1
|
Gatti L, Sciutto G, Cancelliere R, Severini L, Lisarelli C, Mazzuca C, Prati S, Mazzeo R, Micheli L. Advanced label-free electrochemical immunosensor for a minimally invasive detection of proteins in paintings. Talanta 2025; 283:127167. [PMID: 39522279 DOI: 10.1016/j.talanta.2024.127167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In recent decades, scientific methodologies applied in theCultural Heritage field have been growing, due to their pivotal role in guiding informed decisions concerning conservation strategies and daily maintenance. To achieve this goal, minimally/non-invasive quantitative and qualitative analyses are needed. However, the non-invasive and selective identification of proteinaceous binders and coatings in artworks represent an open issue in Cultural Heritage science. Herein, a novel miniaturized system is introduced, which consists of a label-free electrochemical immunosensor integrated with biocompatible Gellan gel. This method is intended to selectively and minimally invasively identify ovalbumin (OVA) on-site in paintings. The label-free immunosensor is made up on screen-printed electrodes (SPEs) by functionalizing the working electrode (WE) with a primary antibody (anti-ovalbumin) for the specific recognition of OVA. The presence of OVA produces antigen-antibody reaction, which results in the development of a bulky immunocomplex on the WE. This complex is quantified using square wave voltammetry (SWV) and a reversible redox probe: the current measured is inversely proportional to the OVA concentrations. The developed immunosensors showed good analytical performances when applied directly to painted mock-ups, exhibiting a limit of detection (LOD) of 1.6 ng mL-1, a limit of quantification (LOQ) equal to 16 ng mL-1, a working range between 0.01 and 0.4 μg mL-1 and selectivity for OVA over other protein components commonly present in painted artworks, including bovine serum albumin (BSA), collagen, and casein. The outcomes highlighted the dependability of the immunosensor in detecting OVA and the efficacy of Gellan gel as a streamlined method for extracting the target protein while preventing residue accumulation on the painting surface. This advancement suggests the potential of Gellan gel-coupled immunosensor systems as viable diagnostic alternatives for artwork management and preservation.
Collapse
Affiliation(s)
- L Gatti
- Department of Chemistry, University of Bologna - Ravenna Campus, Via Guaccimanni, 42 - 48121, Ravenna, Italy
| | - G Sciutto
- Department of Chemistry, University of Bologna - Ravenna Campus, Via Guaccimanni, 42 - 48121, Ravenna, Italy.
| | - R Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - L Severini
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - C Lisarelli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - C Mazzuca
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - S Prati
- Department of Chemistry, University of Bologna - Ravenna Campus, Via Guaccimanni, 42 - 48121, Ravenna, Italy.
| | - R Mazzeo
- Department of Chemistry, University of Bologna - Ravenna Campus, Via Guaccimanni, 42 - 48121, Ravenna, Italy
| | - L Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy.
| |
Collapse
|
2
|
Rigante ECL, Calvano CD, Ventura G, Cataldi TRI. Look but don't touch: Non-invasive chemical analysis of organic paint binders - A review. Anal Chim Acta 2025; 1335:343251. [PMID: 39643288 DOI: 10.1016/j.aca.2024.343251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 12/09/2024]
Abstract
Diagnostics on historical art samples are decisive for assessing degradation and understanding the chemical composition of supports and polychromies. These investigations help us in uncovering the artist's style and techniques and provide invaluable information for restoration, preservation and conservation. In paint formulation, the binder, also known as medium, disperses insoluble pigments and creates a homogeneous, adhesive mixture. Various analytical techniques, often used in combination, are usually employed to characterize binders with infrared (IR) and Raman spectroscopies being the most common choices. Recently, mass spectrometry (MS) has gained prominence for its ability to allow detailed structural characterization and identification, thanks to soft ionization sources such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI). However, MS typically requires micro-sampling, which is often prohibited for highly valuable artworks. This limitation has driven research toward the development of innovative minimally invasive sampling strategies like enzyme-functionalized gels applied to polychromies for in-situ protein digestion and peptide extraction. These quasi-non-invasive methods offer powerful solutions for extracting and characterizing organic painting binders, unlocking valuable insights into these elusive materials. This review aims to explore both the most common non-invasive analytical techniques used to characterize ancient and contemporary painting binders, and the most recent advancements in minimally invasive sampling strategies, which represent convenient and interesting approaches to enable the use of invasive analytical approaches while preserving the integrity of precious artworks.
