (MW-PECVD) reactor vs. MW-PECVD with linear antenna delivery system, (ii) morphology, i.e. planar vs. porous BDD, and (iii) surface treatment, i.e. H-terminated (H-BDDs) vs. O-terminated (O-BDDs), were characterized from a morphological, structural, and electrochemical point of view. Further, planar and porous BDD-based electrodes were tested for sensing of dopamine in common biomimicking environments of pH 7.4, namely phosphate buffer (PB) and HEPES buffered saline (HBS). In HBS, potential windows are narrowed due to electrooxidation of its buffering component (i.e. HEPES), however, dopamine sensing in HBS is possible. H-BDDs (both planar and porous) outperformed O-BDDs as they provided clearer dopamine signals with higher peak currents. As expected, due to its enlarged surface area and increased sp2 content, the highest sensitivity and lowest detection limits of 8 × 10-8 mol L-1 and 6 × 10-8 mol L-1 in PB and HBS media, respectively, were achieved by square-wave voltammetry on porous H-BDD.
Collapse
Affiliation(s)
- Mariola Brycht
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic; University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403 Łódź, Poland
| | - Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01 Kladno, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic.
| |
Collapse
|
23
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
24
|
Hernández‐Vargas SG, Alberto Cevallos‐Morillo C, Aguilar‐Cordero JC. Effect of Ionic Liquid Structure on the Electrochemical Response of Dopamine at Room Temperature Ionic Liquid‐modified Carbon Paste Electrodes (IL–CPE). ELECTROANAL 2020. [DOI: 10.1002/elan.201900701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Salvador G. Hernández‐Vargas
- Departamento de Química Analítica Facultad de Química Universidad Nacional Autónoma de México Ciudad de México, C.P. 04310 México
| | - Carlos Alberto Cevallos‐Morillo
- Departamento de Química Analítica Facultad de Química Universidad Nacional Autónoma de México Ciudad de México, C.P. 04310 México
| | - Julio C. Aguilar‐Cordero
- Departamento de Química Analítica Facultad de Química Universidad Nacional Autónoma de México Ciudad de México, C.P. 04310 México
| |
Collapse
|
25
|
Sánchez-Calvo A, Blanco-López MC, Costa-García A. Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. BIOSENSORS-BASEL 2020; 10:bios10050052. [PMID: 32414133 PMCID: PMC7277893 DOI: 10.3390/bios10050052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Paper-based carbon working electrodes were modified with mercury or bismuth films for the determination of trace metals in aqueous solutions. Both modification procedures were optimized in terms of selectivity and sensitivity for the determination of different heavy metals, aiming their simultaneous determination. Cd (II), Pb (II) and In (III) could be quantified with both films. However, Cu (II) could not be determined with bismuth films. The modification with mercury films led to the most sensitive method, with linear ranges between 0.1 and 10 µg/mL and limits of detection of 0.4, 0.1, 0.04 and 0.2 µg/mL for Cd (II), Pb (II), In (III) and Cu (II), respectively. Nevertheless, the bismuth film was a more sustainable alternative to mercury. Tap-water samples were analyzed for the determination of metals by standard addition methodology with good accuracy, by using a low-cost and easily disposable paper-based electrochemical platform. This system demonstrated its usefulness for monitoring heavy metals in water.
