1
|
Ikeda Y, Murata A, Nago H, Yamaguchi M, Om R, Terai Y, Kita Y, Sato S, Sato S, Shimada Y, Genda T. Hepatitis B surface antigen (HBsAg) glycan isomer is predictive of HBsAg seroclearance in patients with chronic hepatitis B. Hepatol Res 2024; 54:888-898. [PMID: 38804859 DOI: 10.1111/hepr.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
AIM Measurement of O-glycosylated middle hepatitis B surface antigen (HBsAg glycan isomer, HBsAgGi) has been developed to quantify hepatitis B virus (HBV) infectious virions and distinguish them from subviral particles. This study aimed to evaluate the association between serum HBsAg seroclearance and serum HBV virions measured by HBsAgGi in patients with chronic hepatitis B (CHB). METHODS Serum HBsAgGi levels were quantified in 232 treatment-naïve patients with CHB genotype C. Cox proportional hazards analysis was used to calculate hazard ratios (HRs) for factors associated with HBsAg seroclearance. RESULTS Baseline HBsAgGi levels showed significant differences among HBV phenotypes. During a median follow-up period of 7.4 years, 22 of the 232 patients achieved HBsAg seroclearance. Multivariate analysis demonstrated that quantitative HBsAg, nucleoside/nucleotide analog therapy during the follow-up period, and HBsAgGi levels were independent predictors of seroclearance. The adjusted HR indicated that the HBsAg seroclearance probability in patients with low HBsAgGi (≤3.5log ng/mL) was over five times higher than that in patients with high HBsAgGi. Kaplan-Meier analysis indicated that the 10-year probabilities of HBsAg seroclearance were 21.0% and 3.0% in patients with low and high HBsAgGi levels, respectively (p < 0.001), and that patients with high HBsAgGi levels showed low seroclearance probabilities irrespective of the other predictors. CONCLUSION Serum HBV infectious virion levels, measured using HBsAgGi, may be a novel predictor of HBsAg seroclearance.
Collapse
Affiliation(s)
- Yuji Ikeda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Ayato Murata
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Hiroki Nago
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Masahiro Yamaguchi
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Rihwa Om
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Yuichro Terai
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Yuji Kita
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Sho Sato
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Shunsuke Sato
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Yuji Shimada
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| |
Collapse
|
2
|
Okumura T, Umemura T. Hepatitis B surface antigen glycan isomer as a new potential biomarker in patients with hepatitis B virus infection. Hepatol Res 2024; 54:874-876. [PMID: 39163253 DOI: 10.1111/hepr.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Affiliation(s)
- Taiki Okumura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
3
|
Hayashi Y, Tajiri K, Ozawa T, Angata K, Sato T, Togayachi A, Nagashima I, Shimizu H, Murayama A, Muraishi N, Narimatsu H, Yasuda I. Impact of preS1 Evaluation in the Management of Chronic Hepatitis B Virus Infection. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1334. [PMID: 39202615 PMCID: PMC11356368 DOI: 10.3390/medicina60081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The measurement of hepatitis B surface antigen (HBsAg) is essential for managing chronic hepatitis B virus infection (CHB). HBsAg consists of three different surface envelope proteins: large, middle, and small HB surface proteins. However, in clinical practice, it is not common to evaluate each of these HB surface proteins separately. Materials and Methods: In this study, we investigated preS1 expression using seven monoclonal antibodies (mAbs) in 68 CHB patients, as well as examining their antigenicity. Results: Although the seven mAbs had been derived from genotype (Gt) C, they could recognize preS1 with Gts A to D. The epitopes were concentrated within the aa33-47 region of preS1, and their antigenicity was significantly reduced by an aa45F substitution. We found that preS1 expression remained consistent regardless of HBsAg levels and different Gts in CHB patients, in contrast to what was observed in SHBs. Conclusions: These results suggest that the antigenic epitope is preserved among different Gts and that the expression pattern of preS1 is altered during CHB, highlighting its vital role in the HBV infection cycle. Our present results suggest preS1 is a promising therapeutic target in CHB.