Collapse
Affiliation(s)
- Elena C L Rigante
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale "Laboratorio di ricerca per la Diagnostica dei Beni Culturali", University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| |
Collapse
|
3
|
Duan Y, Zhang M, Min C, Lin Y, Li L. Proteomic Analysis of Collagen: a Mass Spectrometry Approach to Material Identification of Shadow Puppet Cultural Relics. Appl Biochem Biotechnol 2024; 196:5903-5919. [PMID: 38165589 DOI: 10.1007/s12010-023-04822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Shadow puppets are a popular art form in various regions, including China, Indonesia, and Turkey, and are rich in cultural significance. However, there is a considerable lack of research on the materials, diseases and conservation techniques related to shadow puppet relics. Material identification is the basis for understanding the production process of ancient shadow puppet relics and evaluating their deterioration degree. The microscopic morphology and infrared spectroscopy results in our experiments showed that the traditional methods of ancient skin identification were not effective in the shadow puppet samples. In order to achieve accurate identification, we used biological mass-spectrometry in proteomics to examine two puppet relics and commercially available modern shadow puppets. The results showed that the above samples could be detected by mass spectrometry with abundant peptides, including peptides specific for bovine skin. These peptides cannot be found in other commonly used materials for making shadow puppets, including the skins of pig, sheep, deer and horse. It is worth mentioning that we have found the peptides specific to yellow cowhide in two ancient shadow puppet relics samples. Therefore, the proteomic evidence shows that the raw materials of the two shadow puppet relics samples are yellow cowhide. Four modern samples also confirmed the reliability of material identification using proteomics. The proteomic evidence shows that the biological mass spectrometry will contribute to the scientific research of shadow puppet relics and other skin and leather cultural relics.
Collapse
Affiliation(s)
- Yangbo Duan
- School of Archaeology and Museology, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Muzi Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Institute of Cultural Heritage, Shandong University, Qingdao, 266237, Shandong, China
| | - Chen Min
- Chengdu Museum (National Shadow Puppetry Museum in Chengdu), Chengdu, 610015, Sichuan, China
| | - Yalun Lin
- Chengdu Museum (National Shadow Puppetry Museum in Chengdu), Chengdu, 610015, Sichuan, China
| | - Li Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Institute of Cultural Heritage, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
4
|
Creydt M, Fischer M. Artefact Profiling: Panomics Approaches for Understanding the Materiality of Written Artefacts. Molecules 2023; 28:4872. [PMID: 37375427 DOI: 10.3390/molecules28124872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This review explains the strategies behind genomics, proteomics, metabolomics, metallomics and isotopolomics approaches and their applicability to written artefacts. The respective sub-chapters give an insight into the analytical procedure and the conclusions drawn from such analyses. A distinction is made between information that can be obtained from the materials used in the respective manuscript and meta-information that cannot be obtained from the manuscript itself, but from residues of organisms such as bacteria or the authors and readers. In addition, various sampling techniques are discussed in particular, which pose a special challenge in manuscripts. The focus is on high-resolution, non-targeted strategies that can be used to extract the maximum amount of information about ancient objects. The combination of the various omics disciplines (panomics) especially offers potential added value in terms of the best possible interpretations of the data received. The information obtained can be used to understand the production of ancient artefacts, to gain impressions of former living conditions, to prove their authenticity, to assess whether there is a toxic hazard in handling the manuscripts, and to be able to determine appropriate measures for their conservation and restoration.
