1
|
Dalton AB, Wingen LM, Nizkorodov SA. Isomeric Identification of the Nitroindole Chromophore in Indole + NO 3 Organic Aerosol. ACS PHYSICAL CHEMISTRY AU 2024; 4:568-574. [PMID: 39346612 PMCID: PMC11428327 DOI: 10.1021/acsphyschemau.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Oxidation of indole by nitrate radical (NO3) was previously proposed to form nitroindole, largely responsible for the brown color of indole secondary organic aerosol (SOA). As there are seven known nitroindole isomers, we used chromatographic separation to show that a single nitroindole isomer is produced in the indole + NO3 reaction and definitively assigned it to 3-nitroindole by comparison with chromatograms of nitroindole standards. Mass spectra of aerosolized 3-nitroindole particles were recorded with an aerosol mass spectrometer and directly compared to mass spectra of SOA from smog chamber oxidation of indole by NO3 in order to help identify peaks unique to nitroindole (m/z 162, 132, and 116). Quantum chemical calculations were done to determine the energetics of hypothesized indole + NO3 intermediates and products. The combination of these data suggests a mechanism, wherein a hydrogen atom is first abstracted from the N-H bond in indole, followed by isomerization to a carbon-centered radical in the 3-position and followed by addition of NO2. Alternative mechanisms involving a direct abstraction of a H atom from a C-H bond or a NO3 addition to the ring are predicted to be energetically unfavorable from large barriers for the initial reaction steps.
Collapse
Affiliation(s)
- Avery B Dalton
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
3
|
Dong Y, Liu R, Xie L, Pan X, Sun Y, Wu L, Wang Z. Development of an automatic measurement system using atmospheric pressure photoionization ultrahigh-resolution mass spectrometry and application for on-line analysis of particulate matter. J Environ Sci (China) 2024; 138:516-530. [PMID: 38135417 DOI: 10.1016/j.jes.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 12/24/2023]
Abstract
On-line chemical characterization of atmospheric particulate matter (PM) with soft ionization technique and ultrahigh-resolution Mass Spectrometry (UHRMS) provides molecular information of organic constituents in real time. Here we describe the development and application of an automatic measurement system that incorporates PM2.5 sampling, thermal desorption, atmospheric pressure photoionization, and UHRMS analysis. Molecular formulas of detected organic compounds were deducted from the accurate (±10 ppm) molecular weights obtained at a mass resolution of 100,000, allowing the identification of small organic compounds in PM2.5. Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg. As a proof of principle, PM2.5 samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system. The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr. The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z. Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter. This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer. Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway. In summary, the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM2.5.
Collapse
Affiliation(s)
- Yayuan Dong
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Ling Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| | - Lin Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| |
Collapse
|
4
|
Wentrup J, Bösing I, Dülcks T, Thöming J. Rapid online analysis of n-alkanes in gaseous streams via APCI mass spectrometry. Anal Bioanal Chem 2024; 416:1843-1855. [PMID: 38355845 PMCID: PMC10902047 DOI: 10.1007/s00216-024-05182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Online monitoring of dynamic chemical processes involving a wide volatility range of hydrocarbon species is challenging due to long chromatographic measurement times. Mass spectrometry (MS) overcomes chromatographic delays. However, the analysis of n-alkane mixtures by MS is difficult because many fragment ions are formed, which leads to overlapping signals of the homologous series. Atmospheric pressure chemical ionization (APCI) is suitable for the analysis of saturated hydrocarbons and is the subject of current research. Still, although APCI is a "soft ionization" technique, fragmentation is typically inevitable. Moreover, it is usually applied for liquid samples, while an application for online gas-phase monitoring is widely unexplored. Here, we present an automated APCI-MS method for an online gas-phase analysis of volatile and semi-volatile n-alkanes. Mass spectra for n-heptane and n-decane reveal [M-H]+, [M-3H]+ and [M-3H+H2O]+ as abundant ions. While [M-H]+ and [M-3H]+ show an excessive fragmentation pattern to smaller CnH2n+1+ and CnH2n-1+ cations, [M-3H+H2O]+ is the only relevant signal within the CnH2n+1O+ ion group, i.e., no chain cleavage is observed. This makes [M-3H+H2O]+ an analyte-specific ion that is suitable for the quantification of n-alkane mixtures. A calibration confirms the linearity of C7 and C10 signals up to concentrations of ~1000-1500 ppm. Moreover, validated concentration profiles are measured for a binary C7/C10 mixture and a five-alkane C7/C10/C12/C14/C20 mixture. Compared to the 40-min sampling interval of the reference gas chromatograph, MS sampling is performed within 5 min and allows dynamic changes to be monitored.
