1
|
Wang CR, Zenaidee MA, Snel MF, Pukala TL. Exploring Top-Down Mass Spectrometric Approaches To Probe Forest Cobra ( Naja melanoleuca) Venom Proteoforms. J Proteome Res 2024; 23:4601-4613. [PMID: 39231368 DOI: 10.1021/acs.jproteome.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Snake venoms are comprised of bioactive proteins and peptides that facilitate severe snakebite envenomation symptoms. A comprehensive understanding of venom compositions and the subtle heterogeneity therein is important. While bottom-up proteomics has been the well-established approach to catalogue venom compositions, top-down proteomics has emerged as a complementary strategy to characterize venom heterogeneity at the intact protein level. However, top-down proteomics has not been as widely implemented in the snake venom field as bottom-up proteomics, with various emerging top-down methods yet to be developed for venom systems. Here, we have explored three main top-down mass spectrometry methodologies in a proof-of-concept study to characterize selected three-finger toxin and phospholipase A2 proteoforms from the forest cobra (Naja melanoleuca) venom. We demonstrated the utility of a data-independent acquisition mode "MSE" for untargeted fragmentation on a chromatographic time scale and its improvement in protein sequence coverage compared to conventional targeted tandem mass spectrometry analysis. We also showed that protein identification can be further improved using a hybrid fragmentation approach, combining electron-capture dissociation and collision-induced dissociation. Lastly, we reported the promising application of multifunctional cyclic ion mobility separation and post-ion mobility fragmentation on snake venom proteins for the first time.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
3
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
4
|
Cline EN, Alvarez C, Duan J, Patrie SM. Online μSEC 2-nRPLC-MS for Improved Sensitivity of Intact Protein Detection of IEF-Separated Nonhuman Primate Cerebrospinal Fluid Proteins. Anal Chem 2021; 93:16741-16750. [PMID: 34881887 PMCID: PMC10476446 DOI: 10.1021/acs.analchem.1c00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteoform-resolved information, obtained by top-down (TD) "intact protein" proteomics, is expected to contribute substantially to the understanding of molecular pathogenic mechanisms and, in turn, identify novel therapeutic and diagnostic targets. However, the robustness of mass spectrometry (MS) analysis of intact proteins in complex biological samples is hindered by the high dynamic range in protein concentration and mass, protein instability, and buffer complexity. Here, we describe an evolutionary step for intact protein investigations through the online implementation of tandem microflow size-exclusion chromatography with nanoflow reversed-phase liquid chromatography and MS (μSEC2-nRPLC-MS). Online serial high-/low-pass SEC filtration overcomes the aforementioned hurdles to intact proteomic analysis through automated sample desalting/cleanup and enrichment of target mass ranges (5-155 kDa) prior to nRPLC-MS. The coupling of μSEC to nRPLC is achieved through a novel injection volume control (IVC) strategy of inserting protein trap columns, pre- and post-μSEC columns, to enable injection of dilute samples in high volumes without loss of sensitivity or resolution. Critical characteristics of the approach are tested via rigorous investigations on samples of varied complexity and chemical background. Application of the platform to cerebrospinal fluid (CSF) prefractionated by OFFGEL isoelectric focusing drastically increases the number of intact mass tags (IMTs) detected within the target mass range (5-30 kDa) in comparison to one-dimensional nRPLC-MS with approximately 100× less CSF than previous OFFGEL studies. Furthermore, the modular design of the μSEC2-nRPLC-MS platform is robust and promises significant flexibility for large-scale TDMS analysis of diverse samples either directly or in concert with other multidimensional fractionation steps.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Carina Alvarez
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Jiana Duan
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
6
|
Corbett JR, Robinson DE, Patrie SM. Robustness and Ruggedness of Isoelectric Focusing and Superficially Porous Liquid Chromatography with Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:346-354. [PMID: 33274937 PMCID: PMC10476448 DOI: 10.1021/jasms.0c00355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation of a multidimensional proteomics workflow composed of off-gel isoelectric focusing (IEF) and superficially porous liquid chromatography (SPLC) with Fourier transform mass spectrometry (FTMS) was completed in order to assess various figures of merit associated with intact protein measurements. Triplicate analysis performed at both high and low FTMS resolutions on the E. coli proteome resulted in ∼900 redundant proteoforms from 3 to 95 kDa. Normalization of the chromatographic axis to identified proteoforms enabled reproducible physicochemical property measurements between proteome replicates with inter-replicate variances of ±3 ppm mass error for proteoforms <30 kDa, ±1.1 Da for proteins >30 kDa, ±12 s retention time error, and ±0.21 pI units. The results for E. coli and standard proteins revealed a correlation between pI precision and proteoform abundance with species detected in multiple IEF fractions exhibiting pI precisions less than the theoretical resolution of the off-gel system (±0.05 vs ±0.17, respectively). Evaluation of differentially modified proteoforms of standard proteins revealed that high sample loads (100s μgrams) change the IEF pH gradient profile, leading to sample broadening that facilitates resolution of charged post-translational modifications (e.g., phosphorylation, sialylation). Despite the impact of sample load on IEF resolution, results on standard proteins measured directly or after being spiked into E. coli demonstrated that the reproducibility of the workflow permitted recombination of the MS signal across IEF fractions in a manner supporting the evaluation of three label-free quantitation metrics for intact protein studies (proteoforms, proteoform ratios, and protein) over 102-103 sample amount with low femtomole detection limits.