Collapse
Affiliation(s)
- Yuka Hayashi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Kazuto Tajiri
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyohiko Angata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Takashi Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Akira Togayachi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Izuru Nagashima
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Hiroki Shimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Aiko Murayama
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Nozomu Muraishi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Hisashi Narimatsu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Ichiro Yasuda
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| |
Collapse
|
4
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
5
|
Kozuka R, Enomoto M, Yukawa-Muto Y, Odagiri N, Kotani K, Motoyama H, Kawamura E, Hagihara A, Fujii H, Uchida-Kobayashi S, Kawada N. Hepatitis B surface antigen glycan isomer is a predictor of the development of hepatocellular carcinoma during nucleoside/nucleotide analog therapy. Hepatol Res 2024; 54:615-626. [PMID: 38323994 DOI: 10.1111/hepr.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
AIM A recombinant monoclonal antibody against the hepatitis B surface antigen glycan isomer (HBsAgGi) was newly developed using the O-glycosylated PreS2 peptide in M-HBsAg of hepatitis B virus (HBV) genotype C. However, the association between HBsAgGi and the development of hepatocellular carcinoma (HCC) during nucleoside/nucleotide analog (NA) therapy remains unknown. METHODS A total of 112 HBV genotype C-infected patients who were treated with NA were included in this study. We assessed the association between HBV markers, including HBsAgGi and other conventional markers, and the development of HCC during NA therapy. RESULTS Ten patients developed HCC during the follow-up period. Of the HBV markers, HBsAg (≤3.53 log IU/mL; p = 0.047), HBsAgGi/HBsAg ratio (≥1.10; p = 0.035), and HBV DNA (≤6.3 log copies/mL; p = 0.012) at baseline and HBsAg (≤3.19 log IU/mL; p = 0.033) and HBsAgGi/HBsAg ratio (≥1.09; p = 0.003) at 48 weeks after NA therapy were significantly associated with the development of HCC according to the log rank test. In contrast, no significant association was observed between HBsAgGi and the development of HCC. Multivariate analysis revealed that a platelet count at baseline ≤88 × 103/mm3 (p = 0.026; hazard ratio [HR], 10.577) and an HBsAgGi/HBsAg ratio at 48 weeks after NA therapy ≥1.09 (p = 0.040; HR, 10.099) were independently and significantly associated with the development of HCC. CONCLUSIONS Our findings suggest that a combination of on-treatment HBsAgGi and HBsAg predicts the development of HCC during NA therapy.
Collapse
Affiliation(s)
- Ritsuzo Kozuka
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshimi Yukawa-Muto
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoshi Odagiri
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kohei Kotani
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyuki Motoyama
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Sawako Uchida-Kobayashi
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Hiono T, Sakaue H, Tomioka A, Kaji H, Sasaki M, Orba Y, Sawa H, Kuno A. Combinatorial Approach with Mass Spectrometry and Lectin Microarray Dissected Site-Specific Glycostem and Glycoleaf Features of the Virion-Derived Spike Protein of Ancestral and γ Variant SARS-CoV-2 Strains. J Proteome Res 2024; 23:1408-1419. [PMID: 38536229 DOI: 10.1021/acs.jproteome.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted public health globally. As the glycosylation of viral envelope glycoproteins is strongly associated with their immunogenicity, intensive studies have been conducted on the glycans of the glycoprotein of SARS-CoV-2, the spike (S) protein. Here, we conducted intensive glycoproteomic analyses of the SARS-CoV-2 S protein of ancestral and γ-variant strains using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarrays (LMA). Our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, identified 1448 (ancestral strain) and 1785 (γ-variant strain) site-specific glycan compositions, respectively. Asparagine at amino acid position 20 (N20) is mainly glycosylated within two successive potential glycosylation sites, N17 and N20, of the γ-variant S protein; however, we found low-frequency glycosylation at N17. Our novel approaches, glycostem mapping and glycoleaf scoring, also illustrate the moderately branched/extended, highly fucosylated, and less sialylated natures of the glycoforms of S proteins. Subsequent LMA analysis emphasized the intensive end-capping of glycans by Lewis fucoses, which complemented the glycoproteomic features. These results illustrate the high-resolution glycoproteomic features of the SARS-CoV-2 S protein, contributing to vaccine design and understanding of viral protein synthesis.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Michihito Sasaki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yasuko Orba
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
7
|
Ming A, Zhao J, Liu Y, Wang Y, Wang X, Li J, Zhang L. O-glycosylation in viruses: A sweet tango. MLIFE 2024; 3:57-73. [PMID: 38827513 PMCID: PMC11139210 DOI: 10.1002/mlf2.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 06/04/2024]
Abstract
O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.
