1
|
Ortega-Rodriguez U, Bettinger JQ, Zou G, Falkowski VM, Lehtimaki M, Matthews AM, Biel TG, Pritts JD, Wu WW, Shen RF, Agarabi C, Rao VA, Xie H, Ju T. A chemoenzymatic method for simultaneous profiling N- and O-glycans on glycoproteins using one-pot format. CELL REPORTS METHODS 2024; 4:100834. [PMID: 39116882 PMCID: PMC11384086 DOI: 10.1016/j.crmeth.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Glycosylation is generally characterized and controlled as a critical quality attribute for therapeutic glycoproteins because glycans can impact protein drug-product efficacy, half-life, stability, and safety. Analytical procedures to characterize N-glycans are relatively well established, but the characterization of O-glycans is challenging due to the complex workflows and lack of enzymatic tools. Here, we present a simplified chemoenzymatic method to simultaneously profile N- and O-glycans from the same sample using a one-pot format by mass spectrometry (MS). N-glycans were first released by PNGase F, followed by O-glycopeptide generation by proteinase K, selective N-glycan reduction, and O-glycan release by β-elimination during permethylation of both N- and O-glycans. Glycan structural assignments and determination of N- to O-glycan ratio was obtained from the one-pot mass spectra. The streamlined, one-pot method is a reliable approach that will facilitate advanced characterizations for quality assessments of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Uriel Ortega-Rodriguez
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - John Q Bettinger
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Guozhang Zou
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Vincent M Falkowski
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mari Lehtimaki
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alicia M Matthews
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Thomas G Biel
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jordan D Pritts
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
2
|
Li Y, Wang J, Chen W, Lu H, Zhang Y. Comprehensive review of MS-based studies on N-glycoproteome and N-glycome of extracellular vesicles. Proteomics 2024; 24:e2300065. [PMID: 37474487 DOI: 10.1002/pmic.202300065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that can be released by all type of cells. Whereas, as one of the most common post-translational modifications, glycosylation plays a vital role in various biological functions of EVs, such as EV biogenesis, sorting, and cellular recognition. Nevertheless, compared with studies on RNAs or proteins, those investigating the glycoconjugates of EVs are limited. An in-depth investigation of N-glycosylation of EVs can improve the understanding of the biological functions of EVs and help to exploit EVs from different perspectives. The general focus of studies on glycosylation of EVs primarily includes isolation and characterization of EVs, preparation of glycoproteome/glycome samples and MS analysis. However, the low content of EVs and non-standard separation methods for downstream analysis are the main limitations of these studies. In this review, we highlight the importance of glycopeptide/glycan enrichment and derivatization owing to the low abundance of glycoproteins and the low ionization efficiency of glycans. Diverse fragmentation patterns and professional analytical software are indispensable for analysing glycosylation via MS. Altogether, this review summarises recent studies on glycosylation of EVs, revealing the role of EVs in disease progression and their remarkable potential as biomarkers.