Collapse
Affiliation(s)
- Jonas Wentrup
- Faculty of Production Engineering, Chemical Process Engineering, University of Bremen, Leobener Strasse 6, 28359, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, University of Bremen, Postbox 330 440, 28334, Bremen, Germany
| | - Ingmar Bösing
- Faculty of Production Engineering, Chemical Process Engineering, University of Bremen, Leobener Strasse 6, 28359, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, University of Bremen, Postbox 330 440, 28334, Bremen, Germany
| | - Thomas Dülcks
- FB 02, Mass Spectrometry Service Facility, University of Bremen, Leobener Str. NW2A, 28359, Bremen, Germany
| | - Jorg Thöming
- Faculty of Production Engineering, Chemical Process Engineering, University of Bremen, Leobener Strasse 6, 28359, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, University of Bremen, Postbox 330 440, 28334, Bremen, Germany.
- MAPEX Center for Materials and Processes, University of Bremen, Postbox 330 440, 28334, Bremen, Germany.
| |
Collapse
|
5
|
Mathew A, Giskes F, Lekkas A, Greisch JF, Eijkel GB, Anthony IGM, Fort K, Heck AJR, Papanastasiou D, Makarov AA, Ellis SR, Heeren RMA. An Orbitrap/Time-of-Flight Mass Spectrometer for Photofragment Ion Imaging and High-Resolution Mass Analysis of Native Macromolecular Assemblies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319176 DOI: 10.1021/jasms.3c00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We discuss the design, development, and evaluation of an Orbitrap/time-of-flight (TOF) mass spectrometry (MS)-based instrument with integrated UV photodissociation (UVPD) and time/mass-to-charge ratio (m/z)-resolved imaging for the comprehensive study of the higher-order molecular structure of macromolecular assemblies (MMAs). A bespoke TOF analyzer has been coupled to the higher-energy collisional dissociation cell of an ultrahigh mass range hybrid quadrupole-Orbitrap MS. A 193 nm excimer laser was employed to photofragment MMA ions. A combination of microchannel plates (MCPs)-Timepix (TPX) quad and MCPs-phosphor screen-TPX3CAM assemblies have been used as axial and orthogonal imaging detectors, respectively. The instrument can operate in four different modes, where the UVPD-generated fragment ions from the native MMA ions can be measured with high-mass resolution or imaged in a mass-resolved manner to reveal the relative positions of the UVPD fragments postdissociation. This information is intended to be utilized for retrieving higher-order molecular structural details that include the conformation, subunit stoichiometry, and molecular interactions as well as to understand the dissociation dynamics of the MMAs in the gas phase.
Collapse
Affiliation(s)
- Anjusha Mathew
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Frans Giskes
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alexandros Lekkas
- Fasmatech Science and Technology, Demokritos NCSR, 15310 Agia Paraskevi, Athens, Greece
| | - Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert B Eijkel
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ian G M Anthony
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Kyle Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Alexander A Makarov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Cai R, Huang W, Meder M, Bourgain F, Aizikov K, Riva M, Bianchi F, Ehn M. Improving the Sensitivity of Fourier Transform Mass Spectrometer (Orbitrap) for Online Measurements of Atmospheric Vapors. Anal Chem 2022; 94:15746-15753. [DOI: 10.1021/acs.analchem.2c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Huang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Melissa Meder
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Frederic Bourgain
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | | | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Zivkovic Semren T, Majeed S, Fatarova M, Laszlo C, Pak C, Steiner S, Vidal-de-Miguel G, Kuczaj A, Mazurov A, Peitsch MC, Ivanov NV, Hoeng J, Guy PA. Application of Secondary Electrospray Ionization Coupled with High-Resolution Mass Spectrometry in Chemical Characterization of Thermally Generated Aerosols. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2147-2155. [PMID: 36218284 PMCID: PMC9634908 DOI: 10.1021/jasms.2c00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Inhalation as a route for administering drugs and dietary supplements has garnered significant attention over the past decade. We performed real-time analyses of aerosols using secondary electrospray ionization (SESI) technology interfaced with high-resolution mass spectrometry (HRMS), primarily developed for exhaled breath analysis with the goal to detect the main aerosol constituents. Several commercially available inhalation devices containing caffeine, melatonin, cannabidiol, and vitamin B12 were tested. Chemical characterization of the aerosols produced by these devices enabled detection of the main constituents and screening for potential contaminants, byproducts, and impurities in the aerosol. In addition, a programmable syringe pump was connected to the SESI-HRMS system to monitor aerosolized active pharmaceutical ingredients (APIs) such as chloroquine, hydroxychloroquine, and azithromycin. This setup allowed us to detect caffeine, melatonin, hydroxychloroquine, chloroquine, and cannabidiol in the produced aerosols. Azithromycin and vitamin B12 in the aerosols could not be detected; however, our instrument setup enabled the detection of vitamin B12 breakdown products that were generated during the aerosolization process. Positive control was realized by liquid chromatography-HRMS analyses. The compounds detected in the aerosol were confirmed by exact mass measurements of the protonated and/or deprotonated species, as well as their respective collision-induced dissociation tandem mass spectra. These results reveal the potential wide application of this technology for the real-time monitoring of aerosolized active pharmaceutical ingredients that can be administered through the inhalation route.
