1
|
Kim GH, Son J, Nam JM. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS NANO 2025; 19:2992-3007. [PMID: 39812822 DOI: 10.1021/acsnano.4c14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications. Despite its potential, several challenges still remain for NERS to be widely useful in real-world applications. This Perspective introduces various plasmonic nanogap configurations with nanoparticles, discusses key advances and critical challenges while addressing possible misunderstandings in this field, and provides future directions for NERS to generate stronger, more uniform, and stable signals over a large number of structures for practical applications.
Collapse
Affiliation(s)
- Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
2
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
3
|
Liu B, Li X, Li Y, Zhang F, Xie J, Xu Y, Xu E, Zhang Q, Liu S, Xue Q. An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell. Biosens Bioelectron 2024; 263:116619. [PMID: 39094291 DOI: 10.1016/j.bios.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.
Collapse
Affiliation(s)
- Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Fengqi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jiajing Xie
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yihan Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Ensheng Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
4
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Ou X, Li K, Liu M, Song J, Zuo Z, Guo Y. EXPAR for biosensing: recent developments and applications. Analyst 2024; 149:4135-4157. [PMID: 39034763 DOI: 10.1039/d4an00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Emerging as a promising novel amplification technique, the exponential amplification reaction (EXPAR) offers significant advantages due to its potent exponential amplification capability, straightforward reaction design, rapid reaction kinetics, and isothermal operation. The past few years have witnessed swift advancements and refinements in EXPAR-based technologies, with numerous high-performance biosensing systems documented. A deeper understanding of the EXPAR mechanism has facilitated the proposal of novel strategies to overcome limitations inherent to traditional EXPAR. Furthermore, the synergistic integration of EXPAR with diverse amplification methodologies, including the use of a CRISPR/Cas system, metal nanoparticles, aptamers, alternative isothermal amplification techniques, and enzymes, has significantly bolstered analytical efficacy, aiming to enhance specificity, sensitivity, and amplification efficiency. This comprehensive review presents a detailed exposition of the EXPAR mechanism and analyzes its primary challenges. Additionally, we summarize the latest research advancements in the biomedical field concerning the integration of EXPAR with diverse amplification technologies for sensing strategies. Finally, we discuss the challenges and future prospects of EXPAR technology in the realms of biosensing and clinical applications.
Collapse
Affiliation(s)
- Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Kunxiang Li
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jiajun Song
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Zhihua Zuo
- Department of Clinical Laboratory, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, 637003, PR China.
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| |
Collapse
|
6
|
Wang J, Ma S, Ge K, Xu R, Shen F, Gao X, Yao Y, Chen Y, Chen Y, Gao F, Wu G. Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs. Anal Chem 2024; 96:8922-8931. [PMID: 38758935 DOI: 10.1021/acs.analchem.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.
Collapse
Affiliation(s)
- Jiwei Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Xu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhi Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
7
|
Tang X, Zhao S, Luo J, Wang B, Wu X, Deng R, Chang K, Chen M. Smart Stimuli-Responsive Spherical Nucleic Acids: Cutting-Edge Platforms for Biosensing, Bioimaging, and Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310732. [PMID: 38299771 DOI: 10.1002/smll.202310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
8
|
Jaitpal S, Ng KW, San Juan AM, Martinez C, Phillips C, Tripathy S, Mabbott S. DNA-directed formation of plasmonic core-satellite nanostructures for quantification of hepatitis C viral RNA. Chem Sci 2024; 15:8112-8126. [PMID: 38817589 PMCID: PMC11134388 DOI: 10.1039/d4sc00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Hepatitis C virus (HCV) continues to be a significant public health challenge, affecting an estimated 71 million people globally and posing risks of severe liver diseases. Despite advancements in treatments, diagnostic limitations hinder the global elimination efforts targeted by 2030. This study introduces an innovative diagnostic approach, integrating catalytic hairpin assembly (CHA) with plasmonic core-satellite gold nanoparticle (AuNP) assemblies, to enable sensitive and specific detection of HCV RNA. We optimized the stoichiometry of DNA hairpins to form highly stable three-way junctions (3WJs), minimizing non-specific reactions in an enzyme-free, isothermal amplification process. The resulting dual-transduction biosensor combines colorimetric and surface-enhanced Raman spectroscopy (SERS) techniques, utilizing the Raman reporter malachite green isothiocyanate (MGITC) for signal generation. Our system targets a conserved 23-nucleotide sequence within the HCV 5'-UTR, essential for RNA replication, facilitating pan-genotypic HCV detection that complements direct-acting antiviral strategies. We evaluated the biosensor's efficacy using fluorescence spectroscopy, native PAGE, AFM, and TEM. Findings indicate that the 60 nm core AuNPs surrounded by 20 nm satellite AuNPs achieved a ten-fold increase in sensitivity over the 10 nm satellites, detecting HCV RNA concentrations as low as 1.706 fM. This sensitivity is crucial, given the extremely low viral loads present during early infection stages. Our research demonstrates the promise of enzyme-free molecular biosensors for HCV, with the potential to provide cost-efficient, rapid, point-of-care testing, although further sensitivity enhancements are needed to address the challenges of early-stage detection.
