1
|
Wu X, Su Z, Huang B, Peng X, Zhang X, Huang S. Chiral Optical Sensing of Amino Acids with 2-Trifluoromethyl Benzaldehyde for Ophiopogon japonicus Authentication. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40136075 DOI: 10.1021/acs.jnatprod.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The detection and analysis of chiral molecules have long been challenging in analytical chemistry. This study introduces a novel approach that utilizes 2-trifluoromethyl benzaldehyde as a small-molecule probe capable of forming a stable Schiff base with chiral amino acids in aqueous solution under alkaline conditions. The amino acid Schiff bases present a strong Cotton effect and UV absorption at wavelengths exceeding 260 nm, enabling chiral analysis, including assignment of absolute configuration, enantiomeric composition, and total concentration. An application of this method was the authentication of the herbal medicine Ophiopogon japonicus. Using principal component analysis and orthogonal partial least squares discriminant analysis, we successfully differentiated O. japonicus samples collected in two distinct locations with 20 samples. This rapid and convenient method offers a new approach to quality control of herbal medicine.
Collapse
Affiliation(s)
- Xijian Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
- College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Zijie Su
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
- College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, P.R. China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, P.R. China
| | - Xing Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, P.R. China
- College of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| |
Collapse
|
2
|
Sun Y, Hu Q, Zuo J, Wang H, Guo Z, Wang Y, Tang H. Simultaneous Quantification of Carboxylate Enantiomers in Multiple Human Matrices with the Hydrazide-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2024; 96:18141-18149. [PMID: 39475527 DOI: 10.1021/acs.analchem.4c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Many chiral carboxylic acids with α-amino, α-hydroxyl, and α-methyl groups are concurrently present in mammals establishing unique molecular phenotypes and multiple biological functions, especially host-microbiota symbiotic interactions. Their chirality-resolved simultaneous quantification is essential to reveal the biochemical details of physiology and pathophysiology, though challenging with their low abundances in some biological matrices and difficulty in enantiomer resolution. Here, we developed a method of the chirality-resolved metabolomics with sensitivity-enhanced quantitation via probe-promotion (Met-SeqPro) for analyzing these chiral carboxylic acids. We designed and synthesized a hydrazide-based novel chiral probe, (S)-benzoyl-proline-hydrazide (SBPH), to convert carboxylic acids into amide diastereomers to enhance their retention and chiral resolution on common C18 columns. Using the d5-SBPH-labeled enantiomers as internal standards, we then developed an optimized ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantification of 60 enantiomers of 30 chiral carboxylic acids in one run. This enantiomer-resolved method showed excellent sensitivity (LOD < 4 fmol-on-column), linearity (R2 > 0.992), precision (CV < 15%), accuracy (|RE| < 20%), and recovery (80-120%) in multiple biological matrices. With the method, we then quantified 60 chiral carboxylic acids in human urine, plasma, feces, and A549 cells to define their metabolomic phenotypes. This provides basic data for human phenomics and a promising tool for investigating the mammal-microbiome symbiotic interactions.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiali Zuo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhendong Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Yuan S, Tan L, Zhao L, Wang F, Cai W, Li J, Wu D, Kong Y. Chiral Ru-Based Covalent Organic Frameworks as An Electrochemiluminescence-Active Platform for the Enantioselective Sensing of Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13161-13169. [PMID: 38412557 DOI: 10.1021/acsami.