Collapse
Affiliation(s)
- Annan Ming
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yihan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yibo Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
| | - Xiaohui Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina
- Beijing National Laboratory for Molecular SciencesBeijingChina
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
8
|
Matsuda A, Boottanun P, Koizumi S, Nagai M, Kuno A. Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray. Methods Mol Biol 2024; 2763:223-236. [PMID: 38347414 DOI: 10.1007/978-1-0716-3670-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The association between altered glycosylation of MUC1 and various disease events has sparked significant interest. However, analytical technologies to investigate the disease-related glycoforms of endogenous MUC1 in blood and tissue specimens are limited. Therefore, we devised a reliable technique for differential analysis of endogenous MUC1 glycoforms based on an antibody-assisted lectin microarray. Its highly sensitive detection aids in analyzing soluble MUC1 from relatively small amounts of serum via a simple enrichment process. Micro-/macro-dissection of the MUC1-positive region is combined with glycoform analysis of the membrane-tethered MUC1. Thus, we have optimized the protocol for sample qualification using immunohistochemistry, sample pretreatment for tissue sections, protein extraction, purification via immunoprecipitation, and the antibody-overlay lectin microarray, which are sequentially essential for differential glycoform analysis of endogenous MUC1.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Sysmex Corporation, Reagent Engineering, Protein Technology Group, Hyogo, Japan
| | - Patcharaporn Boottanun
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sachiko Koizumi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Misugi Nagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
9
|
Murata A, Angata K, Sogabe M, Sato S, Ichida T, Narimatsu H, Genda T. Serum O-glycosylated hepatitis B surface antigen levels in patients with chronic hepatitis B during nucleos(t)ide analog therapy. BMC Gastroenterol 2022; 22:270. [PMID: 35641912 PMCID: PMC9153111 DOI: 10.1186/s12876-022-02352-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Serum hepatitis B surface antigen (HBsAg) is a component of both hepatitis B virus (HBV) virions and non-infectious subviral particles (SVPs). Recently, O-glycosylation of the PreS2 domain of middle HBsAg protein has been identified as a distinct characteristic of genotype C HBV virions versus SVPs. This study aimed to evaluate serum O-glycosylated HBsAg levels in patients with chronic hepatitis B (CHB) treated with nucleos(t)ide analogs (NAs). Methods Forty-seven treatment-naïve patients with genotype C CHB were retrospectively enrolled. Serum O-glycosylated HBsAg levels at baseline and after 48 weeks of NA therapy were quantified by immunoassay using a monoclonal antibody against the O-glycosylated PreS2 domain of middle HBsAg, and their correlations with conventional HBV marker levels were analyzed. Results At baseline, the serum O-glycosylated HBsAg levels were significantly correlated with the HBV DNA (P = 0.004), HBsAg (P = 0.005), and hepatitis B-core related antigen (HBcrAg, P = 0.001) levels. Both HBV DNA and O-glycosylated HBsAg levels were decreased after 48 weeks of NA therapy. The significant correlation of the O-glycosylated HBsAg level with the HBsAg or HBcrAg level was lost in patients who achieved undetectable HBV DNA (HBsAg, P = 0.429; HBcrAg, P = 0.065). Immunoprecipitation assays demonstrated that HBV DNA and RNA were detected in the O-glycosylated HBsAg-binding serum fraction, and the proportion of HBV RNA increased during NA therapy (P = 0.048). Conclusion Serum O-glycosylated HBsAg levels change during NA therapy and may reflect combined levels of serum HBV DNA and RNA virions. An O-glycosylated HBsAg-based immunoassay may provide a novel means to monitor viral kinetics during NA therapy.
Collapse
Affiliation(s)
- Ayato Murata
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan
| | - Kiyohiko Angata
- Research Core for Medical GlycoScience (RCMG) Inc, Tsukuba, Ibaraki, Japan
| | - Maki Sogabe
- Research Core for Medical GlycoScience (RCMG) Inc, Tsukuba, Ibaraki, Japan
| | - Shunsuke Sato
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan
| | - Takafumi Ichida
- Department of Hepatology, East Shonan Clinic, Chigasaki, Kanagawa, Japan
| | - Hisashi Narimatsu
- Research Core for Medical GlycoScience (RCMG) Inc, Tsukuba, Ibaraki, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan.
