1
|
Zhao Y, Zhang W, Hong J, Yang L, Wang Y, Qu F, Xu W. Mobility capillary electrophoresis-native mass spectrometry reveals the dynamic conformational equilibrium of calmodulin and its complexes. Analyst 2024; 149:3793-3802. [PMID: 38847183 DOI: 10.1039/d4an00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Benefitting from the rapid evolution of artificial intelligence and structural biology, an expanding collection of high-resolution protein structures has greatly improved our understanding of protein functions. Yet, proteins are inherently flexible, and these static structures can only offer limited snapshots of their true dynamic nature. The conformational and functional changes of calmodulin (CaM) induced by Ca2+ binding have always been a focus of research. In this study, the conformational dynamics of CaM and its complexes were investigated using a mobility capillary electrophoresis (MCE) and native mass spectrometry (native MS) based method. By analyzing the ellipsoidal geometries of CaM in the solution phase at different Ca2+ concentrations, it is interesting to discover that CaM molecules, whether bound to Ca2+ or not, possess both closed and open conformations. Moreover, each individual CaM molecule actively "jumps" (equilibrium exchange) between these two distinct conformations on a timescale ranging from milli- to micro-seconds. The binding of Ca2+ ions did not affect the structural dynamics of CaM, while the binding of a peptide ligand would stabilize CaM, leading to the observation of a single, compact conformation of the resulting protein complex. A target recognition mechanism was also proposed based on these new findings, suggesting that CaM's interaction with targets may favor a conformational selection model. This enriches our understanding of the binding principles between CaM and its numerous targets.
Collapse
Affiliation(s)
- Yi Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjing Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jie Hong
- Kunshan Nier Precision Instrumentation Inc. Kunshan, Suzhou, 215316, China
| | - Lei Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuanyuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Zhang X, Bai Y, Liu S, Yang J, Hu N. Electrokinetic Nanorod Translocation through a Dual-Nanopipette. ACS OMEGA 2024; 9:24050-24059. [PMID: 38854563 PMCID: PMC11154894 DOI: 10.1021/acsomega.4c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Glass nanopipettes, as important sensing tools, have attracted great interest due to their wide range of applications in detecting single molecules, nanoparticles, and cells. In this study, we investigated the translocation behavior of nanorod particles through dual-nanopipettes using a transient continuum-based model based on an arbitrary Lagrangian-Eulerian approach. Our findings indicate that the translocation of nanorods is slowed down in the dual-nanopipette system, especially in the dual-nanopipette system with a nanobridge. These results are in qualitative agreement with previous experimental findings reported in the literature. Additionally, the translocation of nanorods is influenced by factors such as bulk concentration, initial location of the nanorod, and surface charge of the nanopipette. Notably, when the surface charge density of the nanopipette is relatively high and the initial location of the nanorod is in the reservoir, the nanorod can hardly enter the nanopipette, resulting in a relatively low translocation efficiency. However, the translocation efficiency can be improved by initially positioning the nanorod in one of the barrels. The resulting dual-blockade current signal can be used to correlate the characteristics of the nanorod.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School
of Smart Health, Chongqing College of Electronic
Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Shiping Liu
- School
of Safety Engineering, Chongqing University
of Science and Technology, Chongqing 401331, China
| | - Jun Yang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Liu G, Hou S, Li S, Ling J, Xu G, Li J. A molecularly imprinted sensor for single-molecule detection of pesticide metabolite at the amol/L level sensitized by water-soluble luminol derivative encapsulated liposome via click reaction. Biosens Bioelectron 2023; 242:115714. [PMID: 37816285 DOI: 10.1016/j.bios.2023.115714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
A novel luminol derivative, 4-[(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)amino]-4-oxobut-2-enoic acid (ALD) with electrochemiluminescence intensity and stability characteristics similar to luminol, but higher solubility in near neutral solution, was designed and synthesized in this study. Using this derivative, a molecular imprinted electrochemiluminescence sensor (MIECLS) was prepared for the sensitive and selective determination of 2-amino-5-mercapto-1,3,4-thiadiazole (AMT), a metabolite of bismerthiazol, thiediazole copper, thiazole zinc, and other pesticides. The ALD probes encapsulated in liposomes are immobilized on the molecularly imprinted film by light-triggered click reaction, and the concurrent release of multiple probes allows for highly sensitive detection. In the AMT concentration range of 1.00 × 10-18 - 5.00 × 10-13 mol/L, the relation between ECL response and log AMT concentration is linear. With a detection limit of 5.25 × 10-19 mol/L (about 4 - 6 molecules in 10 μL of the sample), the sensor allows for high sensitivity analysis of ultra-trace amounts of small organic compounds. In general, the ECL-based single-molecule detection technique proposed herein might be a promising alternative to fluorescence single-molecule detection.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shili Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Shiyu Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Ling