Collapse
Affiliation(s)
- Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
| | - Jun Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Weiyu Chen
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haojie Lu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Ying Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
3
|
Wu L, Gao C. Comprehensive Overview the Role of Glycosylation of Extracellular Vesicles in Cancers. ACS OMEGA 2023; 8:47380-47392. [PMID: 38144130 PMCID: PMC10734006 DOI: 10.1021/acsomega.3c07441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Extracellular vesicles (EVs) are membranous structures secreted by various cells carrying diverse biomolecules. Recent advancements in EV glycosylation research have underscored their crucial role in cancer. This review provides a global overview of EV glycosylation research, covering aspects such as specialized techniques for isolating and characterizing EV glycosylation, advances on how glycosylation affects the biogenesis and uptake of EVs, and the involvement of EV glycosylation in intracellular protein expression, cellular metastasis, intercellular interactions, and potential applications in immunotherapy. Furthermore, through an extensive literature review, we explore recent advances in EV glycosylation research in the context of cancer, with a focus on lung, colorectal, liver, pancreatic, breast, ovarian, prostate, and melanoma cancers. The primary objective of this review is to provide a comprehensive update for researchers, whether they are seasoned experts in the field of EVs or newcomers, aiding them in exploring new avenues and gaining a deeper understanding of EV glycosylation mechanisms. This heightened comprehension not only enhances researchers' knowledge of the pathogenic mechanisms of EV glycosylation but also paves the way for innovative cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunfang Gao
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
4
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
8
|
Matthews AM, Biel TG, Ortega-Rodriguez U, Falkowski VM, Bush X, Faison T, Xie H, Agarabi C, Rao VA, Ju T. SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins. PLoS One 2022; 17:e0278294. [PMID: 36472974 PMCID: PMC9725131 DOI: 10.1371/journal.pone.0278294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (Covid-19) pandemic, continues to evolve and circulate globally. Current prophylactic and therapeutic countermeasures against Covid-19 infection include vaccines, small molecule drugs, and neutralizing monoclonal antibodies. SARS-CoV-2 infection is mainly mediated by the viral spike glycoprotein binding to angiotensin converting enzyme 2 (ACE2) on host cells for viral entry. As emerging mutations in the spike protein evade efficacy of spike-targeted countermeasures, a potential strategy to counter SARS-CoV-2 infection is to competitively block the spike protein from binding to the host ACE2 using a soluble recombinant fusion protein that contains a human ACE2 and an IgG1-Fc domain (ACE2-Fc). Here, we have established Chinese Hamster Ovary (CHO) cell lines that stably express ACE2-Fc proteins in which the ACE2 domain either has or has no catalytic activity. The fusion proteins were produced and purified to partially characterize physicochemical properties and spike protein binding. Our results demonstrate the ACE2-Fc fusion proteins are heavily N-glycosylated, sensitive to thermal stress, and actively bind to five spike protein variants (parental, alpha, beta, delta, and omicron) with different affinity. Our data demonstrates a proof-of-concept production strategy for ACE2-Fc fusion glycoproteins that can bind to different spike protein variants to support the manufacture of potential alternative countermeasures for emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alicia M. Matthews
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Thomas G. Biel
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Uriel Ortega-Rodriguez
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vincent M. Falkowski
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Talia Faison
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Cyrus Agarabi
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zhou X, Song W, Novotny MV, Jacobson SC. Fractionation and characterization of sialyl linkage isomers of serum N-glycans by CE-MS. J Sep Sci 2022; 45:3348-3361. [PMID: 35819141 PMCID: PMC9473921 DOI: 10.1002/jssc.202200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022]
Abstract
Structural isomers of sialylated N-glycans contribute to the diversity of the N-glycome and to a range of biological functions. Sialyl linkage isomers can be readily distinguished by mass spectrometry with mass differences between α2,3- and α2,6-linkages generated by a two-step sialic acid linkage-specific alkylamidation. To improve the identification of N-glycans from complex mixtures, we added a delactonization step after the first alkylamidation step, which regenerates negatively charged carboxylic acids on α2,3-sialic acids. N-glycan isomers with α2,3-sialic acids are then fractionated by ion-exchange chromatography prior to the second alkylamidation step. With this modified alkylamidation method, sialylated N-glycans were enriched and stabilized for structural characterization by capillary electrophoresis-mass spectrometry and tandem mass spectrometry. We identified 52 sialylated N-glycan structures, including 107 linkage isomers, in human serum and confirmed the presence of positional isomers of specific sialyl linkage isomers. Due to the reduced sample complexity after ion-exchange fractionation and CE separation, substructural features of N-glycans were rapidly evaluated and included core- and antenna-fucosylation and poly-lactosamine.
Collapse
Affiliation(s)
- Xiaomei Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401-7102, U.S.A
| | - Woran Song
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401-7102, U.S.A
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401-7102, U.S.A
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401-7102, U.S.A
| |
Collapse
|
10
|
MALDI-TOF/MS Analysis of Extracellular Vesicles Released by Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct shedding of extracellular vesicles (EVs) from the plasma membrane is a recognized fundamental method for the intercellular transfer of properties in both physiological and pathological conditions. EVs are classified according to origin, biogenesis, size, content, surface markers, and/or functional properties, and contain various bioactive molecules depending on the physiological state and the type of the cells of origin including lipids, nucleic acids, and proteins. The presence of tumor-derived EVs in body fluids such as blood, ascites, urine, and saliva, together with the important role played in the tumor microenvironment where they intervene at different levels from oncogenesis to metastasis, make EVs a priority target for cancer studies. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can play a leading role in the analysis and characterization of EVs and their load due to its intrinsic advantages such as high throughput, low sample consumption, speed, the cost-effectiveness of the analysis, and the ease of use. This work reviews the main MALDI-TOF applications for the analysis and characterization of extracellular vesicles in the tumor field.