Collapse
Affiliation(s)
- John R Corbett
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Bioengineering, UT Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Dana E Robinson
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Steven M Patrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
7
|
Poverennaya EV, Kiseleva OI, Ivanov AS, Ponomarenko EA. Methods of Computational Interactomics for Investigating Interactions of Human Proteoforms. BIOCHEMISTRY (MOSCOW) 2020; 85:68-79. [PMID: 32079518 DOI: 10.1134/s000629792001006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human genome contains ca. 20,000 protein-coding genes that could be translated into millions of unique protein species (proteoforms). Proteoforms coded by a single gene often have different functions, which implies different protein partners. By interacting with each other, proteoforms create a network reflecting the dynamics of cellular processes in an organism. Perturbations of protein-protein interactions change the network topology, which often triggers pathological processes. Studying proteoforms is a relatively new research area in proteomics, and this is why there are comparatively few experimental studies on the interaction of proteoforms. Bioinformatics tools can facilitate such studies by providing valuable complementary information to the experimental data and, in particular, expanding the possibilities of the studies of proteoform interactions.
Collapse
Affiliation(s)
| | - O I Kiseleva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - A S Ivanov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | |
Collapse
|
8
|
Locard-Paulet M, Parra J, Albigot R, Mouton-Barbosa E, Bardi L, Burlet-Schiltz O, Marcoux J. VisioProt-MS: interactive 2D maps from intact protein mass spectrometry. Bioinformatics 2019; 35:679-681. [PMID: 30084957 PMCID: PMC6378940 DOI: 10.1093/bioinformatics/bty680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
SUMMARY VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results. VisioProt-MS is compatible with outputs from many different top-down dedicated software. To our knowledge, this is the only open source standalone application that allows the dynamic comparison of several MS files, a prerequisite for comparative analysis of different biological conditions. With its dynamic rendering, this user-friendly web application facilitates inspection, comparison and export of publication quality 2 D maps from deconvoluted LC-MS run(s) and top-down proteomics data. AVAILABILITY AND IMPLEMENTATION The Shiny-based web application VisioProt-MS is suitable for non-R users. It can be found at https://masstools.ipbs.fr/mstools/visioprot-ms/ and the corresponding scripts are downloadable at https://github.com/mlocardpaulet/VisioProt-MS. It is governed by the CeCILL license (http://www.cecill.info).
Collapse
Affiliation(s)
- Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Albigot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Bardi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
9
|
Park HM, Satta R, Davis RG, Goo YA, LeDuc RD, Fellers RT, Greer JB, Romanova EV, Rubakhin SS, Tai R, Thomas PM, Sweedler JV, Kelleher NL, Patrie SM, Lasek AW. Multidimensional Top-Down Proteomics of Brain-Region-Specific Mouse Brain Proteoforms Responsive to Cocaine and Estradiol. J Proteome Res 2019; 18:3999-4012. [PMID: 31550894 DOI: 10.1021/acs.jproteome.9b00481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17β-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.