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Although several studies related with the electrochemiluminescence (ECL) technique have been reported for chiral discrimination, it still has to face some limitations, namely, complex synthetic pathways and a relatively low recognition efficiency. Herein, this study introduces a facile strategy for the synthesis of ECL-active chiral covalent organic frameworks (COFs) employed as a chiral recognition platform. In this artificial structure, ruthenium(II) coordinated with the dipyridyl unit of the COF and enantiopure cyclohexane-1,2-diamine was harnessed as the ECL-active unit, which gave strong ECL emission in the presence of the coreactant reagent (K2S2O8). When the as-prepared COF was used as a chiral ECL-active platform, clear discrimination was observed in the response of the ECL intensity toward l- and d-enantiomers of amino acids, including tryptophan, leucine, methionine, threonine, and histidine. The biggest ratio of the ECL intensity between different configurations was up to 1.75. More importantly, a good linear relationship between the enantiomeric composition and the ECL intensity was established, which was successfully employed to determine the unknown enantiomeric compositions of the real samples. In brief, we believe that the proposed ECL-based chiral platform provides an important reference for the determination of the configuration and enantiomeric compositions.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Readel ER, Dhaubhadel U, Patel A, Armstrong DW. Variable fragmentation and ionization of amyloid-beta epimers and isomers. Anal Bioanal Chem 2023; 415:6799-6807. [PMID: 37787853 DOI: 10.1007/s00216-023-04958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
While the existence of D-amino acids in peptides and proteins has recently been accepted in higher forms of life, their roles and importance are yet to be understood. The lack of analytical methods present for such epimeric and/or isomeric analyses often limits developments in the field. Studies have shown the elevated presence of epimeric and isomeric modifications to amyloid-beta (Aβ) peptides extracted from Alzheimer's disease patients. These modifications most frequently occur through aspartic acid and serine residues. Because such peptides are indistinguishable by mass alone, selective liquid chromatography tandem mass spectrometry analysis is required to differentiate such peptides. Herein, we examine MS/MS of tryptic fragments of Aβ peptides containing D-Asp, L-iso-Asp, D-iso-Asp, and/or D-Ser modifications. Peptide ionizability and fragmentation are explored through selected reaction monitoring, selected ion monitoring, and product ion scan. The results show the variability of ionization and fragmentation for many "identical mass peptides" and how these differences can affect the analysis of isomeric and epimeric peptides.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Umang Dhaubhadel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Arzoo Patel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
5
|
Yuan S, Zhao L, Wang F, Tan L, Wu D. Recent advances of optically active helical polymers as adsorbents and chiral stationary phases for chiral resolution. J Sep Sci 2023; 46:e2300363. [PMID: 37480172 DOI: 10.1002/jssc.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Yang X, Li W, Liu J, He L, Liu Y, Zhang C. Exploration of chiral drugs as references for chiral discrimination of valsartan and voriconazole by tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4968. [PMID: 37609721 DOI: 10.1002/jms.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
The use of mass spectrometry for chiral recognition and quantification has attracted great interest owing to its speed, sensitivity, specificity, and tolerance. However, searching for chiral selectors in chiral analyses using mass spectrometry is still problematic. In this study, chiral drugs could be applied as references for the chiral recognition and enantiomeric quantification of valsartan and voriconazole. Two novel pairs of metal-bound diastereomeric complex ions were detected by mass spectrometry, namely, nickel (II)-bound dimeric ions [NiII (2R,5S-emtricitabine) (S-valsartan)-H]+ and [NiII (2R,5S-emtricitabine) (R-valsartan)-H]+ and copper (II)-bound dimeric ions [CuII (S,S,S-enalaprilat) (2S,3R-voriconazole)-H]+ and [CuII (S,S,S-enalaprilat) (2R,3S-voriconazole)-H]+ . The resulting diastereomers were successfully identified based on the relative intensities of their characteristic fragments using tandem mass spectrometry. The logarithm of the characteristic fragment ion abundance ratio exhibited a good linear relationship with the enantiomeric excess. Density functional theory calculations were also performed to elucidate the mechanism of the structural differences observed in the MS results. This established approach proves that chiral drugs can serve as ligands for the rapid recognition and quantitative analysis of other chiral drugs without a chiral chromatographic column or complex sample pretreatment.
