1
|
Wu Y, Liu Y, Ma J, Zhu S, Zhao X, Mou H, Ke X, Wu Z, Wang Y, Lin S, Qi W. A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine. BIOSENSORS 2024; 15:10. [PMID: 39852061 PMCID: PMC11763935 DOI: 10.3390/bios15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of Salmonella in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria. The immune MNBs, immune Au@PtNCs, and bacterial samples were introduced into a novel passive microfluidic micromixer for full mixing, resulting in the formation of a double-antibody sandwich structure due to antigen-antibody immune reactions. Subsequently, the mixture flowed into the reaction cell, where the MNBs-Salmonella-Au@PtNCs complex was captured by the magnetic field. After washing, hydrogen peroxide-tetramethylbenzidine substrate (H2O2-TMB) was added, reacting with the Au@PtNCs peroxidase to produce a blue reaction product. This entire process was automated using a portable device, and Salmonella concentration was analyzed via a phone application. This simple biosensor has good specificity with a detection range of 9 × 101-9 × 105 CFU/mL and can detect Salmonella concentrations as low as 90 CFU/mL within 74 min. The average recoveries of the spiked samples ranged from 76.8% to 109.5.
Collapse
Affiliation(s)
- Yutong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinchen Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shanxi Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huawei Mou
- China Center for Information Industry Development, Beijing 100036, China
| | - Xuanqi Ke
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhisheng Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yifei Wang
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Sheng Lin
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wuzhen Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
2
|
Pommiès L, Boutal H, Fras D, Volland H. Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. BIOSENSORS 2024; 14:609. [PMID: 39727874 DOI: 10.3390/bios14120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required. Several challenges were addressed to achieve this goal: (1) the development of a buffer for bacterial DNA extraction that is compatible with both LAMP and immunochromatographic tests; (2) the adaption of the LAMP protocol for use with the SPID device; and (3) the optimization of the detection protocol for specific test conditions, with a lateral flow immunoassay format selected for its POCT compatibility. Following these developments, the test was validated using Escherichia coli (E. coli) and non-E. coli strains. A portable heating station was also developed to enable amplification without costly equipment. The resulting genetic POCT achieved 100% sensitivity and 85% specificity, with results available in 60 to 75 min. This study demonstrated that our POCT efficiently performs DNA extraction, amplification, and detection for bacterial identification. The test's simplicity and cost-effectiveness will support its implementation in various settings.
Collapse
Affiliation(s)
- Lilas Pommiès
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - Hervé Boutal
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - David Fras
- CEA/DRT/LIST/DIN/SIMRI, 91191 Gif-Sur-Yvette, France
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Huang F, Jiang Y, Wu Q, Zheng C, Huang S, Yang H, Xiang G, Zheng L. A one-pot loop-mediated isothermal amplification platform using fluorescent gold nanoclusters for rapid and naked-eye pathogen detection. Food Chem 2024; 460:140573. [PMID: 39053273 DOI: 10.1016/j.foodchem.2024.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive nucleic acid testing method for pathogen detection, yet the absence of a straightforward readout strategy remains challenging. We've successfully designed polyethyleneimine-stabilized gold nanoclusters (PEI-AuNCs) as a cationic AuNCs indicator tailored for distinguishing LAMP results, enabling direct visual inspection under UV light. Positive LAMP reactions with PEI-AuNCs, in combination with magnesium pyrophosphate crystals, yield red-fluorescent bulk precipitates visible to the naked eye. To address contamination concerns, we introduced a one-pot reaction by incorporating AuNCs into the lid recess. This one-pot LAMP assay demonstrates exceptional detection capability, identifying Salmonella enterica at concentrations as low as 101 CFU/mL within approximately 50 min, excluding nucleic acid extraction. The platform's versatility, achieved through customizable primers, positions it as a promising molecular diagnostic tool for rapid and visual pathogen detection across scientific disciplines.
Collapse
Affiliation(s)
- Fuyuan Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yayun Jiang
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, China
| | - Qiaoli Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaochuan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shen Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Yang
- Wenzhou Lucheng District Center for Disease Control and Prevention, China.
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Lu Y, Hua MZ, Luo Y, Lu X, Liu Q. Hybrid paper/PDMS microfluidic device integrated with RNA extraction and recombinase polymerase amplification for detection of norovirus in foods. Appl Environ Microbiol 2024; 90:e0120824. [PMID: 39377590 DOI: 10.1128/aem.01208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.
Collapse
Affiliation(s)
- Yuxiao Lu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- McGill Centre for Viral Diseases, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Wu S, Yu W, Fu X, Yu X, Ye Z, Zhang M, Qiu Y, Ma B. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules 2024; 29:4972. [PMID: 39459340 PMCID: PMC11510534 DOI: 10.3390/molecules29204972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected.