| |
Collapse
|
10
|
Angata K, Wagatsuma T, Togayachi A, Sato T, Sogabe M, Tajiri K, Ozawa T, Nagashima I, Shimizu H, Iijima S, Korenaga M, Kuno A, Kaji H, Mizokami M, Narimatsu H. O-glycosylated HBsAg peptide can induce specific antibody neutralizing HBV infection. Biochim Biophys Acta Gen Subj 2022; 1866:130020. [PMID: 34582939 DOI: 10.1016/j.bbagen.2021.130020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV), which causes hepatitis, liver cirrhosis, and hepatocellular carcinoma, is a global human health problem. HBV contains three envelope proteins, S-, M-, and L-hepatitis B surface antigen (HBsAg). We recently found that O-glycosylated M-HBsAg, reactive with jacalin lectin, is one of the primary components of HBV DNA-containing virus particles. Thus, we aimed to analyze and target the glycosylation of HBsAg. METHODS HBsAg prepared from the serum of Japanese patients with HBV were analyzed using mass spectrometry. The glycopeptide modified with O-glycan was generated and used for immunization. The specificity of the generated antibody and the HBV infection inhibition activity was examined. RESULTS Mass spectrometry analysis revealed that T37 and/or T38 on M-HBsAg of genotype C were modulated by ±NeuAc(α2,3)Gal(β1,3)GalNAc. Chemically and enzymatically synthesized O-glycosylated peptide (Glyco-PS2) induced antibodies that recognize mainly PreS2 in M-HBsAg not in L-HBsAg, whereas the non-glycosylated peptide (PS2) induced antisera recognizing L-HBsAg but not O-glycosylated M-HBsAg. The removal of O-glycan from M-HBsAg partly decreased the reactivity of the Glyco-PS2 antibody, suggesting that peptide part was also recognized by the antibody. The antibody further demonstrated the inhibition of HBV infection in human hepatic cells in vitro. CONCLUSIONS Glycosylation of HBsAg occurs differently in different HBsAgs in a site-specific manner. The new Glyco-PS2 antibody, recognizing O-glycosylated M-HBsAg of genotype C, could inhibit HBV infection. GENERAL SIGNIFICANCE The detailed analysis of HBsAg identified different glycosylations of HBV surface. The glycosylated peptide based on mass spectrometry analysis showed higher potential to induce functional antibody against HBV.
Collapse
Affiliation(s)
- Kiyohiko Angata
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Takanori Wagatsuma
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Akira Togayachi
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Takashi Sato
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Maki Sogabe
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuto Tajiri
- Graduate School of Medicine and Pharmaceutical Science, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Tatsuhiko Ozawa
- Graduate School of Medicine and Pharmaceutical Science, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Izuru Nagashima
- Multicellular System Regulation Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hiroki Shimizu
- Multicellular System Regulation Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Sayuki Iijima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masaaki Korenaga
- Hepatitis Information Centre, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Hisashi Narimatsu
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Hiono T, Kuno A. Glycan Profiling of Viral Glycoproteins with the Lectin Microarray. Methods Mol Biol 2022; 2556:59-68. [PMID: 36175627 DOI: 10.1007/978-1-0716-2635-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, structural analyses on the glycans attached to viral surface proteins have been intensively conducted since previous studies demonstrated that glycoform of the viral glycoproteins is closely related to their immunogenicity as vaccine antigens. Although mass spectrometric approach is a gold standard for the glycoproteomic analysis of viral glycoproteins, lectin microarray (LMA) is regarded as an alternative method for analyzing glycan attached to viruses. The previous studies demonstrated that LMA provides highly sensitive and straightforward platforms for the glycoproteomic analyses of viral glycans. Here, two methods, antibody-overlay method, and direct-labeling method, for profiling glycoforms of viral glycoprotein using LMA are described.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Ibaraki, Japan.