Collapse
Affiliation(s)
- Xue Yang
- National Institutes for Food and Drug Control, Beijing, China
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Wei Li
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Jie Liu
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Lan He
- National Institutes for Food and Drug Control, Beijing, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Caiyu Zhang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
7
|
Huang Y, Wang YY, An R, Gao EQ, Yue Q. Highly Efficient versus Null Electrochemical Enantioselective Recognition Controlled by Achiral Colinkers in Homochiral Metal-Organic Frameworks. ACS Sens 2023; 8:774-783. [PMID: 36734613 DOI: 10.1021/acssensors.2c02320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral materials capable of electrochemical enantiomeric recognition are highly desirable for many applications, but it is still very challenging to achieve high recognition efficiency for lack of the knowledge of structure-property relationships. Here, we report the completely distinct enantiomeric recognition related to slightly different achiral colinkers in isomorphic homochiral metal-organic frameworks with the same chiral linker. Cu-TBPBe, for which the achiral colinker has two pyridyl rings connected by ─CH═CH─, shows excellent enantioselectivity and sensitivity for electrochemical recognition of l-tryptophan (Trp) with a detection limit of 3.16 nM. The l-to-d ratio of differential pulse voltammetric (DPV) currents reaches 53, which is much higher than the values (2-14) reported for previous electrochemical sensors. By contrast, Cu-TBPBa, in which the achiral colinker has -CH2-CH2- between pyridyl rings, is incapable of discrimination between l-Trp and d-Trp. Structural and spectral analyses suggest that the achiral conjugated colinker and the chiral moieties around it cooperate to produce a chiral pocket in favor of enantioselective adsorption through multiple hydrogen-bonding and π-π stacking interactions. The work demonstrated that Cu-TBPBe can be used to fabricate reliable electrochemical sensors for ultrasensitive quantification of Trp enantiomers in racemic mixtures and in complex biological systems such as urine. The work also highlights that an achiral coligand can be of vital importance in determining enantiomeric discrimination, opening up a new avenue for the design of chiral sensing materials.
Collapse
Affiliation(s)
- Yan Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuan-Yuan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ran An
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - En-Qing Gao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qi Yue
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Zhu P, Zhou L, Jiang K, Su W, Van Schepdael A, Adams E. Diastereomer recognition of three pairs of tetracyclines by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9221. [PMID: 34761454 DOI: 10.1002/rcm.9221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Stereoisomer profiling is always a difficult issue. Based on the difference between diastereomers, usually because of steric hindrance, isomers can be differentiated by mass spectrometry (MS), although it is often not an easy task. In the current study, tetracycline, chlortetracycline and doxycycline could be distinguished from their respective 4-epimers by MS. METHODS The electrospray ionization tandem mass spectrometry (ESI-MSn ) analyses were carried out on a Bruker 3000plus ion trap mass spectrometer. For MS/MS experiments, the collision energy was set between 0.18 and 0.45 V to perform energy-resolved mass spectrometry (ERMS). Test solutions were prepared in methanol/water (90:10, v/v) at a concentration of 10 μg/mL. RESULTS Compared with the collision-induced dissociation (CID) spectrum of protonated tetracycline, the most abundant peak changed from m/z 427 to m/z 410 for 4-epitetracycline. For chlortetracycline and its 4-epimer, differences in relative abundance were observed too. In the CID spectrum of a fragment ion of doxycycline, the abundance of m/z 154 was relatively higher than for the 4-epimer, showing the same trend as in the CID spectra of the other two pairs of tetracyclines. CONCLUSIONS The CID spectra of tetracycline and chlortetracycline were different from those of their 4-epimers. The CID spectra of protonated doxycycline and its 4-epimer showed only a subtle difference, but the m/z 154 fragment ion in the CID spectra of the fragment ion at m/z 428 offers the possibility to differentiate both epimers.
Collapse
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| | - Luxi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Zhejiang, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Ann Van Schepdael
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| | - Erwin Adams
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Zhang X, Xu J, Sun Z, Bian G, Song L. NMR analysis of the enantiomeric purity of chiral diols by a new chiral boron agent. RSC Adv 2022; 12:4692-4696. [PMID: 35425523 PMCID: PMC8981704 DOI: 10.1039/d2ra00428c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
A new boric agent with bridged structure, boric acid D, was first synthesized and used as an excellent chiral derivative agent for highly efficient enantiodiscrimination of various diols.
Collapse
Affiliation(s)
- Xuebo Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Jing Xu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Zhaofeng Sun
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Guangling Bian
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Ling Song
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Niu Q, Jin P, Huang Y, Fan L, Zhang C, Yang C, Dong C, Liang W, Shuang S. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Analyst 2022; 147:880-888. [DOI: 10.1039/d1an02262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium@gold nanoparticle modified three-dimensional-reduced graphene oxide was coupled with carboxymethyl-β-cyclodextrin to form a novel nanocomposite, which served as an effective chiral sensing interface for electrochemical enantiorecognition.