Collapse
Affiliation(s)
| | | | - Xianshu Fu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (S.W.); (W.Y.); (X.Y.); (Z.Y.); (M.Z.); (Y.Q.); (B.M.)
| | | | | | | | | | | |
Collapse
|
6
|
Shimazu KN, Bender AT, Reinhall PG, Posner JD. Vibration mixing for enhanced paper-based recombinase polymerase amplification. LAB ON A CHIP 2024; 24:4879-4891. [PMID: 39302137 PMCID: PMC11534347 DOI: 10.1039/d4lc00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.
Collapse
Affiliation(s)
- Kelli N Shimazu
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Per G Reinhall
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO 3 for time-resolved multiplex detection of avian influenza virus biomarkers. Anal Biochem 2024; 693:115583. [PMID: 38838931 DOI: 10.1016/j.ab.2024.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
8
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
He Y, Peng Y, Tong Y. One-Tube Nested PCR Coupled with CRISPR-Cas12a for Ultrasensitive Nucleic Acid Testing. ACS OMEGA 2024; 9:39616-39625. [PMID: 39346871 PMCID: PMC11425923 DOI: 10.1021/acsomega.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
Nucleic acid testing with high sensitivity and specificity is of great importance for accurate disease diagnostics. Here, we developed an in situ one-tube nucleic acid testing assay. In this assay, the target nucleic acid is captured using magnetic silica beads, avoiding an elution step, followed directly by the polymerase chain reaction (PCR) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a detection. This assay achieved visual readout and a sensitivity of 120 copies/mL for detecting SARS-CoV-2. More importantly, the assay demonstrated over 95% sensitivity and 100% specificity compared to the gold standard real-time quantitative PCR (RT-qPCR) test by using 75 SARS-CoV-2 clinical samples. By integrating nested PCR and Cas12a, this all-in-one nucleic acid testing approach enables ultrasensitive, highly specific, and cost-effective diagnosis at community clinics and township hospitals.
Collapse
Affiliation(s)
- Yugan He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co.,Ltd, Shenzhen 518054, PR China
| | - Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
11
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
12
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
13
|
Liu Y, Wei C, Wan H, Sarengaowa, Liang X, Jiang T, Dong Y, Zhao X, Zhong T. Preliminary Study on Rapid and Simultaneous Detection of Viable Escherichia coli O157:H7, Staphylococcus aureus, and Salmonella by PMA-mPCR in Food. Molecules 2023; 28:5835. [PMID: 37570805 DOI: 10.3390/molecules28155835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Escherichia coli O157:H7, Staphylococcus aureus, and Salmonella are major foodborne pathogens that are widespread in nature and responsible for several outbreaks of food safety accidents. Thus, a rapid and practical technique (PMA-mPCR) was developed for the simultaneous detection of viable E. coli O157:H7, S. aureus, and Salmonella in pure culture and in a food matrix. To eliminate false positive results, propidium monoazide (PMA) was applied to selectively suppress the DNA amplification of dead cells. The results showed the optimum concentration of PMA is 5.0 µg/mL. The detection limit of this assay by mPCR was 103 CFU/mL in the culture broth, and by PMA-mPCR was 104 CFU/mL both in pure culture and a food matrix (milk and ground beef). In addition, the detection of mixed viable and dead cells was also explored in this study. The detection sensitivity ratio of viable and dead counts was less than 1:10. Therefore, the PMA-mPCR assay proposed here might provide an efficient detection tool for the simultaneous detection of viable E. coli O157:H7, S. aureus, and Salmonella and also have great potential for the detection and concentration assessment of VBNC cells.
Collapse
Affiliation(s)
- Yao Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Caijiao Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hui Wan
- Nanchang Agricultural Technology Popularization Center, Nanchang 330299, China
| | - Sarengaowa
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Xiaoping Liang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Tao Jiang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xihong Zhao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
14
|
Seok Y, Mauk MG, Li R, Qian C. Trends of respiratory virus detection in point-of-care testing: A review. Anal Chim Acta 2023; 1264:341283. [PMID: 37230728 DOI: 10.1016/j.aca.2023.341283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Ruijie Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
15
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
16
|
Xiang S, Zhang H, Cha X, Lin Y, Shang Y. A New Duplex Recombinase Polymerase Amplification (D-RPA) Method for the Simultaneous and Rapid Detection of Shigella and Bacillus cereus in Food. Foods 2023; 12:foods12091889. [PMID: 37174427 PMCID: PMC10178236 DOI: 10.3390/foods12091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Shigella and Bacillus cereus are two common foodborne pathogens that cause intestinal diseases and seriously affect human life and health. Traditional microbiological culture methods are time-consuming and laborious, and polymerase chain reaction (PCR)-based methods rely on expensive thermal cyclers and lengthy reaction times. In this study, on the basis of the specific gene ipaH7 of Shigella and the virulence gene nheABC of B. cereus, a duplex detection system was established for the first time by using the recombinase polymerase amplification technique (D-RPA). After optimization, D-RPA could be effectively amplified at 42 °C for 25 min with excellent specificity, and the detection limits of D-RPA for Shigella and B. cereus in artificially contaminated samples were 2.7 × 101 and 5.2 × 102 CFU/mL, respectively. This study provides a certain research basis for multiple detection with RPA, an isothermal amplification technology. Furthermore, it lays a good foundation for high-throughput rapid detection of foodborne pathogens.