Collapse
|
26
|
Castiaux AD, Currens ER, Martin RS. Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices. Analyst 2020; 145:3274-3282. [PMID: 32242194 PMCID: PMC7243341 DOI: 10.1039/d0an00240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we describe how PolyJet 3D printing technology can be used to fully integrate electrode materials into microfluidic devices during the print process. This approach uses stacked printing (separate printing steps and stage drops) with liquid support to result in devices where electrodes and a capillary fluidic connection are directly integrated and ready to use when printing is complete. A key feature of this approach is the ability to directly incorporate electrode materials into the print process so that the electrode(s) can be placed anywhere in the channel (at any height). We show that this can be done with a single electrode or an electrode array (which led to increases in signal). In both cases, we found that a middle electrode configuration leads to a significant increase in the sensitivity, as opposed to more traditional bottom channel placement. Since the electrode is embedded in the device, in situ platinum black deposition was performed to aid in the detection of nitric oxide. Finally, a generator-collector configuration with an opposed counter electrode was made by placing two working electrodes ∼750 μm apart (in the middle of the channel) and a platinum counter electrode at the bottom of the channel. The utility of this configuration was demonstrated by dual electrode detection of catechol. This 3D printing approach affords robust electrochemical detection schemes with new electrode configurations being possible in a manner that also increases the ease of use and transferability of the 3D printed devices with integrated electrode materials.
Collapse
|
27
|
Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 2020; 39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
|
28
|
Walters JG, Ahmed S, Terrero Rodríguez IM, O'Neil GD. Trace Analysis of Heavy Metals (Cd, Pb, Hg) Using Native and Modified 3D Printed Graphene/Poly(Lactic Acid) Composite Electrodes. ELECTROANAL 2020. [DOI: 10.1002/elan.201900658] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John G. Walters
- Department of Chemistry and BiochemistryMontclair State University Montclair NJ 07043 United States of America
| | - Shakir Ahmed
- Department of Chemistry and BiochemistryMontclair State University Montclair NJ 07043 United States of America
| | - Irina M. Terrero Rodríguez
- Department of Chemistry and BiochemistryMontclair State University Montclair NJ 07043 United States of America
| | - Glen D. O'Neil
- Department of Chemistry and BiochemistryMontclair State University Montclair NJ 07043 United States of America
| |
Collapse
|
29
|
Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. LAB ON A CHIP 2020; 20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paper-based sensors offer an affordable yet powerful platform for field and point-of-care (POC) testing due to their self-pumping ability and utility for many different analytical measurements. When combined with electrochemical detection using small and portable electronics, sensitivity and selectivity of the paper devices can be improved over naked eye detection without sacrificing portability. Herein, we review how the field of electrochemical paper-based analytical devices (ePADs) has grown since it was introduced a decade ago. We start by reviewing fabrication methods relevant to ePADs with more focus given to the electrode fabrication, which is fundamental for electrochemical sensing. Multiple sensing approaches applicable to ePADs are then discussed and evaluated to present applicability, advantages and challenges associated with each approach. Recent applications of ePADs in the fields of clinical diagnostics, environmental testing, and food analysis are also presented. Finally, we discuss how the current ePAD technologies have progressed to meet the analytical and practical specifications required for field and/or POC applications, as well as challenges and outlook.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Department of Pharmaceutical Chemistry, School of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Kaylee M Clark
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
30
|
Chailapakul O, Siangproh W, Jampasa S, Chaiyo S, Teengam P, Yakoh A, Pinyorospathum C. Paper-based sensors for the application of biological compound detection. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [PMCID: PMC7274129 DOI: 10.1016/bs.coac.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This chapter describes the importance of PADs for biomarker detection. The screening of disease markers and other biomolecules that related to health conditions have play important roles for an indication of the risk from infections and other diseases. Paper-based analytical devices (PADs) is an excellent option for applications of biomarker detection because it contains all advantages which arise from the paper material. Moreover, the uncomplicated techniques including electrochemistry and colorimetry can be easily applied on PADs for the analytical detection. The detection method can be categorized into three main topics: enzymatic methods, immunoassays, and DNA sensors. Following the main context, other interesting applications also present in this chapter.