Collapse
Affiliation(s)
- Qingfang Niu
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Chuan Dong
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
11
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Zhang H, Zhao H, Wen J, Zhang Z, Stavropoulos P, Li Y, Ai L, Zhang J. Discrimination of enantiomers of amides with two stereogenic centers enabled by chiral bisthiourea derivatives using 1H NMR spectroscopy. Org Biomol Chem 2021; 19:6697-6706. [PMID: 34296731 PMCID: PMC9420356 DOI: 10.1039/d1ob00742d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enantiomers of a few new amides containing two stereogenic centers have been derived from d- and l-α-amino acids as guests for chiral recognition by 1H NMR spectroscopy. A variety of chiral amides with two or more stereogenic centers often exist in the products of catalytic asymmetric synthesis, natural products or their total synthetic products, and chiral drugs. It would be a challenging and meaningful work to explore their chiral recognition. For this purpose, a class of novel chiral bisthiourea derivatives 1-9 has been synthesized from (1S,2S)-(+)-1,2-diaminocyclohexane, d-α-amino acids, and isothiocyanates as chiral solvating agents (CSAs). CSAs 1-9 proved to afford better chiral discriminating results towards most amides with two stereogenic centers, which have been rarely studied as chiral substrates by 1H NMR spectroscopy. In particular, CSAs 7, 8 and 9, featuring 3,5-bis(trifluoromethyl)benzene residues, exhibit outstanding chiral discriminating capabilities towards all amides, providing well-separated 1H NMR signals and sufficiently large nonequivalent chemical shifts. To test their practical application in the determination of enantiomeric excess, 1H NMR spectra of chiral amides (G16) with different optical purities were measured in the presence of CSAs 7 and 8, respectively. Their ee values (up to 90%) were accurately calculated by the integration of the NH proton of the CONHPh group of G16. To better understand the chiral discriminating behavior, Job plots of (±)-G16 with CSA 7 and (±)-G17 with CSA 8 and the association constants (Ka) of (S,R)-G16 and (R,S)-G16 with CSA 7 were evaluated, respectively. In order to further reveal any underlying intermolecular hydrogen bonding interactions, theoretical calculations of the enantiomers of (S,R)-G16 and (R,S)-G16 with CSA 7 were performed by means of the hybrid density functional theory (B3LYP) with the standard basis sets of 3-21G of the Gaussian 03 program, respectively.
Collapse
Affiliation(s)
- Hanchang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Jie Wen
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhanbin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Yanlin Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lin Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jiaxin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
13
|
Huang R, Shen K, He Q, Hu Y, Sun C, Guo C, Pan Y. Metabolic Profiling of Urinary Chiral Amino-Containing Biomarkers for Gastric Cancer Using a Sensitive Chiral Chlorine-Labeled Probe by HPLC-MS/MS. J Proteome Res 2021; 20:3952-3962. [PMID: 34229439 DOI: 10.1021/acs.jproteome.1c00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and β-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).
Collapse
Affiliation(s)
- Rongrong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
14
|
Gao Z, Li L, Chen W, Ma Z, Li Y, Gao Y, Ding CF, Zhao X, Pan Y. Distinguishment of Glycan Isomers by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:9209-9217. [PMID: 34165974 DOI: 10.1021/acs.analchem.1c01461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in-depth study of glycan has drawn large research interests since it is one of the main biopolymers on the earth with a variety of biological functions. However, the distinguishment of glycans is still difficult due to the similarity of the monosaccharide building block, the anomer, and the linkage of glycosidic bonds. In this study, four novel and representative copper-bound diastereoisomeric complex ions were simultaneously detected in a single measurement by trapped ion mobility mass spectrometry, including mononuclear copper-bound dimeric ions [(Cu2+)(A)(l-Ser)-H]+ and [(Cu2+)(A)(l-His)-H]+, the mononuclear copper-bound trimeric ion [(Cu2+)(A)(l-Ser)(l-His)-H]+, and the binuclear copper-bound tetrameric ion [(Cu2+)2(A)(l-Ser)2(l-His)-3H]+ (where A denotes an oligosaccharide, and l-Ser and l-His denote l-serine and l-histidine, respectively). By combining the collision cross sections of complex ions, 23 oligosaccharide isomers were successfully distinguished including two pairs of sialylated glycan linkage isomers. In addition, due to the unique dissociation pathways of the trimeric ion, both the relative and absolute quantification of the individual isomer in the mixture could be determined using a mass spectrometry-based kinetic method. Finally, the method established above was successfully applied to the identification and quantification of glycan isomers in dairy beverages and juice. The method in the present study was sensitive to the fine difference of glycan isomers and might have wide applicability in glycoscience.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanji Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