Collapse
|
11
|
Zambonin C, Aresta A. MALDI-TOF/MS Analysis of Non-Invasive Human Urine and Saliva Samples for the Identification of New Cancer Biomarkers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061925. [PMID: 35335287 PMCID: PMC8951187 DOI: 10.3390/molecules27061925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023]
Abstract
Cancer represents a group of heterogeneous diseases that are a leading global cause of death. Even though mortality has decreased in the past thirty years for different reasons, most patients are still diagnosed at the advanced stage, with limited therapeutic choices and poor outcomes. Moreover, the majority of cancers are detected using invasive painful methods, such as endoscopic biopsy, making the development of non-invasive or minimally invasive methods for the discovery and fast detection of specific biomarkers a crucial need. Among body fluids, a valuable non-invasive alternative to tissue biopsy, the most accessible and least invasive are undoubtedly urine and saliva. They are easily retrievable complex fluids containing a large variety of endogenous compounds that may provide information on the physiological condition of the body. The combined analysis of these fluids with matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF/MS), a reliable and easy-to-use instrumentation that provides information with relatively simple sample pretreatments, could represent the ideal option to rapidly achieve fast early stage diagnosis of tumors and their real-time monitoring. On this basis, the present review summarizes the recently reported applications relevant to the MALDI analysis of human urine and saliva samples.
Collapse
|
12
|
Recent advances and trends in sample preparation and chemical modification for glycan analysis. J Pharm Biomed Anal 2022; 207:114424. [PMID: 34653745 DOI: 10.1016/j.jpba.2021.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Growing significance of glycosylation in protein functions has accelerated the development of methodologies for detection, identification, and characterization of protein glycosylation. In the past decade, glycobiology research has been advanced by innovative techniques with further progression in the post-genome era. Although significant technical progress has been made in terms of analytical throughput, comprehensiveness, and sensitivity, most methods for glycosylation analysis still require laborious and time-consuming sample preparation tasks. Additionally, sample preparation methods that are focused on specific glycan(s) require an in-depth understanding of various issues in glycobiology. In this review, modern sample preparation and chemical modification methods for the structural and quantitative glycan analyses together with the challenges and advantages of recent sample preparation methods are summarized. The techniques presented herein can facilitate the exploration of biomarkers, understanding of unknown glycan functions, and development of biopharmaceuticals.
Collapse
|
13
|
An Y, Li R, Zhang F, He P. A ratiometric electrochemical sensor for the determination of exosomal glycoproteins. Talanta 2021; 235:122790. [PMID: 34517648 DOI: 10.1016/j.talanta.2021.122790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Abnormal glycosylation of exosomal proteins is related to many diseases. However, there is still a lack of convenient and easy methods for the determination of exosomal glycoproteins. In this work, a ratiometric electrochemical sensor based on the recognition of glycoproteins by boronic acid and core-shell nanoparticles of silica-silver (SiO2@Ag) amplified signals was developed for the highly sensitive detection of exosomal glycoproteins. The CD63 aptamer-SiO2-N-(2-((2-aminoethyl)disulfanyl)ethyl) ferrocene carboxamide (FcNHSSNH2) probe was first connected to graphene oxide-cucurbit [7] (GO-CB [7]) modified GCE through host-guest recognition. The CD63 aptamer was employed for the specific capture of exosomes, and the FcNHSSNH2 molecule was used as the internal reference signal of the sensor. The mercaptophenylboronic acid (MPBA) of MPBA-SiO2@Ag probe was used for the identification of exosomes surface glycoproteins. SiO2 nanoparticle has a large specific surface area, which can load a large amount of silver nanoparticles (AgNPs) for electrochemical signal amplification. The results were expressed as the current ratio of AgNPs and FcNHSSNH2. The introduction of the internal reference molecule FcNHSSNH2 could effectively reduce the measurement error caused by the different DNA density of the substrate, and further improve the sensitivity and accuracy of the detection. Under the optimal experimental conditions, this sensor allowed the sensitive detection of exosomal glycoproteins in the range of 4.2 × 102 to 4.2 × 108 particles/μL with a limit of detection (LOD) of 368 particles/μL. Furthermore, the ratiometric electrochemical sensor could be employed for the detection of exosomal glycoproteins in human serum samples, which has a good clinical application prospect.