Collapse
Affiliation(s)
- Marina Creydt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| | - Markus Fischer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| |
Collapse
|
5
|
Rigante EC, Calvano CD, Monno A, Moroni M, Tempesta G, Cataldi TR. Spectroscopic and mass spectrometry-based in-situ investigation of a 17th-century handwritten academic diploma on illuminated parchment. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
7
|
Stanzione I, Pitocchi R, Pennacchio A, Cicatiello P, Piscitelli A, Giardina P. Innovative surface bio-functionalization by fungal hydrophobins and their engineered variants. Front Mol Biosci 2022; 9:959166. [PMID: 36032682 PMCID: PMC9403755 DOI: 10.3389/fmolb.2022.959166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research on innovative surface functionalization strategies to develop materials with high added value is particularly challenging since this process is a crucial step in a wide range of fields (i.e., biomedical, biosensing, and food packaging). Up to now, the main applied derivatization methods require hazardous and poorly biocompatible reagents, harsh conditions of temperature and pressure, and are time consuming and cost effective. The discovery of biomolecules able to adhere by non-covalent bonds on several surfaces paves the way for their employment as a replacement of chemical processes. A simple, fast, and environment-friendly method of achieving modification of chemically inert surfaces is offered by hydrophobins, small amphiphilic proteins produced by filamentous fungi. Due to their structural characteristics, they form stable protein layers at interfaces, serving as anchoring points that can strongly bind molecules of interest. In addition, genetic engineering techniques allow the production of hydrophobins fused to a wide spectrum of relevant proteins, providing further benefits in term of time and ease of the process. In fact, it is possible to bio-functionalize materials by simply dip-casting, or by direct deposition, rendering them exploitable, for example, in the development of biomedical and biosensing platforms.
Collapse
|
8
|
Abstract
Collagen peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, also known as zooarchaeology by mass spectrometry (ZooMS), is a rapidly growing analytical technique in the fields of archaeology, ecology, and cultural heritage. Minimally destructive and cost effective, ZooMS enables rapid taxonomic identification of large bone assemblages, cultural heritage objects, and other organic materials of animal origin. As its importance grows as both a research and a conservation tool, it is critical to ensure that its expanding body of users understands its fundamental principles, strengths, and limitations. Here, we outline the basic functionality of ZooMS and provide guidance on interpreting collagen spectra from archaeological bones. We further examine the growing potential of applying ZooMS to nonmammalian assemblages, discuss available options for minimally and nondestructive analyses, and explore the potential for peptide mass fingerprinting to be expanded to noncollagenous proteins. We describe the current limitations of the method regarding accessibility, and we propose solutions for the future. Finally, we review the explosive growth of ZooMS over the past decade and highlight the remarkably diverse applications for which the technique is suited.
Collapse
|
9
|
Cucina A, Cunsolo V, Di Francesco A, Saletti R, Zilberstein G, Zilberstein S, Tikhonov A, Bublichenko AG, Righetti PG, Foti S. Meta-proteomic analysis of the Shandrin mammoth by EVA technology and high-resolution mass spectrometry: what is its gut microbiota telling us? Amino Acids 2021; 53:1507-1521. [PMID: 34453585 PMCID: PMC8519927 DOI: 10.1007/s00726-021-03061-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
During the last decade, paleoproteomics allowed us to open a direct window into the biological past, improving our understanding of the phylogenetic relationships of extant and extinct species, past human diseases, and reconstruction of the human diet. In particular, meta-proteomic studies, mainly carried out on ancient human dental calculus, provided insights into past oral microbial communities and ancient diets. On the contrary, very few investigations regard the analysis of ancient gut microbiota, which may enable a greater understanding of how microorganisms and their hosts have co-evolved and spread under the influence of changing diet practices and habitat. In this respect, this paper reports the results of the first-ever meta-proteomic analysis carried out on a gut tissue sample some 40,000 years old. Proteins were extracted by applying EVA (ethylene–vinyl acetate) films to the surface of the gut sample of a woolly mammoth (Mammuthus primigenus), discovered in 1972 close to the Shandrin River (Yakutia, Russia), and then investigated via a shotgun MS-based approach. Proteomic and peptidomic analysis allowed in-depth exploration of its meta-proteome composition. The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the “original” endogenous peptides from contaminant ones. Overall, the results of the meta-proteomic analysis here reported agreeing with the previous paleobotanical studies and with the reconstructed habitat of the Shandrin mammoth and provided insight into its diet. The data have been deposited to the ProteomeXchange with identifier < PXD025518 > .