Collapse
Affiliation(s)
- Shuna Xiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Hanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| |
Collapse
|
17
|
Biswas GC, Khan MTM, Das J. Wearable nucleic acid testing platform - A perspective on rapid self-diagnosis and surveillance of infectious diseases. Biosens Bioelectron 2023; 226:115115. [PMID: 36746023 DOI: 10.1016/j.bios.2023.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Wearable biosensors (WB) are currently attracting considerable interest for rapid detection and monitoring of biomarkers including metabolites, protein, and pathogen in bodily fluids (e.g., sweat, saliva, tears, and interstitial fluid). Another branch of WB termed wearable nucleic acid testing (NAT) is blossoming thanks to the development of microfluidic technology and isothermal nucleic acid amplification technique (iNAAT); however, there are only few reports on this. The wearable NAT is an emerging field of point-of-care (POC) diagnostics, and holds the promise for time-saving self-diagnosis, and evidence-based surveillance of infectious diseases in remote or low-resource settings. The use of wearable NAT can also be advanced to include molecular diagnosis, the identification of cancer biomarkers, genetic abnormalities, and other aspects. The wearable NAT provides the potential for evidence-based surveillance of infectious diseases when combined with internet connectivity and App software. To make the wearable NAT accessible to the end users, however, improvements must be made to the fabrication, cost, speed, sensitivity, specificity, sampling, iNAAT, analyzer, and a few other features. So, in this paper, we looked at the wearable NAT's most recent development, identified its difficulties, and defined its potential for managing infectious diseases quickly in the future. This is the wearable NAT review's first effort. We expect that this article will provide the concise resources needed to develop and deploy an efficient wearable NAT system.
Collapse
Affiliation(s)
- Gokul Chandra Biswas
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Md Taufiqur Mannan Khan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, 2170 Campus Dr, Evanston, IL, 60208, USA.
| |
Collapse
|
18
|
Lee S, Kim S, Kim S. A novel paper-based lysis strip for SARS-CoV-2 RNA detection at low resource settings. Anal Biochem 2023; 664:115037. [PMID: 36623679 PMCID: PMC9817428 DOI: 10.1016/j.ab.2023.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Infectious respiratory diseases such as COVID-19 are serious and global concerns from the past to the present. To isolate the spread of infectious diseases even in the absence of a health system, a simple, inexpensive, reliable, sensitive, and selective molecular diagnosis platform for Point of Care Test (POCT) is required. Especially, the nucleic acid extraction step is difficult to perform out of laboratory. Here, we propose a paper-based lysis (PBL) strip for nucleic acid extraction, especially in low-resource settings (LRS). PBL strips are suitable for isolating RNA from viruses with biological interference and inhibitors. We optimized the buffer compositions and membranes of the strip. A simple preparation method using a PBL strip could obtain an eluent for downstream inspection within 20 min. Overall, 104 copies/swaps were detected for 20 min for amplification in combination with Reverse Transcription Loop-Mediated Amplification (RT-LAMP).