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guobao Xu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
4
|
Wang XY, Lv J, Wu X, Hong Q, Qian RC. The Modification and Applications of Nanopipettes in Electrochemical Analysis. Chempluschem 2023; 88:e202300100. [PMID: 37442793 DOI: 10.1002/cplu.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Nanopipette, which is fabricated by glasses and possesses a nanoscale pore in the tip, has been proven to be immensely useful in electrochemical analysis. Numerous nanopipette-based sensors have emerged with improved sensitivity, selectivity, ease of use, and miniaturization. In this minireview, we provide an overview of the recent developments of nanopipette-based electrochemical sensors based on different types of nanopipettes, including single-nanopipettes, self-referenced nanopipettes, dual-nanopipettes, and double-barrel nanopipettes. Several important modification materials for nanopipette functionalization are highlighted, such as conductive materials, macromolecular materials, and functional molecules. These materials can improve the sensing performance and targeting specificities of nanopipettes. We also discuss examples of related applications and the future development of nanopipette-based strategies.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xue Wu
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
5
|
Guan X, Li H, Chen L, Qi G, Jin Y. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection. ACS Sens 2023; 8:427-442. [PMID: 36670058 DOI: 10.1021/acssensors.2c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass capillary-based nanopore (G-nanopore), due to its tapered tip, easy tunability in orifice size, and especially its flexible surface modifications that can be tailored to effectively capture and enhance the ionic current signal of single entities (single molecules, single cells, and single particles), offers a powerful and nanoconfined sensing platform for diverse biological measurements of single cells and single molecules. Compared with other artificial two-dimensional solid-state nanopores, its conical tip and high spatial and temporal resolution characteristics facilitate noninvasive single molecule and selected area (subcellular) single cell detections (e.g., DNA mutations, highly expressed proteins, and small molecule markers that reflect the change characteristics of the tumor), as a small G-nanopore (≤100 nm) does negligible damage to cell functions and cell membrane integrity when inserted through the cell membrane. In this brief review, we summarize the preparation of G-nanopores and discuss the advantages of them as solid-state sensing platforms for single molecule and single cell detection applications as well as for cancer diagnosis and treatment applications. We also describe the current bottlenecks that limit the widespread use of G-nanopores in clinical applications and provide an outlook on future developments. The brief review will provide the reader with a quick survey of this field and facilitate the rapid development of a G-nanopore sensing platform for future tumor diagnosis and personalized medicine based on single-molecule/single-cell bioassay.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
6
|
Cao M, Zhang L, Tang H, Qiu X, Li Y. Single-Molecule Investigation of the Protein-Aptamer Interactions and Sensing Application Inside the Single Glass Nanopore. Anal Chem 2022; 94:17405-17412. [PMID: 36475604 DOI: 10.1021/acs.analchem.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state nanopores offer a nanoconfined space for a single-molecule sensing strategy. Evaluating the behavior of proteins and protein-related interactions at the single-molecule level is becoming more and more important for a better understanding of biological processes and diseases. In this work, the aptamer-functionalized nanopore was prepared as the sensing platform for kinetic analysis of the carcinoembryonic antigen (CEA) with its aptamers, which is an important cancer biomarker. CEA molecules were captured by the aptamers immobilized on the inner surface of the nanopore, and there was a complicated interaction between the CEA molecules and the aptamer, which is the process of association and dissociation. This could be used to measure the dynamics of aptamer-protein interactions without labeling. The kinetic analysis could be evaluated at the single-molecule level to interpret the dissociation constants of the binding and dissociation processes. Results showed that the translocation of CEA molecules in a functionalized nanopore had a deep blockades degree and long duration compared with nanopore modified with bare gold, which could be used for CEA sensing. This protein and protein-related interaction we designed provides new insights for evaluating the binding affinity, which will be beneficial for protein sensing and immunoassays.