Collapse
|
31
|
Kava AA, Beardsley C, Hofstetter J, Henry CS. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. Anal Chim Acta 2019; 1103:58-66. [PMID: 32081189 DOI: 10.1016/j.aca.2019.12.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a significant environmental and human health concern, and methods to detect Cd and Pb on site are valuable. Stencil-printed carbon electrodes (SPCEs) are an attractive electrode material for point-of-care (POC) applications due to their low cost, ease of fabrication, disposability and portability. At present, SPCEs are exclusively formulated from graphitic carbon powder and conductive carbon ink. However, graphitic carbon SPCEs are not ideal for heavy metal sensing due to the heterogeneity of graphitic SPCE surfaces. Moreover, SPCEs typically require extensive modification to provide desirable detection limits and sensitivity at the POC, significantly increasing cost and complexity of analysis. While there are many examples of chemically modified SPCEs, the bulk SPCE composition has not been studied for heavy metal detection. Here, a glassy carbon microparticle stencil printed electrode (GC-SPE) was developed. The GC-SPEs were first characterized with SEM and cyclic voltammetry and then optimized for Cd and Pb detection with an in situ Bi-film plated. The GC-SPEs require no chemical modification or pretreatment significantly decreasing the cost and complexity of fabrication. The detection limits for Cd and Pb were estimated to be 0.46 μg L-1 and 0.55 μg L-1, respectively, which are below EPA limits for drinking water (5 μg L-1 Cd and 10 μg L-1 Pb) [1]. The reported GC-SPEs are advantageous with their low cost, ease of fabrication and use, and attractive performance. The GC-SPEs can be used for low-level metal detection at the POC as shown in the report herein.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Chloe Beardsley
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States; Access Sensor Technologies, Fort Collins, CO, 80526, United States
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
32
|
Miyashita K, Kondo T, Sugai S, Tei T, Nishikawa M, Tojo T, Yuasa M. Boron-doped Nanodiamond as an Electrode Material for Aqueous Electric Double-layer Capacitors. Sci Rep 2019; 9:17846. [PMID: 31780797 PMCID: PMC6882838 DOI: 10.1038/s41598-019-54197-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/09/2019] [Indexed: 11/12/2022] Open
Abstract
Herein, a conductive boron-doped nanodiamond (BDND) particle is prepared as an electrode material for an aqueous electric double-layer capacitor with high power and energy densities. The BDND is obtained by depositing a boron-doped diamond (BDD) on a nanodiamond particle substrate with a primary particle size of 4.7 nm via microwave plasma-assisted chemical vapor deposition, followed by heat treatment in air. The BDND comprises BDD and sp2 carbon components, and exhibits a conductivity above 10−2 S cm−1 and a specific surface area of 650 m2 g−1. Cyclic voltammetry measurements recorded in 1 M H2SO4 at a BDND electrode in a two-electrode system shows a capacitance of 15.1 F g−1 and a wide potential window (cell voltage) of 1.8 V, which is much larger than that obtained at an activated carbon electrode, i.e., 0.8 V. Furthermore, the cell voltage of the BDND electrode reaches 2.8 V when using saturated NaClO4 as electrolyte. The energy and power densities per unit weight of the BDND for charging–discharging in 1 M H2SO4 at the BDND electrode cell are 10 Wh kg−1 and 104 W kg−1, respectively, and the energy and power densities per unit volume of the BDND layer are 3–4 mWh cm−3 and 10 W cm−3, respectively. Therefore, the BDND is a promising candidate for the development of a compact aqueous EDLC device with high energy and power densities.
Collapse
Affiliation(s)
- Kenjo Miyashita
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan.