Collapse
Affiliation(s)
- Annamaria Cucina
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rosaria Saletti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | - Alexei Tikhonov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab.1, Saint-Petersburg, 199034, Russia
| | - Andrey G Bublichenko
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab.1, Saint-Petersburg, 199034, Russia
| | - Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering ''Giulio Natta'', Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Salvatore Foti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
10
|
Ntasi G, Kirby DP, Stanzione I, Carpentieri A, Somma P, Cicatiello P, Marino G, Giardina P, Birolo L. A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects. J Proteomics 2020; 231:104039. [PMID: 33147491 DOI: 10.1016/j.jprot.2020.104039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022]
Abstract
Identification and characterization of ancient proteins still require technical developments towards non-invasiveness, sensitivity, versatility and ease of use of the analyses. We report that the enzyme functionalized films, described in Cicatiello et al. (2018), can be used efficiently on the surface of different objects ranging from fixative-coated paper to canvas to the coating on an albumen photograph, as well as the much harder surfaces of ivory objects and the proteinaceous binders in the decoration of a wooden Egyptian coffin. The mixture of digested peptides that are efficiently captured on the functionalized surface are also amenable to LC-MS/MS analysis, which is necessary to confidently identify chemical modifications induced upon degradation, in order to characterize the conservation state of proteins. Moreover, in a two-step procedure, we have combined the trypsin functionalized film with a PNGaseF functionalized film, which adds a deglycosylation pretreatment allowing improved detection of glycosylated proteins. SIGNIFICANCE: User friendly trypsin functionalized films were implemented to expand their potential as versatile, modular tools that can be widely exploited in the world of diagnosis of cultural heritage objects, ancient proteins, and palaeoproteomics: a procedure that could be carried out by conservators or archaeologists first on-site and later analysed with standard MS techniques.
Collapse
Affiliation(s)
- Georgia Ntasi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | - Patrizia Somma
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gennaro Marino
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
11
|
Calvano CD, Rigante ECL, Cataldi TRI, Sabbatini L. In Situ Hydrogel Extraction with Dual-Enzyme Digestion of Proteinaceous Binders: the Key for Reliable Mass Spectrometry Investigations of Artworks. Anal Chem 2020; 92:10257-10261. [PMID: 32648736 DOI: 10.1021/acs.analchem.0c01898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel strategy based on in situ dual-enzyme digestion of paint layer proteinaceous binders is introduced for faster and more confident identification, resulting in a bottom-up proteomics approach by MALDI-TOF mass spectrometry (MS). In situ sampling/extraction of proteinaceous binders using small pieces of a hydrophilic gel, previously loaded with trypsin and chymotrypsin proteolytic enzymes, was successfully exploited. Along with minimal invasiveness, the synergy of both enzymes was very useful to increase the number of annotated peptide peaks with their corresponding amino acid sequence by database search and subsequent MALDI-TOF/TOF analysis. The protocol was initially aimed at enhancing the identification of egg-based binders and then validated on fresh and aged model pictorial layers; an increased protein coverage was significantly attained regardless of the used painting binders. Optical microscope images and spectrophotocolorimetry analysis evidenced that the painting layers were not damaged or altered because of contact/sampling without leaving hydrogel residues. The proposed protocol was successfully applied on a painted altarpiece "Assumption of the Virgin" dated to the XVI century and on an angel statue of the Nativity crib dated to the XII century, both from Altamura's Cathedral (Apulia, Italy). The occurrence of various protein binders of animal origin was easily and reliably ascertained.
Collapse
|
12
|
Calvano C, Rigante E, Picca R, Cataldi T, Sabbatini L. An easily transferable protocol for in-situ quasi-non-invasive analysis of protein binders in works of art. Talanta 2020; 215:120882. [DOI: 10.1016/j.talanta.2020.120882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
|