Collapse
Affiliation(s)
- Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Lijun Zhang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| |
Collapse
|
7
|
Wang Z, Hu R, Zhu R, Lu W, Wei G, Zhao J, Gu ZY, Zhao Q. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis. SMALL METHODS 2022; 6:e2200743. [PMID: 36216776 DOI: 10.1002/smtd.202200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability to detect biomolecules at the single-molecule level is at the forefront of biological research, precision medicine, and early diagnosis. Recently, solid-state nanopore sensors have emerged as a promising technique for label-free and precise diagnosis assay. However, insufficient sensitivity and selectivity for small analytes are a great challenge for clinical diagnosis applications via solid-state nanopores. Here, for the first time, a metal-organic cage, PCC-57, is employed as a carrier to increase the sensitivity and selectivity of solid-state nanopores based on the intrinsic interaction of the nanocage with biomolecules. Firstly, it is found that the carrier itself is undetectable unless bound with the target analytes and used oligonucleotides as linkers to attach PCC-57 and target analytes. Secondly, two small analytes, oligonucleotide conjugated angiopep-2 and polyphosphoric acid, are successfully distinguished using the molecular carrier. Finally, selectivity of nanopore detection is achieved by attaching PCC-57 to oligonucleotide-tailed aptamers, and the human alpha-thrombin sample is successfully detected. It is believed that the highly designable metal-organic cage could serve as a rich carrier repository for a variety of biomolecules, facilitating single-molecule screening of clinically relevant biomolecules based on solid-state nanopores in the future.
Collapse
Affiliation(s)
- Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhi-Yuan Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|
8
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Tang H, Wang H, Zhao D, Cao M, Zhu Y, Li Y. Nanopore-Based Single-Entity Electrochemistry for the Label-Free Monitoring of Single-Molecule Glycoprotein-Boronate Affinity Interaction and Its Sensing Application. Anal Chem 2022; 94:5715-5722. [PMID: 35362966 DOI: 10.1021/acs.analchem.2c00860] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein-boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Collapse
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dandan Zhao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yanyan Zhu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
10
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
11
|
Ma H, Yu RJ, Ying YL, Long YT. Electrochemically Confined Effects on Single Enzyme Detection with Nanopipettes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
13
|
Huang Y, Lu Y, Huang X, Wang J, Qiu B, Luo F, Lin Z. Design of an electrochemiluminescence detection system through the regulation of charge density in a microchannel. Chem Sci 2021; 12:13151-13157. [PMID: 34745546 PMCID: PMC8513839 DOI: 10.1039/d1sc02518j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 02/02/2023] Open
Abstract
Rare electrochemiluminescence (ECL) sensors have been developed based on the direct regulation of ionic current because it is difficult to establish a relationship between ionic current and ECL reporting. Ionic current can be adjusted by the effective radius and charge density of a functionalized microchannel and is frequently adopted to develop electrical sensors. Here, we show a novel ECL sensing platform that combines the microchannel-based electrical sensing technology with an ECL reporting system for the first time. The target regulated the effective radius and charge density of a microchannel which in turn adjusted the ionic transport in it and finally caused the change of ECL reporting of a tris(1,10-phenanthroline)ruthenium(ii)/tripropylamine system. The developed system has already been applied to detect aflatoxin B1 for demonstration. This configuration separated the target sensing and reporting reactions to achieve direct regulation of ECL reporting by ionic current and expanded the application of the ECL detection technology to microanalysis.