Collapse
Affiliation(s)
| | | | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
19
|
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. NATURE REVIEWS BIOENGINEERING 2023; 1:180-192. [PMID: 36937095 PMCID: PMC9926459 DOI: 10.1038/s44222-023-00024-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
The detection of pathogenic bacteria is essential to prevent and treat infections and to provide food security. Current gold-standard detection techniques, such as culture-based assays and polymerase chain reaction, are time-consuming and require centralized laboratories. Therefore, efforts have focused on developing point-of-care devices that are fast, cheap, portable and do not require specialized training. Paper-based analytical devices meet these criteria and are particularly suitable to deployment in low-resource settings. In this Review, we highlight paper-based analytical devices with substantial point-of-care applicability for bacteria detection and discuss challenges and opportunities for future development.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| |
Collapse
|
20
|
Liu H, Cao T, Chen H, Zhang J, Li W, Zhang Y, Liu H. Two-color lateral flow nucleic acid assay combined with double-tailed recombinase polymerase amplification for simultaneous detection of chicken and duck adulteration in mutton. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. BIOSENSORS 2022; 12:bios12121094. [PMID: 36551061 PMCID: PMC9776365 DOI: 10.3390/bios12121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Paper-based biosensors are microfluidic analytical devices used for the detection of biochemical substances. The unique properties of paper-based biosensors, including low cost, portability, disposability, and ease of use, make them an excellent tool for point-of-care testing. Among all analyte detection methods, nucleic acid-based pathogen detection offers versatility due to the ease of nucleic acid synthesis. In a point-of-care testing context, the combination of nucleic acid detection and a paper-based platform allows for accurate detection. This review offers an overview of contemporary paper-based biosensors for detecting nucleic acids from pathogens. The methods and limitations of implementing an integrated portable paper-based platform are discussed. The review concludes with potential directions for future research in the development of paper-based biosensors.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andres A. Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shreya Milind Athalye
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
24
|
Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. MICROMACHINES 2022; 13:1835. [PMID: 36363856 PMCID: PMC9696303 DOI: 10.3390/mi13111835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Conventional detectors are mostly made up of complicated structures that are hard to use. A paper-based microfluidic chip, however, combines the advantages of being small, efficient, easy to process, and environmentally friendly. The paper-based microfluidic chips for biomedical applications focus on efficiency, accuracy, integration, and innovation. Therefore, continuous progress is observed in the transition from single-channel detection to multi-channel detection and in the shift from qualitative detection to quantitative detection. These developments improved the efficiency and accuracy of single-cell substance detection. Paper-based microfluidic chips can provide insight into a variety of fields, including biomedicine and other related fields. This review looks at how paper-based microfluidic chips are prepared, analyzed, and used to help with both biomedical development and functional integration, ideally at the same time.
Collapse
Affiliation(s)
- Yuhang Jin
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| | - Aziz ur Rehman Aziz
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Ying Lv
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Hangyu Zhang
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Gul I, Liu C, Yuan X, Du Z, Zhai S, Lei Z, Chen Q, Raheem MA, He Q, Hu Q, Xiao C, Haihui Z, Wang R, Han S, Du K, Yu D, Zhang CY, Qin P. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering (Basel) 2022; 9:571. [PMID: 36290539 PMCID: PMC9598380 DOI: 10.3390/bioengineering9100571] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiuyue Hu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhang Haihui
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
26
|
Seok Y, Yin Q, Li R, Mauk MG, Bai H, Bau HH. Manually-Operated, Slider Cassette for Multiplexed Molecular Detection at the Point of Care. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 369:132353. [PMID: 38756788 PMCID: PMC11097106 DOI: 10.1016/j.snb.2022.132353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Effective control of epidemics, individualized medicine, and new drugs with virologic response-dependent dose and timing require, among other things, simple, inexpensive, multiplexed molecular detection platforms suitable for point of care and home use. Herein, we describe our progress towards developing such a platform that includes sample lysis, nucleic acid isolation, concentration, purification, and amplification. Our diagnostic device comprises a sliding component that houses the nucleic acid isolation membrane and a housing containing three amplification reaction chambers with dry stored reagents, blisters with buffers and wash solutions, and absorption pads to facilitate capillarity pull and waste storage. After sample introduction, the user slides the slider within the housing from one station to another to carry out various unit operations. The slider motion induces blisters to discharge their contents, effectuating washes, and eventual elution of captured nucleic acids into reaction chambers. The slider cassette mates with a processor that incubates isothermal amplification but can also be made to operate instrumentation-free. We demonstrate our cassette's utility for the co-detection of the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). These three blood-borne pathogens co-infect many people worldwide with severe personal and public health consequences.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Qingtian Yin
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Ruijie Li
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Huiwen Bai
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Qin X, Zhang Z, Yang T, Yuan L, Guo Y, Yang X. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection. Food Chem 2022; 389:133093. [PMID: 35500406 DOI: 10.1016/j.foodchem.2022.133093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Auto-fluorescence of cellulose paper is often considered as an interfering fluorescence, which directly impedes the cellulose paper as a substrate material. This paper creatively explored the composition and properties of auto-fluorescence, and lignosulfonate was primarily speculated as the main source of auto-fluorescence. Surprisingly, its spatial solid phrase dispersion-induced fluorescence enhancement behavior was found. Then, cellulose paper was modified with Mn-doped ZnS quantum dots, and the prepared ratiometric fluorescent paper chip has good performances on morphology, stability, and fluorescence properties. Besides, the paper chip exhibited different fluorescence responses to three heavy metal ions in water sample. The limit of detection for Cd2+, Hg2+ and Pb2+ reached 1.61 nM, 0.01 nM, and 0.02 nM, respectively. In short, the molecular simulation results theoretically proved that heavy metal ions owned substitution affinity with lignosulfonate. Ultimately, this study was the first attempt to utilize paper-based auto-fluorescence, which could better accelerate the development of paper-based chips.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China.