Collapse
Affiliation(s)
- Yu An
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Rui Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| |
Collapse
|
14
|
Zeng X, Novotny MV, Clemmer DE, Trinidad JC. A graphical representation of glycan heterogeneity. Glycobiology 2021; 32:201-207. [PMID: 34939082 DOI: 10.1093/glycob/cwab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/12/2022] Open
Abstract
A substantial shortcoming of large scale datasets is often the inability to easily represent and visualize key features. This problem becomes acute when considering the increasing technical ability to profile large numbers of glycopeptides and glycans in recent studies. Here, we describe a simple, concise graphical representation intended to capture the microheterogeneity associated with glycan modification at specific sites. We illustrate this method by showing visual representations of the glycans and glycopeptides from a variety of species. The graphical representation presented allows one to easily discern the compositions of all glycans, similarities and differences of modifications found in different samples, and, in the case of N-linked glycans, the initial steps in the biosynthetic pathway.
Collapse
Affiliation(s)
- Xuyao Zeng
- Department of Chemistry, Indiana University Bloomington, 800 Kirkwood Avenue, Bloomington, IN 47405
| | - Milos V Novotny
- Department of Chemistry, Indiana University Bloomington, 800 Kirkwood Avenue, Bloomington, IN 47405
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, 800 Kirkwood Avenue, Bloomington, IN 47405
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University Bloomington, 800 Kirkwood Avenue, Bloomington, IN 47405
| |
Collapse
|
15
|
Blaschke CRK, Hartig JP, Grimsley G, Liu L, Semmes OJ, Wu JD, Ippolito JE, Hughes-Halbert C, Nyalwidhe JO, Drake RR. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front Chem 2021; 9:734280. [PMID: 34646811 PMCID: PMC8503230 DOI: 10.3389/fchem.2021.734280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan P Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Jennifer D Wu
- Departments of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Cho BG, Gutierrez Reyes CD, Mechref Y. N-Glycomics of Cerebrospinal Fluid: Method Comparison. Molecules 2021; 26:molecules26061712. [PMID: 33808573 PMCID: PMC8003558 DOI: 10.3390/molecules26061712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrospinal fluid (CSF) contains valuable biological and neurological information. However, its glycomics analysis is hampered due to the low amount of protein in the biofluid, as has been demonstrated by other glycomics studies using a substantial amount of CSF. In this work, we investigated different N-glycan sample preparation approaches to develop a more sensitive method. These methods, one with an increased amount of buffer solution during the N-glycan release step with a lower amount of sample volume and the other with Filter-Aided N-Glycan Separation (FANGS), were compared with recent work to demonstrate their effectiveness. It was demonstrated that an increased amount of buffer solution showed higher intensity in comparison to the previously published method and FANGS. This suggested that digestion efficiency during the N-glycan release step was not in an optimal condition from the previously published method, and that there is a substantial loss of sample with FANGS when preparing N-glycans from CSF.
Collapse
|
17
|
Wu Y, Zhang N, Wu H, Sun N, Deng C. Magnetic porous carbon-dependent platform for the determination of N-glycans from urine exosomes. Mikrochim Acta 2021; 188:66. [PMID: 33543311 DOI: 10.1007/s00604-021-04728-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
A magnetic porous carbon-dependent platform is established to separate and determine N-glycans from urine exosomes of healthy people and patients with gastric cancer. The results of the comparison reveal that 6 N-glycans shared by the two groups are downregulated, most of which present core fucose or bisecting N-acetylglucosamine (GlcNAc) type. In addition, five shared N-glycans including two of sialic acid type are upregulated. These obvious differences indicate the close relationship between glycans and gastric cancer thus permitting early diagnosis. A magnetic porous carbon material (FeMPC) from MIL-101(Fe) was employed to separate and analyze N-glycans from urine exosomes of healthy people and patients with gastric cancer.