| | - Seiya Sugai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Takahiro Tei
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| | - Masahiro Nishikawa
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| | - Toshifumi Tojo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Makoto Yuasa
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| |
Collapse
|
33
|
Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal Chim Acta 2019; 1077:255-265. [DOI: 10.1016/j.aca.2019.05.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
|
34
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
35
|
Yakoh A, Chaiyo S, Siangproh W, Chailapakul O. 3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications. ACS Sens 2019; 4:1211-1221. [PMID: 30969113 DOI: 10.1021/acssensors.8b01574] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article describes the device design and fabrication of two different configurations (flow-through and stopped-flow) of a sequential fluid delivery platform on a microfluidic paper-based device. The developed device is capable of storing and transporting reagents sequentially to the detection channel without the need for external power. The device comprises two components: an origami folding paper (oPAD) and a movable reagent-stored pad (rPAD). This 3D capillary-driven device eliminates the undesirable procedure of multiple-step reagent manipulation in a complex assay. To demonstrate the scope of this approach, the device is used for electrochemical detection of biological species. Using a flow-through configuration, a self-calibration plot plus real sample analysis using a single buffer introduction are established for ascorbic acid detection. We further broaden the effectiveness of the device to a complex assay using a stopped-flow configuration. Unlike other electrochemical paper-based sensors in which the user is required to cut off the device inlet or rest for the whole channel saturation before measurement, herein a stopped-flow device is carefully designed to exclude the disturbance from the convective mass transport. As a proof of concept, multiple procedures for electrode modification and voltammetric determination of serotonin are illustrated. In addition, the research includes an impedimetric label-free immunosensor for α-fetoprotein using the modified stopped-flow device. The beneficial advantages of simplicity, low sample volume (1 μL), and ability to perform a complex assay qualify this innovative device for use with diverse applications.
Collapse
Affiliation(s)
| | | | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | | |
Collapse
|
36
|
Nantaphol S, Kava AA, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS. Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal Chim Acta 2019; 1056:88-95. [PMID: 30797465 PMCID: PMC6814273 DOI: 10.1016/j.aca.2019.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023]
Abstract
The simultaneous detection of multiple analytes from a single sample is a critical tool for the analysis of real world samples. However, this is challenging to accomplish in the field by current electroanalytical techniques, where tuning assay conditions towards a target analyte often results in poor selectivity and sensitivity for other species in the mixture. In this work, an electrochemical paper-based analytical device (ePAD) capable of performing simultaneous electrochemical experiments in different solution conditions on a single sample was developed for the first time. We refer to the system as a Janus-ePAD after the two-faced Greek god because of the ability of the device to perform electrochemistry on the same sample under differing solution conditions at the same time with a single potentiostat. In a Janus-ePAD, a sample wicks down two channels from a single inlet towards two discreet reagent zones that adjust solution conditions, such as pH, before flow termination in two electrochemical detection zones. These zones feature independent working electrodes and shared reference and counter electrodes, facilitating simultaneous detection of multiple species at each species' optimal solution condition. The device utility and applicability are demonstrated through the simultaneous detection of two biologically relevant species (norepinephrine and serotonin) and a common enzymatic assay product (p-aminophenol) at two different solution pH conditions. Janus-ePADs show great promise as an inexpensive and broadly applicable platform which can reduce the complexity and/or number of steps required in multiplexed analysis, while also operating under the optimized conditions of each species present in a mixture.
Collapse
Affiliation(s)
- Siriwan Nantaphol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Robert B Channon
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Orawon Chailapakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
37
|
Lomae A, Nantaphol S, Kondo T, Chailapakul O, Siangproh W, Panchompoo J. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Li S, Zhang C, Wang S, Liu Q, Feng H, Ma X, Guo J. Electrochemical microfluidics techniques for heavy metal ion detection. Analyst 2019; 143:4230-4246. [PMID: 30095826 DOI: 10.1039/c8an01067f] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heavy metals refer to metals with a density above 5 × 103 kg m-3, such as lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg). Even a trace amount of heavy metals is detrimental to human health. With the increasing significance of detection of heavy metals, the use of the electrochemical detection technique combined with microfluidics is a promising strategy and has thus attracted wide attention from academia and is the subject of this review. First, this review introduces the basics of electrochemical detection and microfluidics. Second, this review presents and evaluates a variety of electrochemical microfluidics technologies for heavy metal ions detection that are user friendly, portable, inexpensive, and easy to manufacture compared to traditional methods. The categorization is based on different detected ions in the order of Pb, Cd, As, Hg, Mn, and Zn. Finally, the author summarizes the development of detection technology in recent years and puts forward a perspective for the future prospects.