Collapse
Affiliation(s)
- Tanja Zivkovic Semren
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Shoaib Majeed
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Maria Fatarova
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Csaba Laszlo
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Claudius Pak
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Sandro Steiner
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | | | - Arkadiusz Kuczaj
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Anatoly Mazurov
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Julia Hoeng
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Philippe A. Guy
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
8
|
Deng H, Lakey PSJ, Wang Y, Li P, Xu J, Pang H, Liu J, Xu X, Li X, Wang X, Zhang Y, Shiraiwa M, Gligorovski S. Daytime SO 2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air. SCIENCE ADVANCES 2022; 8:eabq6830. [PMID: 36170374 PMCID: PMC9519037 DOI: 10.1126/sciadv.abq6830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase. Calculations indicate that at the core area of Guangzhou, building surface uptake of SO2 is 15 times larger than uptake of SO2 on aerosol surfaces, yielding ~20 ng m-3 of OS that represents an important fraction of the observed OS compounds (60 to 200 ng m-3) in ambient aerosols of Chinese megacities. This chemical pathway occurring during daytime can contribute to the observed fraction of OS compounds in aerosols and improve the understanding of haze formation and urban air pollution.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pascale S. J. Lakey
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yuzhong Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, CA 92687-2025, USA
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
9
|
Qi Y, Fu P, Volmer DA. Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications. MASS SPECTROMETRY REVIEWS 2022; 41:647-661. [PMID: 32412674 DOI: 10.1002/mas.21634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Among the different techniques for mass analysis, ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) is the method of choice for highly complex samples, as it offers unrivaled mass accuracy and resolving power, combined with a high degree of flexibility in hybrid instruments as well as for ion activation techniques. FTICR instruments are readily embraced by the biological and biomedical research communities and applied over a wide range of applications for the analysis of biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In the field of natural organic matter (NOM) analysis, petroleum-related studies currently dominate FTICR-MS applications. Recently, however, there is a growing interest in developing high-performance MS methods for the characterization of NOM samples from natural aquatic and terrestrial environments. Here, we present an overview of FTICR-MS techniques for complex, non-petroleum NOM samples, including data analysis and novel tandem mass spectrometry (MS/MS) methods for structural classifications. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Barth C, Hinz KP, Spengler B. Particle characterization and quantification of organic and inorganic compounds from Chinese and Iranian aerosol filter samples using scanning laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2022; 414:7223-7241. [PMID: 36048190 PMCID: PMC9482912 DOI: 10.1007/s00216-022-04275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
Besides their influence on climate and cloud formation, many organic and inorganic substances in aerosol particles pose a risk to human health. Namely, polycyclic aromatic hydrocarbons (PAH) and heavy metals are suspected to be carcinogenic or acutely toxic. The detection and quantification of such compounds is difficult if only small amounts of particulate matter (PM) are available. In addition, filter samples are often complex and time-consuming to prepare for chromatographic measurements and elemental analysis. Here, we present a method based on high-resolution atmospheric pressure laser desorption ionization mass spectrometry imaging (AP-LDI-MSI) and statistical analysis which allows the analysis and characterization of very small sample quantities (< 30 µg) without any sample preparation. The power and simplicity of the method is demonstrated by two filter samples from heavily polluted mega cities. The samples were collected in Tehran (Iran) and Hangzhou (China) in February 2018. In the course of the measurement, more than 3200 sum formulae were assigned, which allowed a statistical evaluation of colocalized substances within the particles on the filter samples. This resulted in a classification of the different particle types on the filters. Finally, both megacities could be distinguished based on characteristic compounds. In the samples from Tehran, the number of sulphur-containing organic compounds was up to 6 times as high as the samples from Hangzhou, possibly due to the increasing efforts of the Chinese government to reduce sulphur emissions in recent years. Additionally, quantification of 13 PAH species was carried out via standard addition. Especially, the samples from Tehran showed elevated concentrations of PAHs, which in the case of higher-molecular-weight species (> m/z 228) were mostly more than twice as high as in Hangzhou. Both cities showed high levels of heavy metals and potentially harmful organic compounds, although their share of total particulate matter was significantly higher in the samples from Tehran. The pre-treatment of the samples was reduced to a minimum with this method, and only small amounts of particles were required to obtain a comprehensive picture for a specific filter sample. The described method provides faster and better control of air pollution in heavily polluted megacities.