Collapse
Affiliation(s)
- Yonglei Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ning Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
18
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
19
|
Marie AL, Ray S, Lu S, Jones J, Ghiran I, Ivanov AR. High-Sensitivity Glycan Profiling of Blood-Derived Immunoglobulin G, Plasma, and Extracellular Vesicle Isolates with Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem 2021; 93:1991-2002. [PMID: 33433994 DOI: 10.1021/acs.analchem.0c03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a highly sensitive method for profiling of N-glycans released from proteins based on capillary zone electrophoresis coupled to electrospray ionization mass spectrometry (CZE-ESI-MS) and applied the technique to glycan analysis of plasma and blood-derived isolates. The combination of dopant-enriched nitrogen (DEN)-gas introduced into the nanoelectrospray microenvironment with optimized ionization, desolvation, and CZE-MS conditions improved the detection sensitivity up to ∼100-fold, as directly compared to the conventional mode of instrument operation through peak intensity measurements. Analyses without supplemental pressure increased the resolution ∼7-fold in the separation of closely related and isobaric glycans. The developed method was evaluated for qualitative and quantitative glycan profiling of three types of blood isolates: plasma, total serum immunoglobulin G (IgG), and total plasma extracellular vesicles (EVs). The comparative glycan analysis of IgG and EV isolates and total plasma was conducted for the first time and resulted in detection of >200, >400, and >500 N-glycans for injected sample amounts equivalent to <500 nL of blood. Structural CZE-MS2 analysis resulted in the identification of highly diverse glycans, assignment of α-2,6-linked sialic acids, and differentiation of positional isomers. Unmatched depth of N-glycan profiling was achieved compared to previously reported methods for the analysis of minute amounts of similar complexity blood isolates.
Collapse
Affiliation(s)
- Anne-Lise Marie
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Jennifer Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ionita Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells 2021; 10:cells10010109. [PMID: 33430152 PMCID: PMC7827205 DOI: 10.3390/cells10010109] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.
Collapse
Affiliation(s)
- Álvaro M. Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Cátia C. Ramos
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| | - Celso A. Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| |
Collapse
|
21
|
Brown CJ, Gaunitz S, Wang Z, Strindelius L, Jacobson SC, Clemmer DE, Trinidad JC, Novotny MV. Glycoproteomic Analysis of Human Urinary Exosomes. Anal Chem 2020; 92:14357-14365. [PMID: 32985870 PMCID: PMC7875506 DOI: 10.1021/acs.analchem.0c01952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes represent a class of secreted biological vesicles, which have recently gained attention due to their function as intertissue and interorganism transporters of genetic materials, small molecules, lipids, and proteins. Although the protein constituents of these exosomes are often glycosylated, a large-scale characterization of the glycoproteome has not yet been completed. This study identified 3144 unique glycosylation events belonging to 378 glycoproteins and 604 unique protein sites of glycosylation. With these data, we investigated the level of glycan microheterogeneity within the urinary exosomes, finding on average 5.9 glycans per site. The glycan family abundance on individual proteins showed subtle differences, providing an additional level of molecular characterization compared to the unmodified proteome. Finally, we show protein site-specific changes in regard to the common urinary glycoprotein, uromodulin. While uromodulin is an individual case, these same site-specific analyses provide a way forward for developing diagnostic glycoprotein biomarkers with urine as a noninvasive biological fluid. This study represents an important first step in understanding the functional urinary glycoproteome.
Collapse
Affiliation(s)
- Christopher J Brown
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Ziyu Wang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Lena Strindelius
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
22
|
Sanders KL, Edwards JL. Nano-liquid chromatography-mass spectrometry and recent applications in omics investigations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4404-4417. [PMID: 32901622 PMCID: PMC7530103 DOI: 10.1039/d0ay01194k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.