15
|
Chiral PDTDH-based electrode modification material for L/D-tartaric acid electrochemical sensing. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Huang L, Gao Z, Yin X, He Q, Pan Y. Exploration of disaccharide as reference towards chiral recognition by the kinetic method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8764. [PMID: 32079037 DOI: 10.1002/rcm.8764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE A potential use of disaccharides was found as reference compounds in the kinetic method for chiral recognition and enantiomeric quantification. METHODS The experimental procedure consists of three steps: (1) mixing a metal salt, an analyte and a disaccharide at a molar ratio of 1:2:2 with an analyte concentration of 20 μM; (2) introducing the mixture into an electrospray ionization (ESI) mass spectrometry source; (3) isolating the ion [MII (ref*)2 (A) - H]+ and subjecting it to dissociation. Then through the relative ratio of two product ions combined with the kinetic method, chiral recognition and enantiomeric quantification can be achieved. RESULTS The method was verified with good chiral recognition for ten chiral amino acids and three chiral drugs. Among the ten amino acids, Tyr was observed to show best chiral selectivity (Rchiral = 1.62) and good linearity with the correlation coefficient R2 = 0.9991 for the quantitation of the enantiomeric excess (ee) of D-Tyr. Among the tested chiral drugs, naproxen showed best chiral selectivity with Rchiral = 1.56 and good linearity with the correlation coefficient R2 = 0.9997 for the quantitation of the ee of R-naproxen. CONCLUSIONS This established approach proves that a disaccharide can serve as a reference compound for chiral recognition using the kinetic method.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xinchi Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
17
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Decoration of glutathione with copper-platinum nanoparticles for chirality sensing of tyrosine enantiomers. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Shen K, Wang L, He Q, Jin Z, Chen W, Sun C, Pan Y. Sensitive Bromine-Labeled Probe D-BPBr for Simultaneous Identification and Quantification of Chiral Amino Acids and Amino-Containing Metabolites Profiling in Human Biofluid by HPLC/MS. Anal Chem 2019; 92:1763-1769. [DOI: 10.1021/acs.analchem.9b03252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lin Wang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhe Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Weiyi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
20
|
Wu D, Yu Y, Zhang J, Guo L, Kong Y. Chiral Poly(ionic liquid) with Nonconjugated Backbone as a Fluorescent Enantioselective Sensor for Phenylalaninol and Tryptophan. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23362-23368. [PMID: 29911854 DOI: 10.1021/acsami.8b04869] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, a novel fluorescent chiral poly(ionic liquid) ( S)-PCIL-4 with nonconjugated backbone is designed and synthesized in the control of micelle through free-radical polymerization, whose fluorescence emission maximum is at λem,max = 430 nm. It is observed that polymers with spatially proximate units (phenyl group and pyridinium cation) have photoluminescence through spatial π-π and ion-π interaction. Then, ( S)-PCIL-4 can be served as a fluorescent turn off/on sensor for chiral recognition of phenylalaninol and tryptophan in the presence of Cu(II). For example, when ( S)-PCIL-4-Cu(II) is treated with ( R/ S)-phenylalaninol, it will exhibit different fluorescence responses. Values of the enantiomeric fluorescence difference ratio for phenylalaninol and tryptophan are 1.10 and 1.08, respectively. In brief, we believe that the approach opens up a possible pathway to prepare a variety of fluorescent polymers with nonconjugated backbone and proves to be desirable in further application.
Collapse
Affiliation(s)
- Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Yin Yu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Jie Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Lili Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| | - Yong Kong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China
| |
Collapse
|
21
|
Chen X, Kang Y, Zeng S. Analysis of stereoisomers of chiral drug by mass spectrometry. Chirality 2018; 30:609-618. [DOI: 10.1002/chir.22833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaolei Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|