Collapse
Affiliation(s)
- Christof Barth
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Klaus-Peter Hinz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany.
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Jia L, Xu Y. A core-shell box model for simulating viscosity dependent secondary organic aerosol (CSVA) and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147954. [PMID: 34062465 DOI: 10.1016/j.scitotenv.2021.147954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Secondary organic aerosol (SOA) plays a key role in air pollution and global climate change. However, the understanding and modelling of SOA properties and evolution are still limited. In this paper, we developed a novel kinetic Core-Shell box model for Viscosity dependent SOA simulation (CSVA), which includes explicit gas-phase reactions (MCM), homogeneous nucleation by H2SO4-NH3-H2O, viscosity dependent mass transfer between gas and particle phases (organic and aqueous phases) and particle-phase reactions. The gas-particle mass transfer is represented by chainlike reactions analogizing to electrical resistance. The CSVA model is verified and applied to chamber experiments of toluene oxidation systems. The monomers and dimers of SOA are determined by coupling the high-resolution Orbitrap mass spectra and MCM mechanism. The majority of dimers are confirmed to be peroxyhemiacetals formed by reactions of hydroperoxides with aldehydes in the particle phase. The results show that CSVA can well capture the following processes: (1) relative humidity (RH) dependent nucleation of the H2SO4-NH3-H2O system, (2) particle size-dependent hygroscopic growth of inorganics (e.g., NaCl and (NH4)2SO4) and organics (levoglucosan and SOA), (3) NOx dependent SOA formation, (4) viscosity-induced evolution of particle size distribution, and (5) effect of RH on SOA formation. In particular, our model reproduces the phenomenon that the evolution of SOA particle size distribution from a one-peak mode into a two-peak mode is due to viscosity.
Collapse
Affiliation(s)
- Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - YongFu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Gao K, Zhu T. Analytical methods for organosulfate detection in aerosol particles: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147244. [PMID: 34088066 DOI: 10.1016/j.scitotenv.2021.147244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Organosulfates (OSs) are well-known water-soluble constituents of atmospheric aerosol particles. They are formed from multiphase reactions between volatile organic compounds (VOCs) and their photooxidation products, and acidic sulfate originating from biogenic and anthropogenic sources in the atmosphere. Although the analytical procedures used to measure OSs, including sampling, pre-treatment, and instrumental detection, have advanced substantially in the last decade, there is still a need for accurate and standardized analysis procedures for the identification, quantification, and comparison of OSs in different regions. Additionally, there has no study focused on the health effects of OSs. This review outlines the analytical methods developed for OS detection during the last decade, highlighting both improvements and drawbacks. It also considers the future development of analytical methods for OS detection, and proposes the establishment of OSs screening method from the perspective of health effects to solve the problem of unknown health related OSs identification.
Collapse
Affiliation(s)
- Ke Gao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
14
|
Saad F, Bounaceur B, Daaou M, Avilés-Moreno JR, Martínez-Haya B. Molecular Characterization of Nonvolatile Fractions of Algerian Petroleum with High-Resolution Mass Spectrometry. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:8699-8710. [PMID: 36439938 PMCID: PMC9680539 DOI: 10.1021/acs.energyfuels.1c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Algerian crude oil displays a marked propensity for asphaltene precipitation, leading to solid deposits during extraction, transportation, and storage. The relationship between precipitation and chemical composition is unclear; in fact, Algerian crude oil actually features a low asphaltene concentration, despite its relatively large rate of deposit formation. The rationalization of the precipitation process and its remediation should benefit from a molecular characterization of the crude oil. In this study, two unstable asphaltene fractions (A1 and A2) from two different deposits, and two resin crude oil fractions (R1 and R2) from the Hassi-Messaoud Algerian field have been characterized at the molecular level by means of high-resolution mass spectrometry with an Atmospheric Pressure Chemical Ionization (APCI) source. Positively and negatively charged compounds with molecular weights 200-1200 m/z were detected. Several thousand molecular stoichiometries were identified and classified for each sample, in terms of heteroatom content and aromaticity, searching for trends characteristic of the two asphaltenes and of the associated resins. The A2 asphaltene, from a downstream storage tank, displays a higher aromaticity and O-heteroatom content, which correlates with an enhanced aggregation propensity, in comparison to the A1 fraction, collected at the well bore. The resin fractions are found to be abundant in aliphatic hydrocarbons and heteroatomic compounds of moderate aromaticity. The more polar resin fraction, R2, is enriched in N-containing species, with respect to the less polar resin fraction R1, which correlates with the stabilizing function observed in previous works. The results stress the view of crude oil fractions as complex mixtures, rather than in terms of average prototypical compounds, when facing the understanding of asphaltene deposition conditions.