Collapse
Affiliation(s)
- Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Yilei Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Xiaobin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350116 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
14
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
15
|
Jiang X, Zhou Y, Chen Y, Shao Y, Feng J. Etching-Engineered Low-Voltage Dielectrophoretic Nanotweezers for Trapping of Single Molecules. Anal Chem 2021; 93:12549-12555. [PMID: 34514774 DOI: 10.1021/acs.analchem.1c01818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the functions of biomolecules at the single-molecule level is crucial due to their important and diverse roles in cell regulation. Recently, nanotweezers made of dual carbon nanoelectrodes have been developed for single-cell biopsies by applying a high alternating voltage. However, high electric voltage can induce Joule heating, water electrolysis, and other side effects on cell activity, which may be unfavorable for cellular applications. Here, we report a low-voltage nanotweezer for trapping of single DNA molecules using etching-engineered nanoelectrodes which effectively reduce the minimum trapping voltage by six times. Meanwhile, the low-voltage nanotweezer displays an improved trapping stiffness. Based on the finite element method simulations, we attribute the mechanism for the low-voltage nanotweezers to the increase in spatial heterogeneity and nonuniformity of electric field by etching of quartz near the nanoelectrodes. This work opens a new dimension for noninvasive single-molecule manipulation in solution and potential applications in single-cell biopsies.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Yanagi I, Takeda KI. Sub-10-nm-thick SiN nanopore membranes fabricated using the SiO 2sacrificial layer process. NANOTECHNOLOGY 2021; 32:415301. [PMID: 34214991 DOI: 10.1088/1361-6528/ac10e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In our previous studies, ultrathin SiN membranes down to 3 nm in thickness were fabricated using the poly-Si sacrificial layer process, and nanopores were formed in those membranes. The region of the SiN membrane fabricated using this process was small, and the poly-Si sacrificial layer remained throughout the other region. On the other hand, to reduce the noise of the current through the nanopore, it is preferable to reduce the capacitance of the nanopore chip by replacing the poly-Si layer with an insulator with low permittivity, such as SiO2. Thus, in this study, the fabrication of SiN membranes with thicknesses of 3-7 nm using the SiO2sacrificial layer process was examined. SiN membranes with thicknesses of less than 5 nm could not be formed when the thickness of the top SiN layer deposited onto the sacrificial layer was 100 nm. In contrast, SiN membranes down to 3.07 nm in thickness could be formed when the top SiN layer was 40 nm in thickness. This is thought to be due to the difference in membrane stress. Nanopores were then fabricated in the membranes via dielectric breakdown. The current noise of the nanopore membranes was approximately 3/5 that of membranes fabricated using the poly-Si sacrificial layer process. Last, ionic current blockades were measured when poly(dT)60passed through the nanopores, and the effective thickness of the nanopores was estimated based on those current-blockade values. The effective thickness was approximately 4.8 nm when the deposited thickness of the SiN membrane was 6.03 nm. On the other hand, the effective thickness and the deposited thickness were almost the same when the deposited thickness was 3.07 nm. This suggests it became difficult to form a shape in which the thickness of the nanopore edge was thinner than the deposited membrane thickness as the deposited thickness decreased.
Collapse
Affiliation(s)
- Itaru Yanagi
- Center for Technology Innovation-Healthcare, Research & Development Group, Hitachi, Ltd, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| | - Ken-Ichi Takeda
- Center for Technology Innovation-Healthcare, Research & Development Group, Hitachi, Ltd, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| |
Collapse
|
17
|
Wang L, Ma Y, Wang L. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology. Biosens Bioelectron 2021; 178:113056. [DOI: 10.1016/j.bios.2021.113056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
|
18
|
Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D. Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Anal Chem 2021; 93:4033-4041. [PMID: 33596063 DOI: 10.1021/acs.analchem.0c05038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dominic Eggemann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| |
Collapse
|
19
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
20
|
Rational design of DNA nanostructures for single molecule biosensing. Nat Commun 2020; 11:4384. [PMID: 32873796 PMCID: PMC7463249 DOI: 10.1038/s41467-020-18132-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.
