1
|
Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Harnessing glycofluoroforms for impedimetric biosensing. Chem Sci 2024; 15:d4sc04409f. [PMID: 39282644 PMCID: PMC11393611 DOI: 10.1039/d4sc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto-N-biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface. The impedance biosensing platform is shown to selectively bind cancer-associated galectin-3 compared to control glycans and proteins. To improve the analytical capability, Bayesian statistical analysis was deployed in the equivalent circuit fitting of electrochemical impedance spectroscopy data. It is shown that Markov Chain Monte Carlo (MCMC) analysis is a helpful method for visualising experimental irreproducibility, and we apply this as a quality control step.
Collapse
Affiliation(s)
- Alice R Hewson
- Department of Chemistry, University of York YO10 5DD York UK
| | | | - Tessa Keenan
- Department of Chemistry, University of York YO10 5DD York UK
| | - Sarah-Jane Richards
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Matthew I Gibson
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | | | | | - Alison Parkin
- Department of Chemistry, University of York YO10 5DD York UK
| |
Collapse
|
2
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang J, Liu S, Meng Z, Han XX, Cai L, Xu B, Liu R, Song L, He C, Cheng Z, Zhao B. Flexible SERS Biosensor Based on Core-Shell Nanotags for Sensitive and Multiple Detection of T1DM Biomarkers. Anal Chem 2023; 95:14203-14208. [PMID: 37656042 DOI: 10.1021/acs.analchem.3c01791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songlin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Lina Song
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Yang Y, Dong H, Yin H, Gu J, Zhang Y, Xu M, Wang X, Zhou Y. Controllable preparation of silver-doped hollow carbon spheres and its application as electrochemical probes for determination of glycated hemoglobin. Bioelectrochemistry 2023; 152:108450. [PMID: 37116231 DOI: 10.1016/j.bioelechem.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Silver-doped hollow carbon spheres (Ag@HCS) were firstly introduced as electrochemical probes for glycated hemoglobin (HbA1c) sensing at a molecularly imprinted polymer (MIP)-based carbon cloth (CC) electrode. Herein, Ag@HCS was prepared using one-pot polymerization of resorcinol and formaldehyde with AgNO3 on the SiO2 template, subsequent carbonization, and template removal. Furthermore, poly-aminophenylboronic acid (PABA) as the MIP film was used as a sensing platform for recognition of HbA1c, which captured the Ag@HCS probe by binding of HbA1c with aptamer modified on the probe surface. Due to regular geometry, large specific surface area, superior electrical conductivity, and highly-dispersed Ag, the prepared Ag@HCS probe provided an amplified electrochemical signal based on the Ag oxidation. By use of the sandwich-type electrochemical sensor, the ultrahigh sensitivity of 4.365 μA (μg mL-1)-1 cm-2 and a wide detection range of 0.8-78.4 μg mL-1 for HbA1c detection with a low detection limit of 0.35 μg mL-1 were obtained. Excellent selectivity was obtained due to the specific binding between HbA1c and PABA-based MIP film. The fabricated electrochemical sensing platform was also implemented successfully for the determination of HbA1c concentrations in the serum of healthy individuals.
Collapse
Affiliation(s)
- Yujie Yang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Hewen Yin
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Gu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
6
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
7
|
Rawat R, Roy S, Goswami T, Mathur A. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16. Diagnostics (Basel) 2022; 12:diagnostics12092087. [PMID: 36140489 PMCID: PMC9498135 DOI: 10.3390/diagnostics12092087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human Papilloma Virus 16 (HPV 16) is the well-known causative species responsible for triggering cervical cancer. When left undiagnosed and untreated, this disease leads to life-threatening events among the female populace, especially in developing nations where healthcare resources are already being stretched to their limits. Considering various drawbacks of conventional techniques for diagnosing this highly malignant cancer, it becomes imperative to develop miniaturized biosensing platforms which can aid in early detection of cervical cancer for enhanced patient outcomes. The current study reports on the development of an electrochemical biosensor based on reduced graphene oxide (rGO)/DNA hybrid modified flexible carbon screen-printed electrode (CSPE) for the detection of HPV 16. The carbon-coated SPEs were initially coated with rGO followed by probe DNA (PDNA) immobilization. The nanostructure characterization was performed using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the electrochemical characterization of the nano-biohybrid sensor surface. The optimization studies and analytical performance were assessed using differential pulse voltammetry (DPV), eventually exhibiting a limit of detection (LoD) ~2 pM. The developed sensor was found to be selective solely to HPV 16 target DNA and exhibited a shelf life of 1 month. The performance of the developed flexible sensor further exhibited a promising response in spiked serum samples, which validates its application in future point-of-care scenarios.
Collapse
Affiliation(s)
- Reema Rawat
- Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Souradeep Roy
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tapas Goswami
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| |
Collapse
|
8
|
Algov I, Alfonta L. Use of Protein Engineering to Elucidate Electron Transfer Pathways between Proteins and Electrodes. ACS MEASUREMENT SCIENCE AU 2022; 2:78-90. [PMID: 36785727 PMCID: PMC9836065 DOI: 10.1021/acsmeasuresciau.1c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we review protein engineering tools for electron transfer enhancement and investigation in bioelectrochemical systems. We present recent studies in the field while focusing on how electron transfer investigation and measurements were performed and discuss the use of protein engineering to interpret electron transfer mechanisms.