| | - Tian Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Yurong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
28
|
Ma P, Wang S, Wang J, Wang Y, Dong Y, Li S, Su H, Chen P, Feng X, Li Y, Du W, Liu BF. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning. Anal Chem 2022; 94:13332-13341. [PMID: 36121740 DOI: 10.1021/acs.analchem.2c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as powerful analytical platforms in clinical diagnostics, food safety, and environmental protection because of their low cost and favorable substrate properties for biosensing. However, the existing top-down fabrication methods of paper-based chips suffer from low resolution (>200 μm). Additionally, papers have limitations in their physical properties (e.g., thickness, transmittance, and mechanical flexibility). Here, we demonstrate a bottom-up approach for the rapid fabrication of heterogeneously controlled paper-based chip arrays. We simply print a wax-patterned microchip with wettability contrasts, enabling automatic and selective assembly of cellulose microfibers to construct predefined paper-based microchip arrays with controllable thickness. This paper-based microchip printing technology is feasible for various substrate materials ranging from inorganic glass to organic polymers, providing a versatile platform for the full range of applications including transparent devices and flexible health monitoring. Our bottom-up printing technology using cellulose microfibers as the starting material provides a lateral resolution down to 42 ± 3 μm and achieves the narrowest channel barrier down to 33 ± 2 μm. As a proof-of-concept demonstration, a flexible paper-based glucose monitor is built for human health care, requiring only 0.3 μL of sample for testing.
Collapse
Affiliation(s)
- Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,School of Biological Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
29
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
31
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:mi13071083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
- Correspondence: (S.D.M.); (P.G.)
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Correspondence: (S.D.M.); (P.G.)
| |
Collapse
|
32
|
Sullivan BP, Chou YS, Bender AT, Martin CD, Kaputa ZG, March H, Song M, Posner JD. Quantitative isothermal amplification on paper membranes using amplification nucleation site analysis. LAB ON A CHIP 2022; 22:2352-2363. [PMID: 35548880 PMCID: PMC9202034 DOI: 10.1039/d2lc00007e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative nucleic acid amplification tests (qNAATs) are critical in treating infectious diseases, such as in HIV viral load monitoring or SARS-CoV-2 testing, in which viral load indicates viral suppression or infectivity. Quantitative PCR is the gold standard tool for qNAATs; however, there is a need to develop point-of-care (POC) qNAATs to manage infectious diseases in outpatient clinics, low- and middle-income countries, and the home. Isothermal amplification methods are an emerging tool for POC NAATs as an alternative to traditional PCR-based workflows. Previous works have focused on relating isothermal amplification bulk fluorescence signals to input copies of target nucleic acids for sample quantification with limited success. In this work, we show that recombinase polymerase amplification (RPA) reactions on paper membranes exhibit discrete fluorescent amplification nucleation sites. We demonstrate that the number of nucleation sites can be used to quantify HIV-1 DNA and viral RNA in less than 20 minutes. An image-analysis algorithm quantifies nucleation sites and determines the input nucleic acid copies in the range of 67-3000 copies per reaction. We demonstrate a mobile phone-based system for image capture and onboard processing, illustrating that this method may be used at the point-of-care for qNAATs with minimal instrumentation.
Collapse
Affiliation(s)
- Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Yu-Shan Chou
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Coleman D Martin
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Zoe G Kaputa
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Hugh March
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Minyung Song
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Lei R, Li L, Wu P, Fei X, Zhang Y, Wang J, Zhang D, Zhang Q, Yang N, Wang X. RPA/CRISPR/Cas12a-Based On-Site and Rapid Nucleic Acid Detection of Toxoplasma gondii in the Environment. ACS Synth Biol 2022; 11:1772-1781. [PMID: 35471824 DOI: 10.1021/acssynbio.1c00620] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii is an opportunistic pathogen widely distributed within the world, poses a huge threat to human health, and causes significant economic losses to the livestock industry. Herein, we developed a portable one-pot detection of T. gondii by combining recombinase polymerase amplification (RPA) and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system. A glass microfiber filter device used for the first step can efficiently extract T. gondii from low-concentration samples. The lyophilized RPA reagents and Cas12a/crRNA reagents are prestored in one Eppendorf tube, and both reactions can be performed on a low-cost thermal controller (∼37 °C), avoiding the drawbacks of the step-by-step addition of components. The developed RPA/CRISPR/Cas12a system exhibits a high selectivity toward the B1 gene amplicon of T. gondii over other parasites with a limit of detection of 3.3 copies/μL. The visual signal readout can be easily realized by a fluorometer or lateral-flow strip. A portable suitcase containing the minimum equipment and lyophilized reagents was adopted for the rapid determination of T. gondii in heavily polluted landfill leachate. This system presents rapidness, robustness and on-site features for the detection of nucleic acids of the parasite, making it a promising tool for field applications in remote areas.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing100176, China