Collapse
|
23
|
Li H, Patel V, DiMartino SE, Froehlich JW, Lee RS. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes. Mol Cell Proteomics 2020; 19:1767-1776. [PMID: 32737218 DOI: 10.1074/mcp.ra120.002225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viral Patel
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon E DiMartino
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
24
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Kim DH, Kothandan VK, Kim HW, Kim KS, Kim JY, Cho HJ, Lee YK, Lee DE, Hwang SR. Noninvasive Assessment of Exosome Pharmacokinetics In Vivo: A Review. Pharmaceutics 2019; 11:E649. [PMID: 31817039 PMCID: PMC6956244 DOI: 10.3390/pharmaceutics11120649] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, intraluminal vesicles that contain informative DNA, RNA, proteins, and lipid membranes derived from the original donor cells, have recently been introduced to therapy and diagnosis. With their emergence as an alternative to cell therapy and having undergone clinical trials, proper analytical standards for evaluating their pharmacokinetics must now be established. Molecular imaging techniques such as fluorescence imaging, magnetic resonance imaging, and positron emission tomography (PET) are helpful to visualizing the absorption, distribution, metabolism, and excretion of exosomes. After exosomes labelled with a fluorescer or radioisotope are administered in vivo, they are differentially distributed according to the characteristics of each tissue or lesion, and real-time biodistribution of exosomes can be noninvasively monitored. Quantitative analysis of exosome concentration in biological fluid or tissue samples is also needed for the clinical application and industrialization of exosomes. In this review, we will discuss recent pharmacokinetic applications to exosomes, including labelling methods for in vivo imaging and analytical methods for quantifying exosomes, which will be helpful for evaluating pharmacokinetics of exosomes and improving exosome development and therapy.
Collapse
Affiliation(s)
- Do Hee Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Hye Won Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ki Seung Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ji Young Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Hyeon Jin Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea;
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
26
|
Glycan reductive amino acid coded affinity tagging (GRACAT) for highly specific analysis of N-glycome by mass spectrometry. Anal Chim Acta 2019; 1089:90-99. [DOI: 10.1016/j.aca.2019.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
|
27
|
Song W, Zhou X, Benktander JD, Gaunitz S, Zou G, Wang Z, Novotny MV, Jacobson SC. In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes. Anal Chem 2019; 91:13528-13537. [PMID: 31539226 PMCID: PMC6834888 DOI: 10.1021/acs.analchem.9b02620] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2-3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.
Collapse
Affiliation(s)
- Woran Song
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Xiaomei Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - John D. Benktander
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Guozhang Zou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Ziyu Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| |
Collapse
|
28
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
29
|
Parhiz H, Ketcham SA, Zou G, Ghosh B, Fratz-Berilla EJ, Ashraf M, Ju T, Madhavarao CN. Differential effects of bioreactor process variables and purification on the human recombinant lysosomal enzyme β-glucuronidase produced from Chinese hamster ovary cells. Appl Microbiol Biotechnol 2019; 103:6081-6095. [DOI: 10.1007/s00253-019-09889-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
|
30
|
Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang K. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron 2019; 135:129-136. [PMID: 31004923 DOI: 10.1016/j.bios.2019.04.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/16/2019] [Accepted: 04/05/2019] [Indexed: 01/21/2023]
Abstract
Sensitive detection of cancerous exosomes is critical to early diseases diagnosis and prognosis. Herein, a sensitive aptasensor was demonstrated for exosomes detection by surface plasmon resonance (SPR) with dual gold nanoparticle (AuNP)-assisted signal amplification. Dual nanoparticle amplification was achieved by controlled hybridization attachment of AuNPs resulting from electronic coupling between the Au film and AuNPs, as well as coupling effects in plasmonic nanostructures. By blocking the Au film surface with 11-Mercapto-1 -undecanol (MCU), nonspecific adsorption of AuNPs onto the SPR chip surface was suppressed and regeneration of the SPR sensor was realized. This method was highly sensitive and we have achieved the limit of detection (LOD) down to 5 × 103 exosomes/mL, which showed a 104-fold improvement in LOD compared to commercial ELISA. Moreover, the SPR sensor had the capability to differentiate the exosomes secreted by MCF-7 breast cancer cells and MCF-10A normal breast cells. Furthermore, the SPR sensor could effectively detect the exosomes in 30% fetal bovine serum. The work provides a sensitive and efficient quantification approach to detect cancerous exosomes and offers an avenue toward future diagnosis and comprehensive studies of exosomes.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| |