Collapse
Affiliation(s)
- Fatima Saad
- LCPM,
Département de Chimie, Faculté
des Sciences Université d’Oran 1 (Ahmed Benbella), P.O. Box 1524 el m’naouer, Oran 31000, Algeria
| | - Boumedienne Bounaceur
- LCPM,
Département de Chimie, Faculté
des Sciences Université d’Oran 1 (Ahmed Benbella), P.O. Box 1524 el m’naouer, Oran 31000, Algeria
| | - Mortada Daaou
- LCPM,
Département de Chimie, Faculté
des Sciences Université d’Oran 1 (Ahmed Benbella), P.O. Box 1524 el m’naouer, Oran 31000, Algeria
- LSPBE,
Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie
d’Oran- Mohamed Boudiaf, P.O.
Box 1505 el m’naouer, Oran 31000, Algeria
| | | | - Bruno Martínez-Haya
- Department
of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
15
|
Jiang H, Li J, Chen D, Tang J, Cheng Z, Mo Y, Su T, Tian C, Jiang B, Liao Y, Zhang G. Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China. ENVIRONMENT INTERNATIONAL 2020; 144:106079. [PMID: 32866733 DOI: 10.1016/j.envint.2020.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric brown carbon (BrC) is an important constituent of light-absorbing organic aerosols with many unclear issues. Here, the light-absorption properties of BrC with different polarity characteristics at a regional site of Pearl River Delta Region during 2016-2017, influenced by sources and molecular compositions, were revealed using radiocarbon analysis and Fourier transform ion cyclotron resonance mass spectrometry. Humic-like substance (HULIS), middle polar (MP), and low polar (LP) carbon fractions constitute 46 ± 17%, 30 ± 7%, and 7 ± 3% of total absorption coefficient from bulk extracts, respectively. Our results show that the absorption proportions of HULIS and MP to the total BrC absorption are higher than their mass proportions to organic carbon mass, indicating that HULIS and MP are the main light-absorbing components in water-soluble and water-insoluble organic carbon fractions, respectively. With decreases in non-fossil HULIS, MP, and LP carbon fractions (66 ± 2%, 52 ± 2%, and 36 ± 3%, respectively), the abundances of unsaturated compounds and mass absorption efficiency at 365 nm of three fractions decreased synchronously. Increases in both non-fossil carbon and levoglucosan in winter imply that the enhanced light-absorption could be attributed to elevated levels of biomass burning organic aerosols (BBOA), which increases the number of light-absorbing nitrogen-containing compounds. Moreover, the major type of potential BrC in HULIS and MP carbon fractions are oxidized BBOA, but the potential BrC chromophores in LP are mainly associated with primary BBOA. This study reveals that biomass burning has adverse effects on radiative forcing and air quality, and probably indicates the significant influences of atmospheric oxidation reactions on the forms of chromophores.
Collapse
Affiliation(s)
- Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Duohong Chen
- Guangdong Environmental Monitoring Center, Guangzhou 510308, China.
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tao Su
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
16
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Riva M, Brüggemann M, Li D, Perrier S, George C, Herrmann H, Berndt T. Capability of CI-Orbitrap for Gas-Phase Analysis in Atmospheric Chemistry: A Comparison with the CI-APi-TOF Technique. Anal Chem 2020; 92:8142-8150. [DOI: 10.1021/acs.analchem.0c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - M. Brüggemann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - D. Li
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - S. Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - C. George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - H. Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - T. Berndt
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Lee CP, Riva M, Wang D, Tomaz S, Li D, Perrier S, Slowik JG, Bourgain F, Schmale J, Prevot ASH, Baltensperger U, George C, El Haddad I. Online Aerosol Chemical Characterization by Extractive Electrospray Ionization-Ultrahigh-Resolution Mass Spectrometry (EESI-Orbitrap). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3871-3880. [PMID: 32146813 DOI: 10.1021/acs.est.9b07090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current mass spectrometry techniques for the online measurement of organic aerosol (OA) composition are subjected to either thermal/ionization-induced artifacts or limited mass resolving power, hindering accurate molecular characterization. Here, we combined the soft ionization capability of extractive electrospray ionization (EESI) and the ultrahigh mass resolution of Orbitrap for real-time, near-molecular characterization of OAs. Detection limits as low as tens of ng m-3 with linearity up to hundreds of μg m-3 at 0.2 Hz time resolution were observed for single- and mixed-component calibrations. The performance of the EESI-Orbitrap system was further evaluated with laboratory-generated secondary OAs (SOAs) and filter extracts of ambient particulate matter. The high mass accuracy and resolution (140 000 at m/z 200) of the EESI-Orbitrap system enable unambiguous identification of the aerosol components' molecular composition and allow a clear separation between adjacent peaks, which would be significantly overlapping if a medium-resolution (20 000) mass analyzer was used. Furthermore, the tandem mass spectrometry (MS2) capability provides valuable insights into the compound structure. For instance, the MS2 analysis of ambient OA samples and lab-generated biogenic SOAs points to specific SOA precursors in ambient air among a range of possible isomers based on fingerprint fragment ions. Overall, this newly developed and characterized EESI-Orbitrap system will advance our understanding of the formation and evolution of atmospheric aerosols.