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Ibaraki, Japan
| |
Collapse
|
12
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
13
|
Ito K, Angata K, Kuno A, Okumura A, Sakamoto K, Inoue R, Morita N, Watashi K, Wakita T, Tanaka Y, Sugiyama M, Mizokami M, Yoneda M, Narimatsu H. Screening siRNAs against host glycosylation pathways to develop novel antiviral agents against hepatitis B virus. Hepatol Res 2020; 50:1128-1140. [PMID: 32738016 DOI: 10.1111/hepr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) relies on glycosylation for crucial functions, such as entry into host cells, proteolytic processing and protein trafficking. The aim of this study was to identify candidate molecules for the development of novel antiviral agents against HBV using an siRNA screening system targeting the host glycosylation pathway. METHODS HepG2.2.15.7 cells that consistently produce HBV were employed for our in vitro study. We investigated the effects of siRNAs that target 88 different host glycogenes on hepatitis B surface antigen (HBsAg) and HBV DNA secretion using the siRNA screening system. RESULTS We identified four glycogenes that reduced HBsAg and/or HBV DNA secretion; however, the observed results for two of them may be due to siRNA off-target effects. Knocking down ST8SIA3, a member of the sialyltransferase family, significantly reduced both HBsAg and HBV DNA secretion. Knocking down GALNT7, which transfers N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus, also significantly reduced both HBsAg and HBV DNA levels. CONCLUSIONS These results showed that knocking down the ST8SIA3 and GALNT7 glycogenes inhibited HBsAg and HBV DNA secretion in HepG2.2.15.7 cells, indicating that the host glycosylation pathway is important for the HBV life cycle and could be a potential target for the development of novel anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kiyohiko Angata
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naoko Morita
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
14
|
Matsuda A, Kuno A, Yoshida M, Wagatsuma T, Sato T, Miyagishi M, Zhao J, Suematsu M, Kabe Y, Narimatsu H. Comparative Glycomic Analysis of Exosome Subpopulations Derived from Pancreatic Cancer Cell Lines. J Proteome Res 2020; 19:2516-2524. [DOI: 10.1021/acs.jproteome.0c00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Atsushi Matsuda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Maki Yoshida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Takanori Wagatsuma
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | | | - Jing Zhao
- Biomedical Research Institute, AIST, Tsukuba 305-8566, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
15
|
Yu H, Shu J, Li Z. Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 2020; 17:27-39. [PMID: 31971038 DOI: 10.1080/14789450.2020.1720512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Glycoproteomics is an important subdiscipline of proteomics, focusing on the role of protein glycosylation in various biological processes. Protein glycosylation is the enzymatic addition of sugars or oligosaccharides to proteins. Altered glycosylation often occurs in the early stages of disease development, for example, certain tumor-associated glycans have been shown to be expressed in precursor lesions of different types of cancer, making them powerful early diagnostic markers. Lectin microarrays have become a powerful tool for both the study of glycosylation and the diagnosis of various diseases including cancer.Areas covered: This review will discuss the most useful features of lectin microarrays, such as their technological advances, their capability for parallel/high-throughput analysis for the important glycopatterns of glycoprotein, and an overview of their use for glycosylation analysis of various complex protein samples, as well as their diagnostic potential in various diseases.Expert opinion: Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycopatterns of diseases in a fast and efficient manner. Lectin microarrays will become increasingly powerful early diagnostic tool for a variety of conditions.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
16
|
Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology 2019; 527:132-140. [DOI: 10.1016/j.virol.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/11/2023]
|
17
|
Yuan L, Chen WJ, Wang JY, Li Y, Tian D, Wang MX, Yu HT, Xu YC, Li D, Zhuang M, Ling H. Divergent Primary Immune Responses Induced by Human Immunodeficiency Virus-1 gp120 and Hepatitis B Surface Antigen Determine Antibody Recall Responses. Virol Sin 2018; 33:502-514. [PMID: 30569292 PMCID: PMC6335216 DOI: 10.1007/s12250-018-0074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
The development of a vaccine based on human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) that elicits potent protective antibodies against infection has been challenging. Recently, we compared the antibody production patterns of HIV-1 Env gp120 and hepatitis B virus surface antigen (HBsAg) to provide insights into how we may improve the protective efficacy of Env-based immunogens. Our previous study showed that HIV Env and HBsAg display different mechanisms of antibody elicitation and that T cells facilitate the responses to repeated immunizations. Here, to elucidate the detailed roles of primary immunization in immune memory response formation and antibody production, we immunized C57BL/6 mice with each antigen and evaluated the development of T follicular helper (Tfh) cells, germinal centers, and the memory responses involved in prime and boost immunizations. We found that after prime immunization, compared with HBsAg, gp120 induced higher frequencies of Tfh cells and programmed death (PD)-1+ T cells, greater major histocompatibility complex II expression on B cells, comparable activated B cells, but weaker germinal center (GC) reactions and memory B cell responses in the draining lymph nodes, accompanied by slower antibody recall responses and poor immune memory responses. The above results suggested that more PD-1+ T cells arising in primary immunization may serve as major contributors to the slow antibody recall response elicited by HIV-1 Env.
Collapse
Affiliation(s)
- Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, 150081, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, 150081, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China
| | - Dan Tian
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Ming-Xia Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Hao-Tong Yu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Ying-Chu Xu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, 150081, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, 150081, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, 150081, China. .,Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China. .,Department of Immunology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|