Collapse
|
31
|
A streamlined strategy for rapid and selective analysis of serum N-glycome. Anal Chim Acta 2019; 1050:80-87. [DOI: 10.1016/j.aca.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
|
32
|
Zou G, Kosikova M, Kim SR, Kotian S, Wu WW, Shen R, Powers DN, Agarabi C, Xie H, Ju T. Comprehensive analysis of N-glycans in IgG purified from ferrets with or without influenza A virus infection. J Biol Chem 2018; 293:19277-19289. [PMID: 30315103 DOI: 10.1074/jbc.ra118.005294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Indexed: 11/06/2022] Open
Abstract
Influenza viruses cause contagious respiratory infections, resulting in significant economic burdens to communities. Production of influenza-specific Igs, specifically IgGs, is one of the major protective immune mechanisms against influenza viruses. In humans, N-glycosylation of IgGs plays a critical role in antigen binding and effector functions. The ferret is the most commonly used animal model for studying influenza pathogenesis, virus transmission, and vaccine development, but its IgG structure and functions remain largely undefined. Here we show that ferret IgGs are N-glycosylated and that their N-glycan structures are diverse. Using a comprehensive strategy based on MS and ultra-HPLC analyses in combination with exoglycosidase digestions, we assigned 42 N-glycan structures in ferret IgGs. We observed that N-glycans of ferret IgGs consist mainly of complex-type glycans, including some high-mannose and hybrid glycans, similar to those observed in human IgG. The complex-type glycans of ferret IgGs were primarily core-fucosylated. Furthermore, a fraction of N-glycans carried bisecting GlcNAc. Ferret IgGs also had a minor fraction of glycans carrying α2-6Neu5Ac(s). We noted that, unlike human IgG, ferret IgGs have αGal epitopes on some N-glycans. Interestingly, influenza A infection caused prominent changes in the N-glycans of ferret IgG, mainly because of an increase in bisecting GlcNAc and F1A2G0 and a corresponding decrease in F1A2G1. This suggests that the glycosylation of virus-specific IgG may play a role in its functionality. Our study highlights the need to further elucidate the structure-function relationships of IgGs in universal influenza vaccine development.
Collapse
Affiliation(s)
- Guozhang Zou
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | | | - Su-Ryun Kim
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Shweta Kotian
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Rongfong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - David N Powers
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Cyrus Agarabi
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Hang Xie
- the Office of Vaccines Research and Review and
| | - Tongzhong Ju
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| |
Collapse
|
33
|
Zhang Y, Wu X, Andy Tao W. Characterization and Applications of Extracellular Vesicle Proteome with Post-Translational Modifications. Trends Analyt Chem 2018; 107:21-30. [PMID: 31598025 DOI: 10.1016/j.trac.2018.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are a diverse population of complex membrane-encapsulated vesicles released by a variety of cell types and exist in most of body fluids. Continuously growing number of reports revealed that EVs participate in multiple biological processes, such as intercellular communication, immune regulation, and dissemination of cancer cells. Accordingly, recent attention has been given to the characterization of extracellular vesicles and their components. This review focuses on state-of-the-art proteomic technologies to analyze proteomes of EVs, especially their post-translational modifications (PTMs). With their strong biological relevance and the relatively noninvasive accessibility from body fluids, the promising potential and early applications of EV proteome and its PTMs as attracting biomarker sources are also evaluated.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Costa J, Gatermann M, Nimtz M, Kandzia S, Glatzel M, Conradt HS. N-Glycosylation of Extracellular Vesicles from HEK-293 and Glioma Cell Lines. Anal Chem 2018; 90:7871-7879. [DOI: 10.1021/acs.analchem.7b05455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Júlia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras Portugal
| | - Maren Gatermann
- GlycoThera GmbH, Feodor-Lynen Strasse 35, D-30625 Hannover, Germany
| | - Manfred Nimtz
- Helmholtz-Zentrum für Infektionsforschung, D-38124 Braunschweig, Germany
| | | | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, D-20246 Hamburg, Germany
| | | |
Collapse
|
35
|
Benktander JD, Gizaw ST, Gaunitz S, Novotny MV. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1125-1137. [PMID: 29744812 PMCID: PMC6226365 DOI: 10.1007/s13361-018-1933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 05/15/2023]
Abstract
Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples. Graphical Abstract Outline of glycan profiling procedures.