Collapse
Affiliation(s)
- Hae-Min Park
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Rosalba Satta
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| | - Roderick G Davis
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Young Ah Goo
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Richard D LeDuc
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Ryan T Fellers
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Joseph B Greer
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Elena V Romanova
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rex Tai
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| | - Paul M Thomas
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Steven M Patrie
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amy W Lasek
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| |
Collapse
|
10
|
Lesne J, Bousquet MP, Marcoux J, Locard-Paulet M. Top-Down and Intact Protein Mass Spectrometry Data Visualization for Proteoform Analysis Using VisioProt-MS. Bioinform Biol Insights 2019; 13:1177932219868223. [PMID: 31452600 PMCID: PMC6698994 DOI: 10.1177/1177932219868223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
The rise of intact protein analysis by mass spectrometry (MS) was accompanied by
an increasing need for flexible tools allowing data visualization and analysis.
These include inspection of the deconvoluted molecular weights of the
proteoforms eluted alongside liquid chromatography (LC) through their
representation in three-dimensional (3D) liquid chromatography coupled to mass
spectrometry (LC-MS) maps (plots of deconvoluted molecular weights, retention
times, and intensity of the MS signal). With this aim, we developed a free and
open-source web application named VisioProt-MS (https://masstools.ipbs.fr/mstools/visioprot-ms/). VisioProt-MS
is highly compatible with many algorithms and software developed by the
community to integrate and deconvolute top-down and intact protein MS data. Its
dynamic and user-friendly features greatly facilitate analysis through several
graphical representations dedicated to MS and tandem mass spectrometry (MS/MS)
analysis of proteoforms in complex samples. Here, we will illustrate the
importance of LC-MS map visualization to optimize top-down acquisition/search
parameters and analyze intact protein MS data. We will go through the main
features of VisioProt-MS using the human proteasomal 20S core particle as a
user-case.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Kirkpatrick CL, Parsley NC, Bartges TE, Wing CE, Kommineni S, Kristich CJ, Salzman NH, Patrie SM, Hicks LM. Exploring bioactive peptides from bacterial secretomes using PepSAVI-MS: identification and characterization of Bac-21 from Enterococcus faecalis pPD1. Microb Biotechnol 2018; 11:943-951. [PMID: 30014612 PMCID: PMC6116741 DOI: 10.1111/1751-7915.13299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
As current methods for antibiotic drug discovery are being outpaced by the rise of antimicrobial resistance, new methods and innovative technologies are necessary to replenish our dwindling arsenal of antimicrobial agents. To this end, we developed the PepSAVI-MS pipeline to expedite the search for natural product bioactive peptides. Herein we demonstrate expansion of PepSAVI-MS for the discovery of bacterial-sourced bioactive peptides through identification of the bacteriocin Bac-21 from Enterococcus faecalis pPD1. Minor pipeline modifications including implementation of bacteria-infused agar diffusion assays and optional digestion of peptide libraries highlight the versatility and wide adaptability of the PepSAVI-MS pipeline. Additionally, we have experimentally validated the primary protein sequence of the active, mature Bac-21 peptide for the first time and have confirmed its identity with respect to primary sequence and post-translational processing. Successful application of PepSAVI-MS to bacterial secretomes as demonstrated herein establishes proof-of-principle for use in novel microbial bioactive peptide discovery.
Collapse
Affiliation(s)
| | - Nicole C. Parsley
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Tessa E. Bartges
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Casey E. Wing
- Department of PathologySouthwestern Medical CenterThe University of TexasAustinTXUSA
| | - Sushma Kommineni
- Division of GastroenterologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Nita H. Salzman
- Division of GastroenterologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Leslie M. Hicks
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
12
|
Cesnik AJ, Shortreed MR, Schaffer LV, Knoener RA, Frey BL, Scalf M, Solntsev SK, Dai Y, Gasch AP, Smith LM. Proteoform Suite: Software for Constructing, Quantifying, and Visualizing Proteoform Families. J Proteome Res 2017; 17:568-578. [PMID: 29195273 DOI: 10.1021/acs.jproteome.7b00685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an open-source, interactive program named Proteoform Suite that uses proteoform mass and intensity measurements from complex biological samples to identify and quantify proteoforms. It constructs families of proteoforms derived from the same gene, assesses proteoform function using gene ontology (GO) analysis, and enables visualization of quantified proteoform families and their changes. It is applied here to reveal systemic proteoform variations in the yeast response to salt stress.
Collapse
Affiliation(s)
- Anthony J Cesnik
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Leah V Schaffer
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Stefan K Solntsev
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Yunxiang Dai
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Audrey P Gasch
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|