Collapse
Affiliation(s)
- Chuan Ping Lee
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Matthieu Riva
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Dongyu Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Sophie Tomaz
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Dandan Li
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Frederic Bourgain
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Julia Schmale
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| |
Collapse
|
19
|
Brüggemann M, Xu R, Tilgner A, Kwong KC, Mutzel A, Poon HY, Otto T, Schaefer T, Poulain L, Chan MN, Herrmann H. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3767-3782. [PMID: 32157872 DOI: 10.1021/acs.est.9b06751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.
Collapse
Affiliation(s)
- Martin Brüggemann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Rongshuang Xu
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Kai Chung Kwong
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Anke Mutzel
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hon Yin Poon
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Otto
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Lee BH, D’Ambro EL, Lopez-Hilfiker FD, Schobesberger S, Mohr C, Zawadowicz MA, Liu J, Shilling JE, Hu W, Palm BB, Jimenez JL, Hao L, Virtanen A, Zhang H, Goldstein AH, Pye HOT, Thornton JA. Resolving ambient organic aerosol formation and aging pathways with simultaneous molecular composition and volatility observations. ACS EARTH & SPACE CHEMISTRY 2020; 4:391-402. [PMID: 32328536 PMCID: PMC7180062 DOI: 10.1021/acsearthspacechem.9b00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organic aerosol (OA) constitutes a significant fraction of atmospheric fine particle mass. However, the precursors and chemical processes responsible for a majority of OA are rarely conclusively identified. We use online observations of hundreds of simultaneously measured molecular components obtained from 15 laboratory OA formation experiments with constraints on their effective saturation vapor concentrations to attribute the VOC precursors and subsequent chemical pathways giving rise to the vast majority of OA mass measured in two forested regions. We find that precursors and chemical pathways regulating OA composition and volatility are dynamic over hours to days, with their variations driven by coupled interactions between multiple oxidants. The extent of physical and photochemical aging, and its modulation by NOx, were key to a uniquely comprehensive combined composition-volatility description of OA. Our findings thus provide some of the most complete mechanistic-level guidance to the development of OA descriptions in air quality and Earth system models.
Collapse
Affiliation(s)
- Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, U.S.A
| | - Emma L. D’Ambro
- Department of Chemistry, University of Washington, Seattle, WA, U.S.A
| | | | | | - Claudia Mohr
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, U.S.A
| | - Maria A. Zawadowicz
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, U.S.A
| | - Jiumeng Liu
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, U.S.A
| | - John E. Shilling
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, U.S.A
| | - Weiwei Hu
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO, U.S.A
| | - Brett B. Palm
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO, U.S.A
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry, University of Colorado, Boulder, CO, U.S.A
| | - Liqing Hao
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Annele Virtanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Haofei Zhang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, U.S.A
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, U.S.A
| | - Havala O. T. Pye
- Office of Research and Development, Environmental Protection Agency, Research Triangle, NC, U.S.A
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, U.S.A
| |
Collapse
|
21
|
Duca D, Irimiea C, Faccinetto A, Noble JA, Vojkovic M, Carpentier Y, Ortega IK, Pirim C, Focsa C. On the benefits of using multivariate analysis in mass spectrometric studies of combustion-generated aerosols. Faraday Discuss 2020; 218:115-137. [PMID: 31123727 DOI: 10.1039/c8fd00238j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intricate chemistry of the carbonaceous particle surface layer (which drives their reactivity, environmental and health impacts) results in complex mass spectra. In this respect, detailed molecular-level analysis of combustion emissions may be challenging even with high-resolution mass spectrometry. Building on a recently proposed comprehensive methodology (encompassing all stages from sampling to data reduction), we propose herein a comparative analysis of soot particles produced by three different sources: a miniCAST standard generator, a laboratory diffusion flame and a single cylinder internal combustion engine. The surface composition is probed by either laser or secondary ion mass spectrometry. Two examples of multivariate analysis, Principal component analysis and hierarchical clustering analysis proved their efficiency in both identifying general trends and evidencing subtle differences that otherwise would remain unnoticed in the plethora of data generated during mass spectrometric analyses. Chemical information extracted from these multivariate statistical procedures contributes to a better understanding of fundamental combustion processes and also opens to practical applications such as the tracing of engine emissions.