Collapse
|
21
|
Liu Y, Xu C, Gao T, Chen X, Wang J, Yu P, Mao L. Sizing Single Particles at the Orifice of a Nanopipette. ACS Sens 2020; 5:2351-2358. [PMID: 32672038 DOI: 10.1021/acssensors.9b02520] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing new methods and techniques for the size analysis of particles in a solution is highly desirable not only for the industrial screening of particles but also for single biological entity analysis (e.g., single cells or single vesicles). Herein, we report a new technique for sizing single particles in a solution with a nanopipette. The rationale is essentially based on ion-current blockage when the particles approach the proximity of a nanopipette orifice. By rationally controlling the geometry of the nanopipette and the applied potential, the spike-type ion current transient generated from the motion of particles in the process of "collision and departure" is employed for sizing single particles. The results show that both the relative ion-current change (ΔI/I0) and the dwell time (Δt) of spike-type transient are dependent on particle size. Differently, Δt is also related to an externally applied voltage. Statistical analysis shows that ΔI/I0 is proportional to the particle diameter, and this linear relationship is further understood by finite-element simulations. This study not only provides a new principle for sizing single particles in a solution but also is helpful to understand the motion of a particle near the orifice of the nanopipette.
Collapse
Affiliation(s)
- Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tienan Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Fortschritte in der optischen Einzelmoleküldetektion: Auf dem Weg zu höchstempfindlichen Bioaffinitätsassays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
| | - Matthias J. Mickert
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Hans H. Gorris
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
23
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| |
Collapse
|
24
|
Yi W, Xu C, Xiong T, Gao T, Yu P, He X, Mao L. Label-free analysis of adsorbed protein heterogeneity on individual particles, based on single particle collision events. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Tang H, Wang H, Yang C, Zhao D, Qian Y, Li Y. Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules. Anal Chem 2020; 92:3042-3049. [DOI: 10.1021/acs.analchem.9b04185] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Dandan Zhao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yuanyuan Qian
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
26
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
27
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2019; 151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.
Collapse
Affiliation(s)
- Namik Akkilic
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
29
|
Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Sci Rep 2019; 9:13143. [PMID: 31511597 PMCID: PMC6739384 DOI: 10.1038/s41598-019-49622-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023] Open
Abstract
For nanopore sensing of various-sized molecules with high sensitivity, the size of the nanopore should be adjusted according to the size of each target molecule. For solid-state nanopores, a simple and inexpensive nanopore fabrication method utilizing dielectric breakdown of a membrane is widely used. This method is suitable for fabricating a small nanopore. However, it suffers two serious problems when attempting to fabricate a large nanopore: the generation of multiple nanopores and the non-opening failure of a nanopore. In this study, we found that nanopore fabrication by dielectric breakdown of a SiN membrane under high-pH conditions (pH ≥ 11.3) could overcome these two problems and enabled the formation of a single large nanopore up to 40 nm in diameter within one minute. Moreover, the ionic-current blockades derived from streptavidin-labelled and non-labelled DNA passing through the fabricated nanopore were clearly distinguished. The current blockades caused by streptavidin-labelled DNA could be identified even when its concentration is 1% of the total DNA.