| | - Limei Li
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning116622, China
| | - Pinshan Wu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing100176, China
| | - Xinyu Fei
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Yuting Zhang
- Food Science College, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Di Zhang
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning116622, China
| | - Qingfang Zhang
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning116622, China
| | - Na Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Xinyi Wang
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning116622, China
| |
Collapse
|
34
|
Xing G, Zhang W, Li N, Pu Q, Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Sun Y, Qin P, He J, Li W, Shi Y, Xu J, Wu Q, Chen Q, Li W, Wang X, Liu G, Chen W. Rapid and simultaneous visual screening of SARS-CoV-2 and influenza virufses with customized isothermal amplification integrated lateral flow strip. Biosens Bioelectron 2022; 197:113771. [PMID: 34775255 PMCID: PMC8571105 DOI: 10.1016/j.bios.2021.113771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Due to the similar clinical symptoms of influenza (Flu) and coronavirus disease 2019 (COVID-19), there is a looming infection threat of concurrent Flu viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this work, we introduce a customized isothermal amplification integrated lateral flow strip (LFS) that is capable performing duplex reverse transcription–recombinase polymerase amplification (RT-RPA) and colorimetric LFS in a sequential manner. With customized amplification primer sets targeted to SARS-CoV-2 (opening reading frame 1a/b and nucleoprotein genes) and Flu viruses (Flu A and Flu B), the platform allows the rapid and simultaneous visual screening of SARS-CoV-2 and Flu viruses (Flu A and Flu B) without cross reactivity, false positives, and false negatives. Moreover, it maximally eases the detection, reduces the detection time (1 h), and improves the assay performance to detect as low as 10 copies of the viral RNA. Its clinical application is powerfully demonstrated with 100% accuracy for evaluating 15 SARS-CoV-2-positive clinical samples, 10 Flu viruses-positive clinical samples, and 5 negative clinical samples, which were pre-confirmed by standard qRT-PCR. We envision this portable device can meet the increasing need of online monitoring the serious infectious diseases that substantially affects health care systems worldwide.
Collapse
Affiliation(s)
- Yong Sun
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Panzhu Qin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; Department of Nutrition and Food Hygiene, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jun He
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Weiwei Li
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Yonglin Shi
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Qingqing Chen
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China
| | - Weidong Li
- Center of Disease Control and Prevention of Anhui Province, Hefei, 230009, China.
| | - Xinxin Wang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
36
|
Sullivan BP, Chou YS, Bender AT, Martin CD, Kaputa ZG, March H, Song M, Posner JD. Quantitative Isothermal Amplification on Paper Membranes using Amplification Nucleation Site Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.11.475898. [PMID: 35043115 PMCID: PMC8764744 DOI: 10.1101/2022.01.11.475898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantitative nucleic acid amplification tests (qNAATs) are critical in treating infectious diseases, such as in HIV viral load monitoring or SARS-CoV-2 testing, in which viral load indicates viral suppression or infectivity. Quantitative PCR is the gold standard tool for qNAATs; however, there is a need to develop point-of-care (POC) qNAATs to manage infectious diseases in outpatient clinics, low- and middle-income countries, and the home. Isothermal amplification methods are an emerging tool for POC NAATs as an alternative to traditional PCR-based workflows. Previous works have focused on relating isothermal amplification bulk fluorescence signals to input copies of target nucleic acids for sample quantification with limited success. In this work, we show that recombinase polymerase amplification (RPA) reactions on paper membranes exhibit discrete fluorescent amplification nucleation sites. We demonstrate that the number of nucleation sites can be used to quantify HIV-1 DNA and RNA in less than 20 minutes. An image-analysis algorithm quantifies nucleation sites and determines the input nucleic acid copies in the range of 67-3,000 copies per reaction. We demonstrate a mobile phone-based system for image capture and onboard processing, illustrating that this method may be used at the point-of-care for qNAATs with minimal instrumentation.
Collapse
|
37
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
38
|
Recombinase polymerase amplification integrated with microfluidics for nucleic acid testing at point of care. Talanta 2022; 240:123209. [PMID: 35026642 DOI: 10.1016/j.talanta.2022.123209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Nucleic acid testing (NAT) implemented on a portable, miniaturized, and integrated device with rapid and sensitive results readout is highly demanded for pathogen detection or genetic screening at resource-limited settings, especially after the outbreak of coronavirus disease 2019 (COVID-19). The integration of recombinase polymerase amplification (RPA) with emerging microfluidics, classified by paper-based microfluidics and chip-based microfluidics, shows great potential to perform laboratory independent NAT assays at point of care with minimal labor, time and energy consumption. This review summarizes the state-of-the-art of RPA integrated with paper-based microfluidics and chip-based microfluidics, and discusses their pros and cons. Finally, existing challenges and possible ways for optimization of microfluidics-based RPA are proposed.