Collapse
Affiliation(s)
- D Duca
- Univ. Lille, CNRS, UMR 8523, PhLAM - Laboratoire de Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Powers JB, Campagna SR. Design and Evaluation of a Gas Chromatograph-Atmospheric Pressure Chemical Ionization Interface for an Exactive Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2369-2379. [PMID: 31512224 DOI: 10.1007/s13361-019-02311-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Various separation and mass spectrometric (MS) techniques have furthered our ability to study complex mixtures, and the desire to measure every analyte in a system is of continual interest. For many complex mixtures, such as the total molecular content of a cell, it is becoming apparent that no one single separation technique or analysis is likely to achieve this goal. Therefore, having a variety of tools to measure the complexity of these mixtures is prudent. Orbitrap MSs are broadly used in systems biology studies due to their unique performance characteristics. However, GC-Orbitraps have only recently become available, and instruments that can use gas chromatography (GC) cannot use liquid chromatography (LC) and vice versa. This limits small molecule analyses, such as those that would be employed for metabolomics, lipidomics, or toxicological studies. Thus, a simple, temporary interface was designed for a GC and Thermo Scientific™ Ion Max housing unit. This interface enables either GC or LC separation to be used on the same MS, an Exactive™ Plus Orbitrap, and utilizes an atmospheric pressure chemical ionization (APCI) source. The GC-APCI interface was tested against a commercially available atmospheric pressure photoionization (APPI) interface for three types of analytes that span the breadth of typical GC analyses: fatty acid methyl esters (FAMEs), polyaromatic hydrocarbons (PAHs), and saturated hydrocarbons. The GC-APCI-Orbitrap had similar or improved performance to the APPI and other reported methods in that it had a lower limit of quantitation, better signal to noise, and lower tendency to fragment analytes.
Collapse
Affiliation(s)
- Joshua B Powers
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996-1600, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996-1600, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Patricia Forbes
- Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| |
Collapse
|
24
|
Riva M, Ehn M, Li D, Tomaz S, Bourgain F, Perrier S, George C. CI-Orbitrap: An Analytical Instrument To Study Atmospheric Reactive Organic Species. Anal Chem 2019; 91:9419-9423. [DOI: 10.1021/acs.analchem.9b02093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M. Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - M. Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, FI-00014, University of Helsinki, 00100 Helsinki, Finland
| | - D. Li
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - S. Tomaz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - F. Bourgain
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - S. Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - C. George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| |
Collapse
|
25
|
Johnston MV, Kerecman DE. Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:247-274. [PMID: 30901261 DOI: 10.1146/annurev-anchem-061516-045135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atmospheric aerosol, particulate matter suspended in the air we breathe, exerts a strong impact on our health and the environment. Controlling the amount of particulate matter in air is difficult, as there are many ways particles can form by both natural and anthropogenic processes. We gain insight into the sources of particulate matter through chemical composition measurements. A substantial portion of atmospheric aerosol is organic, and this organic matter is exceedingly complex on a molecular scale, encompassing hundreds to thousands of individual compounds that distribute between the gas and particle phases. Because of this complexity, no single analytical technique is sufficient. However, mass spectrometry plays a crucial role owing to its combination of high sensitivity and molecular specificity. This review surveys the various ways mass spectrometry is used to characterize atmospheric organic aerosol at a molecular level, tracing these methods from inception to current practice, with emphasis on current and emerging areas of research. Both offline and online approaches are covered, and molecular measurements with them are discussed in the context of identifying sources and elucidating the underlying chemical mechanisms of particle formation. There is an ongoing need to improve existing techniques and develop new ones if we are to further advance our knowledge of how to mitigate the unwanted health and environmental impacts of particles.