Collapse
|
30
|
Xiong T, Zhang K, Jiang Y, Yu P, Mao L. Ion current rectification: from nanoscale to microscale. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9526-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
|
32
|
Facile Fabrication of Gold Functionalized Nanopipette for Nanoscale Electrochemistry and Surface Enhanced Raman Spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61177-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
LIU AX, YANG D, LI HN, LIU GH, FU Q, SHAN YP, YANG GC, HE J. Modulating Nanoparticle Translocation by Surface Chemistry of Gold Nanopores. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Wang H, Tang H, Yang C, Li Y. Selective Single Molecule Nanopore Sensing of microRNA Using PNA Functionalized Magnetic Core-Shell Fe 3O 4-Au Nanoparticles. Anal Chem 2019; 91:7965-7970. [PMID: 31132236 DOI: 10.1021/acs.analchem.9b02025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solid-state nanopores have been employed as useful tools for single molecule analysis due to their advantages of easy fabrication and controllable diameter, but selectivity is always a big concern for complicated samples. In this work, functionalized magnetic core-shell Fe3O4-Au nanoparticles, which acted as a molecular carrier, were introduced into nanopore electrochemical system for microRNA sensing in complicated samples with high sensitivity, selectivity and signal-to-noise ratio (SNR). This strategy is based on the specific affinity between neutral peptide nucleic acids (PNA)-modified Fe3O4-Au nanoparticles and negative miRNA, and the formation of negative Fe3O4-Au-PNA-miRNA complex, which can pass through the nanopore by application of a positive potential and eliminate neutral Fe3O4-Au-PNA complex. To detect miRNA in complicated samples, a magnet has been used to separate Fe3O4-Au-PNA-miRNA complex with good selectivity. We think this is a facile and effective method for the detection of different targets at single molecular level, including nucleic acids, proteins, and other small molecules, which will open up a new approach in the nanopore sensing field.
Collapse
Affiliation(s)
- Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P. R. China
| |
Collapse
|
35
|
Cai XH, Cao SH, Cai SL, Wu YY, Ajmal M, Li YQ. Reversing current rectification to improve DNA-sensing sensitivity in conical nanopores. Electrophoresis 2019; 40:2098-2103. [PMID: 31020667 DOI: 10.1002/elps.201900002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 01/03/2023]
Abstract
Herein, we report the ultrasensitive DNA detection through designing an elegant nanopore biosensor as the first case to realize the reversal of current rectification direction for sensing. Attributed to the unique asymmetric structure, the glass conical nanopore exhibits the sensitive response to the surface charge, which can be facilely monitored by ion current rectification curves. In our design, an enzymatic cleavage reaction was employed to alter the surface charge of the nanopore for DNA sensing. The measured ion current rectification was strongly responsive to DNA concentrations, even reaching to the reversed status from the negative ratio (-6.5) to the positive ratio (+16.1). The detectable concentration for DNA was as low as 0.1 fM. This is an ultrasensitive and label-free DNA sensing approach, based on the rectification direction-reversed amplification in a single glass conical nanopore.
Collapse
Affiliation(s)
- Xiu-Hong Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.,Department of Electronic Science, Xiamen University, Xiamen, P. R. China.,Shenzhen Research Institute of Xiamen University, Shenzhen, P. R. China
| | - Sheng-Lin Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yuan-Yi Wu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Muhammad Ajmal
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
36
|
Yu R, Ying Y, Gao R, Long Y. Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angew Chem Int Ed Engl 2019; 58:3706-3714. [DOI: 10.1002/anie.201803229] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
37
|
Yu R, Ying Y, Gao R, Long Y. Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| |
Collapse
|
38
|
Hu YX, Ying YL, Gao R, Yu RJ, Long YT. Characterization of the Dynamic Growth of the Nanobubble within the Confined Glass Nanopore. Anal Chem 2018; 90:12352-12355. [DOI: 10.1021/acs.analchem.8b03923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ru-Jia Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
39
|
Affiliation(s)
- Mukhil Raveendran
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Andrew J. Lee
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Christoph Wälti
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Paolo Actis
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| |
Collapse
|
40
|
Ren YA, Gao H, Ouyang X. Advances in DNA Origami Nanopores: Fabrication, Characterization and Applications. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong-An Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| | - Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| |
Collapse
|
41
|
Yanagi I, Hamamura H, Akahori R, Takeda KI. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Sci Rep 2018; 8:10129. [PMID: 29973672 PMCID: PMC6031669 DOI: 10.1038/s41598-018-28524-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022] Open
Abstract
For the nanopore sensing of various large molecules, such as probe-labelled DNA and antigen-antibody complexes, the nanopore size has to be customized for each target molecule. The recently developed nanopore fabrication method utilizing dielectric breakdown of a membrane is simple and quite inexpensive, but it is somewhat unsuitable for the stable fabrication of a single large nanopore due to the risk of generating multiple nanopores. To overcome this bottleneck, we propose a new technique called “two-step breakdown” (TSB). In the first step of TSB, a local conductive thin portion (not a nanopore) is formed in the membrane by dielectric breakdown. In the second step, the created thin portion is penetrated by voltage pulses whose polarity is opposite to the polarity of the voltage used in the first step. By applying TSB to a 20-nm-thick SiN membrane, a single nanopore with a diameter of 21–26 nm could be fabricated with a high yield of 83%.