Collapse
Affiliation(s)
- John D Benktander
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Solomon T Gizaw
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
36
|
Manandhar S, Kothandan VK, Oh J, Yoo SH, Hwang J, Hwang SR. A pharmaceutical investigation into exosomes. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0391-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Fang X, Duan Y, Adkins GB, Pan S, Wang H, Liu Y, Zhong W. Highly Efficient Exosome Isolation and Protein Analysis by an Integrated Nanomaterial-Based Platform. Anal Chem 2018; 90:2787-2795. [PMID: 29381333 PMCID: PMC5820131 DOI: 10.1021/acs.analchem.7b04861] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes play important roles in mediating intercellular communication and regulating a variety of biological processes, but clear understanding of their functions and biogenesis has not been achieved, due to the high technical difficulties involved in analysis of small vesicular structures that contain a high proportion of membrane structures. Herein, we designed a novel approach to integrate two nanomaterials carrying varied surface properties, the hydrophilic, macroporous graphene foam (GF) and the amphiphilic periodic mesoporous organosilica (PMO), for efficient exosome isolation from human serum and effective protein profiling. The high specific surface area of GF, after modification with the antibody against the exosomal protein marker, CD63, allowed highly specific isolation of exosomes from complex biological samples with high recovery. Since the organic solvent, methanol, turned out to be the most effective lysis solution for releasing the exosomal proteins, the amphiphilic PMO was employed to rapidly recover the exosomal proteins, including the highly hydrophobic membrane proteins. The fine pores of PMO also acted as the nanoreactors to accelerate protein digestion that produced peptides subject to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 334 proteins with 111 membrane proteins [31% of these contained >2 transmembrane domains (TMD)] were identified using the integrated GF/PMO platform. In contrast, with the commercial exosome isolation kit and the in-solution protein digestion method, only 151 proteins were found, with 28 being membrane proteins (only one contained three TMDs). Our results support that the integrated GF/PMO platform is of great value to facilitate the comprehensive characterization of exosomal proteins for better understanding of their functions and for identification of more exosome-based disease markers.
Collapse
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Yaokai Duan
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Gary Brent Adkins
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Songqin Pan
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Hua Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
- Yancheng Normal University, Jiangsu, China
| | - Yang Liu
- Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
- Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
38
|
Distinguishing glycan isomers by voltammetry. Modification of 2,3-sialyllactose and 2,6-sialyllactose by osmium(VI) complexes. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
39
|
Novotny MV. Development of capillary liquid chromatography: A personal perspective. J Chromatogr A 2017; 1523:3-16. [PMID: 28701267 PMCID: PMC5675780 DOI: 10.1016/j.chroma.2017.06.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/21/2022]
Abstract
This is a historical account on the development of capillary LC from its beginning to the present day. The first investigations into the viability of capillary LC date back to the late 1970s, a decade after the pioneering efforts in HPLC. The drastically reduced column dimensions were required to counter the slow solute diffusion in liquids. There were numerous instrumental difficulties with sample introduction and detection in the picoliter or even femtoliter volumes. High-efficiency separations were needed in the analysis of complex biological mixtures. Miniaturization brought distinct advantages in spectroscopic and electrochemical detection. Since the 1980s, column technologies underwent significant changes: (a) from glass-drawn microcapillaries to slurry-packed, small-diameter fused silica columns; and (b) in microcapillaries packed alternatively with sub-2-μm particles or monoliths. The viability of LC-MS combination has dramatically promoted the use of small-diameter capillaries. Through "omics technologies", capillary LC/tandem MS accounts for most applications in proteomics, glycomics and metabolomics.
Collapse
Affiliation(s)
- Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| |
Collapse
|