Collapse
|
9
|
Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021; 180:113112. [PMID: 33706158 PMCID: PMC7921732 DOI: 10.1016/j.bios.2021.113112] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Ahmed Khorshed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - V Sunil Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mohamed Oraby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hern Kim
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India.
| |
Collapse
|
10
|
Roy S, Nagabooshanam S, Krishna K, Wadhwa S, Chauhan N, Jain U, Kumar R, Mathur A, Davis J. Electroanalytical Sensor for Diabetic Foot Ulcer Monitoring with Integrated Electronics for Connected Health Application. ELECTROANAL 2020. [DOI: 10.1002/elan.201900665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Souradeep Roy
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | | | - Kushagra Krishna
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Shikha Wadhwa
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Utkarsh Jain
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Ranjit Kumar
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Ashish Mathur
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - James Davis
- Nanotechnology and Integrated Bio-Engineering Center Ulster University Jordanstown UK BT370QB Jordanstown
| |
Collapse
|
11
|
Dharmaratne AC, Moulton JT, Niroula J, Walgama C, Mazumder S, Mohanty S, Krishnan S. Pyrenyl Carbon Nanotubes for Covalent Bilirubin Oxidase Biocathode Design: Should the Nanotubes be Carboxylated? ELECTROANAL 2020. [DOI: 10.1002/elan.201900564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asantha C. Dharmaratne
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - James T. Moulton
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Jinesh Niroula
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Charuksha Walgama
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
- Present Address: Department of Chemistry The University of Texas at Austin Austin TX 78712 United States
| | - Suman Mazumder
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Smita Mohanty
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| | - Sadagopan Krishnan
- Department of Chemistry Oklahoma State University, Stillwater Oklahoma 74078 United States
| |
Collapse
|
12
|
Al Mubarak ZH, Premaratne G, Dharmaratne A, Mohammadparast F, Andiappan M, Krishnan S. Plasmonic nucleotide hybridization chip for attomolar detection: localized gold and tagged core/shell nanomaterials. LAB ON A CHIP 2020; 20:717-721. [PMID: 32009138 DOI: 10.1039/c9lc01150a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a large amplification of surface plasmon signals for a double hybridization microarray chip assembly that bridges localized gold and detection probe-carrying-core/shell Fe3O4@Au nanoparticles for detection of as low as 80 aM miRNA-155 marker in solution. The plasmonic wavelength match of the gold shell with surface localized gold nanoparticles and the additional scattering band of the core/shell material in resonance with the incident 800 nm light source are the underlying factors for the observed remarkable analyte signal at ultra-low (10-18 order) concentrations.
Collapse
Affiliation(s)
- Zainab H Al Mubarak
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Asantha Dharmaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Farshid Mohammadparast
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Marimuthu Andiappan
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
13
|
Xu W, Wang D, Li D, Liu CC. Recent Developments of Electrochemical and Optical Biosensors for Antibody Detection. Int J Mol Sci 2019; 21:E134. [PMID: 31878197 PMCID: PMC6981776 DOI: 10.3390/ijms21010134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Daniel Wang
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Derek Li
- Solon High School, Solon, OH 44139, USA;
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
14
|
Dual microelectrodes decorated with nanotip arrays: Fabrication, characterization and spectroelectrochemical sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
: Nanomaterial biosensors have revolutionized the entire scientific, technology, biomedical, materials science, and engineering fields. Among all nanomaterials, magnetic nanoparticles, microparticles, and beads are unique in offering facile conjugation of biorecognition probes for selective capturing of any desired analytes from complex real sample matrices (e.g., biofluids such as whole blood, serum, urine and saliva, tissues, food, and environmental samples). In addition, rapid separation of the particle-captured analytes by the simple use of a magnet for subsequent detection on a sensor unit makes the magnetic particle sensor approach very attractive. The easy magnetic isolation feature of target analytes is not possible with other inorganic particles, both metallic (e.g., gold) and non-metallic (e.g., silica), which require difficult centrifugation and separation steps. Magnetic particle biosensors have thus enabled ultra-low detection with ultra-high sensitivity that has traditionally been achieved only by radioactive assays and other tedious optical sources. Moreover, when traditional approaches failed to selectively detect low-concentration analytes in complex matrices (e.g., colorimetric, electrochemistry, and optical methods), magnetic particle-incorporated sensing strategies enabled sample concentration into a defined microvolume of large surface area particles for a straightforward detection. The objective of this article is to highlight the ever-growing applications of magnetic materials for the detection of analytes present in various real sample matrices. The central idea of this paper was to show the versatility and advantages of using magnetic particles for a variety of sample matrices and analyte types and the adaptability of different transducers with the magnetic particle approaches.
Collapse
|
16
|
Watts KE, Blackburn TJ, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films: A Status Report. Anal Chem 2019; 91:4235-4265. [PMID: 30790520 DOI: 10.1021/acs.analchem.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kristen E Watts
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Thomas J Blackburn
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| |
Collapse
|
17
|
Rajpurohit AS, Punde NS, Srivastava AK. An electrochemical sensor with a copper oxide/gold nanoparticle-modified electrode for the simultaneous detection of the potential diabetic biomarkers methylglyoxal and its detoxification enzyme glyoxalase. NEW J CHEM 2019. [DOI: 10.1039/c9nj03553b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly sensitive electro-oxidation of the MGO and GLO biomarkers at the CuO/Au/GCE sensor employing the AdSDPV method.
Collapse
Affiliation(s)
- Anuja S. Rajpurohit
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| | - Ninad S. Punde
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| | - Ashwini K. Srivastava
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| |
Collapse
|