Collapse
Affiliation(s)
- Su Li
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Li Y, He R, Niu Y, Li F. Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00085-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Holmes J, Pathirathna P, Hashemi P. Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2018; 91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 2018; 195:62-68. [PMID: 30625593 DOI: 10.1016/j.talanta.2018.11.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
A new disposable microfluidic electrochemical paper-based device (ePAD) consisting of two spot sensors in the same working electrode for the simultaneous determination of uric acid and creatinine was developed. The spot 1 surface was modified with graphene quantum dots for direct uric acid oxidation and spot 2 surface modified with graphene quantum dots, creatininase and a ruthenium electrochemical mediator for creatinine oxidation. The ePAD was employed to construct an electrochemical sensor (based on square wave voltammetry analysis) for the simultaneous determination of uric acid and creatinine in the 0.010-3.0 µmol L-1 range. The device showed excellent analytical performance with a very low simultaneous detection limit of 8.4 nmol L-1 to uric acid and 3.7 nmol L-1 to creatinine and high selectivity. The ePAD was applied to the rapid and successful determination of those clinical biomarkers in human urine samples.
Collapse
Affiliation(s)
- Fernando H Cincotto
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elson L Fava
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Fernando C Moraes
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
43
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis 2018; 40:113-123. [DOI: 10.1002/elps.201800281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences; Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| |
Collapse
|
45
|
Cobb SJ, Ayres ZJ, Macpherson JV. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:463-484. [PMID: 29579405 DOI: 10.1146/annurev-anchem-061417-010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing. This has resulted in the production of BDD structures with the required function and geometry for the application of interest, making BDD a truly designer material. Current research areas range from in vivo bioelectrochemistry and neuronal/retinal stimulation to improved electroanalysis, advanced oxidation processes, supercapacitors, and the development of hybrid electrochemical-spectroscopic- and temperature-based technology aimed at enhancing electrochemical performance and understanding.
Collapse
Affiliation(s)
- Samuel J Cobb
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | - Zoe J Ayres
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
| | - Julie V Macpherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|
46
|
Huang Y, Li L, Zhang Y, Zhang L, Ge S, Li H, Yu J. Cerium Dioxide-Mediated Signal "On-Off" by Resonance Energy Transfer on a Lab-On-Paper Device for Ultrasensitive Detection of Lead Ions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32591-32598. [PMID: 28870075 DOI: 10.1021/acsami.7b10629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report, a 3D microfluidic lab-on-paper device for ultrasensitive detection of lead cation was designed using phoenix tree fruit-shaped CeO2 nanoparticles (PFCeO2 NPs) as the catalyst and 50 nm silver NPs (Ag NPs) as the quencher. First, snowflake-like Ag NPs were grown on the paper working electrode through an in situ growth method and used as a matrix for DNAzymes that were specific for lead ions (Pb2+). After the addition of Ag NP-labeled substrate strands, the Ag NPs restrained the electrochemiluminescence (ECL) intensity of luminol greatly through the resonance energy transfer from luminol to Ag NPs. However, under the existence of Pb2+, the substrate strands were separated, and then PFCeO2 NP-labeled signal strands were hybridized with the DNAzymes. The ECL signal was improved greatly under the fast catalytic reaction between PFCeO2 NPs and H2O2, which converted the response from signal off to signal on state, resulting in sensitive detection of Pb2+. Under the optimal conditions, the ECL signal response exhibited a good linear relationship with the logarithm of lead cation in a wide linear range of 0.05-2000 nM and an ultralow detection limit of 0.016 nM. Meanwhile, a sensor featured with good specificity, acceptable stability, reproducibility, and low cost provides a promising portable, simple, and effective strategy for Pb2+ detection.
Collapse
Affiliation(s)
- Yuzhen Huang
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Li Li
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Yan Zhang
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Lina Zhang
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Hao Li
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Jinghua Yu
- Institute for Advanced Interdisciplinary Research, ‡Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, and §School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China
| |
Collapse
|