Collapse
|
39
|
Xue W, Zhang Q, Chang Y, Brennan JD, Li Y, Liu M. Quantifying DNA damage on paper sensors via controlled template-independent DNA polymerization. Chem Sci 2022; 13:6496-6501. [PMID: 35756503 PMCID: PMC9172109 DOI: 10.1039/d1sc04268h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) catalyzes template-independent DNA synthesis in a well-controllable mode on paper, allowing absolute quantification of polymetric labeling of a single 3′-OH present on genomic DNA.
Collapse
Affiliation(s)
- Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian, 116024, China
- Dalian POCT Laboratory, Dalian 116024, China
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian, 116024, China
- Dalian POCT Laboratory, Dalian 116024, China
| |
Collapse
|
40
|
Li J, Feng M, Yu X. Rapid detection of mcyG gene of microcystins producing cyanobacteria in water samples by recombinase polymerase amplification combined with lateral flow strips. JOURNAL OF WATER AND HEALTH 2021; 19:907-917. [PMID: 34874899 DOI: 10.2166/wh.2021.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, cyanobacteria blooms and microcystins (MCs) pollution are threatening water safety and public health. In this study, a rapid detection method was established for detecting MCs producing cyanobacteria. The MC synthesis gene mcyG was measured through recombinase polymerase amplification combined with lateral flow strips (LF-RPA) technology. The target gene mcyG was amplified at a temperature range of 37-45 °C, and the amplification time to detect mcyG was only 15 min at 37 °C. The optimal reaction conditions were confirmed using single dependent variable experiments, suggesting that the best probe dosage for 50 μL of the reaction mixture was 0.2 μL, the best dilution ratio of products was 1/100, and the best loading volume was 10 μL. The specificity test proved that the LF-RPA assay could distinguish MCs producing cyanobacteria from nontoxic algae well. Within 35 min of amplification time, the detection limit of the LF-RPA assay was 103 copies/mL mcyG and 104 cells/mL Microcystis aeruginosa FACHB-905. Overall, the LF-RPA assay could detect MCs producing cyanobacteria in water samples quickly and accurately, and it has a great promise to be applied for monitoring the MCs producing cyanobacteria blooms in natural waters.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| |
Collapse
|
41
|
Fu Q, Yuan L, Cao F, Zang L, Ji D. Lateral flow strip biosensor based on streptavidin-coated gold nanoparticles with recombinase polymerase amplification for the quantitative point-of-care testing of Salmonella. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Yang L, Yi W, Sun F, Xu M, Zeng Z, Bi X, Dong J, Xie Y, Li M. Application of Lab-on-Chip for Detection of Microbial Nucleic Acid in Food and Environment. Front Microbiol 2021; 12:765375. [PMID: 34803990 PMCID: PMC8600318 DOI: 10.3389/fmicb.2021.765375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Various diseases caused by food-borne or environmental pathogenic microorganisms have been a persistent threat to public health and global economies. It is necessary to regularly detect microorganisms in food and environment to prevent infection of pathogenic microorganisms. However, most traditional detection methods are expensive, time-consuming, and unfeasible in practice in the absence of sophisticated instruments and trained operators. Point-of-care testing (POCT) can be used to detect microorganisms rapidly on site and greatly improve the efficiency of microbial detection. Lab-on-chip (LOC) is an emerging POCT technology with great potential by integrating most of the experimental steps carried out in the laboratory into a single monolithic device. This review will primarily focus on principles and techniques of LOC for detection of microbial nucleic acid in food and environment, including sample preparation, nucleic acid amplification and sample detection.
Collapse
Affiliation(s)
- Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
43
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
44
|
Sciuto EL, Leonardi AA, Calabrese G, Luca GD, Coniglio MA, Irrera A, Conoci S. Nucleic Acids Analytical Methods for Viral Infection Diagnosis: State-of-the-Art and Future Perspectives. Biomolecules 2021; 11:1585. [PMID: 34827583 PMCID: PMC8615992 DOI: 10.3390/biom11111585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The analysis of viral nucleic acids (NA), DNA or RNA, is a crucial issue in the diagnosis of infections and the treatment and prevention of related human diseases. Conventional nucleic acid tests (NATs) require multistep approaches starting from the purification of the pathogen genetic material in biological samples to the end of its detection, basically performed by the consolidated polymerase chain reaction (PCR), by the use of specialized instruments and dedicated laboratories. However, since the current NATs are too constraining and time and cost consuming, the research is evolving towards more integrated, decentralized, user-friendly, and low-cost methods. These will allow the implementation of massive diagnoses addressing the growing demand of fast and accurate viral analysis facing such global alerts as the pandemic of coronavirus disease of the recent period. Silicon-based technology and microfluidics, in this sense, brought an important step up, leading to the introduction of the genetic point-of-care (PoC) systems. This review goes through the evolution of the analytical methods for the viral NA diagnosis of infection diseases, highlighting both advantages and drawbacks of the innovative emerging technologies versus the conventional approaches.