Collapse
Affiliation(s)
- Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| | - Devan E Kerecman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
26
|
Basuri P, Baidya A, Pradeep T. Sub-Parts-per-Trillion Level Detection of Analytes by Superhydrophobic Preconcentration Paper Spray Ionization Mass Spectrometry (SHPPSI MS). Anal Chem 2019; 91:7118-7124. [DOI: 10.1021/acs.analchem.9b00144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Avijit Baidya
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
27
|
Azeem HA, Tolcha T, Hyberg PE, Essén S, Stenström K, Swietlicki E, Sandahl M. Extending the scope of dispersive liquid-liquid microextraction for trace analysis of 3-methyl-1,2,3-butanetricarboxylic acid in atmospheric aerosols leading to the discovery of iron(III) complexes. Anal Bioanal Chem 2019; 411:2937-2944. [PMID: 30931501 PMCID: PMC6522453 DOI: 10.1007/s00216-019-01741-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a secondary organic aerosol and can be used as a unique emission marker of biogenic emissions of monoterpenes. Seasonal variations and differences in vegetation cover around the world may lead to low atmospheric MBTCA concentrations, in many cases too low to be measured. Hence, an important tool to quantify the contribution of terrestrial vegetation to the loading of secondary organic aerosol may be compromised. To meet this challenge, a dispersive liquid–liquid microextraction (DLLME) method, known for the extraction of hydrophobic compounds, was extended to the extraction of polar organic compounds like MBTCA without compromising the efficiency of the method. The extraction solvent was fine-tuned using tri-n-octyl phosphine oxide as additive. A multivariate experimental design was applied for deeper understanding of significant variables and interactions between them. The optimum extraction conditions included 1-octanol with 15% tri-n-octyl phosphine oxide (w/w) as extraction solvent, methanol as dispersive solvent, 25% NaCl dissolved in 5 mL sample (w/w) acidified to pH 2 using HNO3, and extraction time of 15 min. A limit of detection of 0.12 pg/m3 in air was achieved. Furthermore, unique complexation behavior of MBTCA with iron(III) was found when analyzed with ultra-high-performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry (UHPLC–ESI–QToF). A comprehensive overview of this complexation behavior of MBTCA was examined with systematically designed experiments. This newly discovered behavior of MBTCA will be of interest for further research on organometallic photooxidation chemistry of atmospheric aerosols. a) Additive assisted DLLME and MBTCA complexes with Fe(III), b) A good quality figure is attached in ppt format to facilitate editable objects ![]()
Collapse
Affiliation(s)
- Hafiz Abdul Azeem
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Teshome Tolcha
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Department of Chemistry, Addis Ababa University, 1000, Addis Ababa, Ethiopia
| | - Petter Ekman Hyberg
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Sofia Essén
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Kristina Stenström
- Department of Physics, Division of Nuclear Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Erik Swietlicki
- Department of Physics, Division of Nuclear Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Margareta Sandahl
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
28
|
Wang Y, Sun J, Qiao J, Ouyang J, Na N. A "Soft" and "Hard" Ionization Method for Comprehensive Studies of Molecules. Anal Chem 2018; 90:14095-14099. [PMID: 30422630 DOI: 10.1021/acs.analchem.8b04437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ambient mass spectrometry can be rapidly and directly effective for molecular studies, while there still seems to be a gap between two major groups of electrospray ionization (ESI)- and atmospheric pressure chemical ionization (APCI)-related techniques, for detection of moderately polar to polar and low polar to nonpolar molecules in a relatively low mass range, respectively. Here, an extensively applicable "soft" and "hard" ionization method, spray-dependent plasma mass spectrometry (SDP MS), was established for detecting various molecules with diverse polarities or molecular weights. By SDP MS, both fragment ions and intact molecular ions can be obtained. Significantly, cluster ions of aggregates in high mass range formed by weak molecular interactions can also be well recorded, much softer than traditional ESI MS. By filling the gap between ESI-based and APCI-based ionization techniques, SDP MS would enhance MS performance for comprehensive molecular studies and be extensively applicable in fields of organic synthesis, biological chemistry, medical chemistry, and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jinping Qiao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
29
|
Vander Wall AC, Lakey PSJ, Rossich Molina E, Perraud V, Wingen LM, Xu J, Soulsby D, Gerber RB, Shiraiwa M, Finlayson-Pitts BJ. Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1593-1610. [PMID: 30382275 DOI: 10.1039/c8em00348c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients (γ) at the shortest reaction times accessible in these experiments ranged from 3 × 10-4 to 9 × 10-6 and partition coefficients (K) from 1 × 107 to 9 × 104. Trends in γ did not quantitatively follow trends in K, suggesting that the intermolecular forces involved in gas-surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.
Collapse
Affiliation(s)
- A C Vander Wall
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wingen LM, Finlayson-Pitts BJ. Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). Chem Sci 2018; 10:884-897. [PMID: 30774883 PMCID: PMC6346289 DOI: 10.1039/c8sc03851a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Both ambient and laboratory-generated particles can have a surface composition different from the bulk, but there are currently few analytical techniques available to probe these differences. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was applied to solid, laboratory-generated particles with core–shell morphologies formed from a variety of dicarboxylic acids. The soft ionization facilitated parent peak detection for the two compounds, from which the depth probed could be determined from the relative signal intensities. Two different configurations of a custom-made nebulizer are reported that yield different probe depths. In the “orthogonal mode,” with the nebulizer ∼10 centimeters away from the particle stream and at a 90° angle to the MS inlet, evaporation of the nebulizer droplets forms ions before interaction with the particles. The probe depth for orthogonal mode EASI-MS is shown to be 2–4 nm in these particle systems. In the “droplet mode”, the nebulizer and particle streams are in close proximity to each other and the MS inlet so that the particles interact with charged liquid droplets. This configuration resulted in full dissolution of the particles and gives particle composition similar to that from collection on filters and extraction of the particles (bulk). These studies establish that EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Collapse
Affiliation(s)
- L M Wingen
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| | - B J Finlayson-Pitts
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| |
Collapse
|