Collapse
Affiliation(s)
- Itaru Yanagi
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan.
| | - Hirotaka Hamamura
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| | - Rena Akahori
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| | - Ken-Ichi Takeda
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| |
Collapse
|
42
|
Zhang S, Li M, Su B, Shao Y. Fabrication and Use of Nanopipettes in Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:265-286. [PMID: 29894227 DOI: 10.1146/annurev-anchem-061417-125840] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
43
|
Bulbul G, Chaves G, Olivier J, Ozel RE, Pourmand N. Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology. Cells 2018; 7:E55. [PMID: 29882813 PMCID: PMC6024992 DOI: 10.3390/cells7060055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Examining the behavior of a single cell within its natural environment is valuable for understanding both the biological processes that control the function of cells and how injury or disease lead to pathological change of their function. Single-cell analysis can reveal information regarding the causes of genetic changes, and it can contribute to studies on the molecular basis of cell transformation and proliferation. By contrast, whole tissue biopsies can only yield information on a statistical average of several processes occurring in a population of different cells. Electrowetting within a nanopipette provides a nanobiopsy platform for the extraction of cellular material from single living cells. Additionally, functionalized nanopipette sensing probes can differentiate analytes based on their size, shape or charge density, making the technology uniquely suited to sensing changes in single-cell dynamics. In this review, we highlight the potential of nanopipette technology as a non-destructive analytical tool to monitor single living cells, with particular attention to integration into applications in molecular biology.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Gepoliano Chaves
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Joseph Olivier
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Rifat Emrah Ozel
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
44
|
Fu K, Han D, Crouch GM, Kwon SR, Bohn PW. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703248. [PMID: 29377558 PMCID: PMC8287793 DOI: 10.1002/smll.201703248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Single nanoparticle analysis can reveal how particle-to-particle heterogeneity affects ensemble properties derived from traditional bulk measurements. High-bandwidth, low noise electrochemical measurements are needed to examine the fast heterogeneous electron-transfer behavior of single nanoparticles with sufficient fidelity to resolve the behavior of individual nanoparticles. Herein, nanopore electrode arrays (NEAs) are fabricated in which each pore supports two vertically spaced, individually addressable electrodes. The top ring electrode serves as a particle gate to control the transport of silver nanoparticles (AgNPs) within individual attoliter volume NEAs nanopores, as shown by redox collisions of AgNPs collisions at the bottom disk electrode. The AgNP-nanoporeis system has wide-ranging technological applications as well as fundamental interest, since the transport of AgNPs within the NEA mimics the transport of ions through cell membranes via voltage-gated ion channels. A voltage threshold is observed above which AgNPs are able to access the bottom electrode of the NEAs, i.e., a minimum potential at the gate electrode is required to switch between few and many observed collision events on the collector electrode. It is further shown that this threshold voltage is strongly dependent on the applied voltage at both electrodes as well as the size of AgNPs, as shown both experimentally and through finite-element modeling. Overall, this study provides a precise method of monitoring nanoparticle transport and in situ redox reactions within nanoconfined spaces at the single particle level.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, US
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | | |
Collapse
|