Collapse
Affiliation(s)
- Emanuele Luigi Sciuto
- Azienda Ospedaliero, Universitaria Policlinico “G. Rodolico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (A.A.L.); (A.I.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (G.C.); (G.D.L.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (G.C.); (G.D.L.)
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (G.C.); (G.D.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Sofia 87, 95123 Catania, Italy;
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (A.A.L.); (A.I.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (G.C.); (G.D.L.)
| | - Sabrina Conoci
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy; (A.A.L.); (A.I.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (G.C.); (G.D.L.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| |
Collapse
|
45
|
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116371] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, Song F, Wang P, Wan Y. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron 2021; 189:113350. [PMID: 34049081 DOI: 10.1016/j.bios.2021.113350] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) based biosensing system provides a novel genomic diagnostic tool for pathogenic detection. However, most of the discovered Cas effectors have poor single strand DNA (ssDNA) target recognition capability with the constraint of protospacer adjacent motif (PAM) sites, which are not suitable for universal pathogenic diagnosis. Herein, we developed a highly sensitive and specific fluorescence tool for bacterial detection by utilizing the unique collateral cleavage activity of a Cas14a1-mediated nucleic acid detection platform (CMP). We combine CMP with molecular amplification to build a CRISPR-Cas based bioanalysis technique, offering fast nucleic acid detection with high sensitivity and specificity. This technique can identify different species of pathogens in milk samples with excellent accuracy. The CMP technique is a promising platform for pathogenic genomic diagnostic in biomedicine and food safety field.
Collapse
Affiliation(s)
- Xiaolin Ge
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Tian Meng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Xiao Tan
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Zhenzhen Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Peng Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
47
|
Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Petrucci S, Costa C, Broyles D, Dikici E, Daunert S, Deo S. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends Food Sci Technol 2021; 115:409-421. [PMID: 34267423 DOI: 10.1016/j.tifs.2021.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rise in outbreaks of pathogenic bacteria in both food and water resulting in an increased instance of infection, there is a growing public health problem in both developed and developing countries. In this increasing threat the most effective method for control and prevention is rapid and cost-effective detection. Research has shifted in recent years towards the development of rapid and on-site assays for the detection of these kinds of bacteria. However, there are still some limitations in the implementation of these assays in the field. This article discusses the current on-site detection methods. Current scope of advancements and limitations in the development or use of these on-site technologies for food and waterborne bacterial detection is evaluated in this study. With the continued development of these technologies, on-site detection will continue to impact many areas of public health. As these methods continue to improve and diversify further, on-site detection could become more widely implemented in food and water analysis.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Connor Costa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| |
Collapse
|
49
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Correspondence: (L.M.T.P.); (S.C.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (L.M.T.P.); (S.C.)
| |
Collapse
|
50
|
Rani A, Ravindran VB, Surapaneni A, Mantri N, Ball AS. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int J Food Microbiol 2021; 349:109233. [PMID: 34022616 DOI: 10.1016/j.ijfoodmicro.2021.109233] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7, a Shiga-producing E. coli is a major pathogenic E. coli strain which since the early 1980s has become a crucial food and water-borne pathogen. Several management strategies can be applied to control the spread of infection; however early diagnosis represents the optimum preventive strategy to minimize the infection. Therefore, it is crucial to detect this pathogen in a fast and efficient manner in order to reduce the morbidity and mortality. Currently used gold standard tests rely on culture and pre-enrichment of E. coli O157:H7 from the contaminated source; they are time consuming and laborious. Molecular methods such as polymerase chain reaction are sensitive; however, they require expensive instrumentation. Therefore, there is a requirement for Accurate, Sensitive, Specific, User friendly, Rapid, Equipment free and Deliverable (ASSURED) detection methods for use in the laboratory and in the field. Emerging technologies such as isothermal amplification methods, biosensors, surface enhanced Raman Spectroscopy, paper-based diagnostics and smartphone-based digital methods are recognized as new approaches in the field of E. coli O157:H7 diagnostics and are discussed in this review. Mobile PCR and CRISPR-Cas diagnostic platforms have been identified as new tools in E. coli O157:H7 POC diagnostics with the potential for implementation by industry. This review describes advances and progress in the field of E. coli O157:H7 diagnosis in the context of food and water industry. The focus is on emerging high throughput point-of-care (POC) E. coli O157:H7 diagnostics and the requirement for the transformation to service routine diagnostics in the food and water industry.
Collapse
Affiliation(s)
- Alka Rani
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia.
| | - Vivek B Ravindran
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia; South East Water, Frankston, Victoria 3199, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| |
Collapse
|