Collapse
Affiliation(s)
- Siddhant Jaitpal
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station 600 Discovery Drive College Station TX 77840-3006 USA
| | - Ka Wai Ng
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station 600 Discovery Drive College Station TX 77840-3006 USA
| | - Angela Michelle San Juan
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station 600 Discovery Drive College Station TX 77840-3006 USA
| | - Cecilia Martinez
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
| | - Christian Phillips
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
| | - Sayantan Tripathy
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station 600 Discovery Drive College Station TX 77840-3006 USA
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University 600 Discovery Drive College Station TX 77840-3006 USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station 600 Discovery Drive College Station TX 77840-3006 USA
| |
Collapse
|
9
|
Lim DK, Kumar PPP. Recent advances in SERS-based bioanalytical applications: live cell imaging. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1521-1534. [PMID: 39678181 PMCID: PMC11636400 DOI: 10.1515/nanoph-2023-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/16/2024] [Indexed: 12/17/2024]
Abstract
Raman scattering can provide information on molecular fingerprints, which have been widely applied in various fields of material science and nanobiotechnology. Notably, low interference with water molecules in obtaining the Raman spectra between 500 and 2000 cm-1 made it a powerful spectroscopic tool in biology, such as imaging and signaling for a living cell. To be a robust tool for cell biology, the performance of obtaining molecular-specific information with high sensitivity, high resolution in real time, and without inducing cell damage is strongly required. The conventional fluorescence-based method has been suffered from the rapid photobleaching of organic fluorophores and the lack of molecular information. In contrast, Raman scattering is a promising spectroscopic tool to acquire cellular information, and the extremely low signal intensity of Raman scattering could be amplified by incorporating the plasmonic nanomaterials. Along with the fundamental research focus on surface-enhanced Raman scattering (SERS), the practical approaches of SERS for cellular imaging as a new tool for drug screening and monitoring cellular signals have been extensively explored based on new optical setups and new designing strategies for the nanostructures. Diverse nanostructure and surface chemistry for targeting or sensing have been played pivotal roles in acquiring cellular information and high resolution cell imaging. In this regard, this review focused on the recent advances of SERS-based technologies for a live cell imaging investigated such as potential drug screening, signaling for chemicals or biomolecules in cell, in situ sensing, and high spatiotemporal resolution.
Collapse
Affiliation(s)
- Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
- Brain Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul02792, Republic of Korea
| | | |
Collapse
|
10
|
Chen Z, Yang S, Zhao Z, Feng L, Sheng J, Deng R, Wang B, He Y, Luo D, Chen M, Chen L, Chang K. Smart Tumor Cell-Derived DNA Nano-Tree Assembly for On-Demand Macrophages Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307188. [PMID: 38145350 PMCID: PMC10933644 DOI: 10.1002/advs.202307188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Without coordinated strategies to balance the population and activity of tumor cells and polarized macrophages, antitumor immunotherapy generally offers limited clinical benefits. Inspired by the "eat me" signal, a smart tumor cell-derived proximity anchored non-linear hybridization chain reaction (Panel-HCR) strategy is established for on-demand regulation of tumor-associated macrophages (TAMs). The Panel-HCR is composed of a recognition-then-assembly module and a release-then-regulation module. Upon recognizing tumor cells, a DNA nano-tree is assembled on the tumor cell surface and byproduct strands loaded with CpG oligodeoxynucleotides (CpG-ODNs) are released depending on the tumor cell concentration. The on-demand release of CpG-ODNs can achieve efficient regulation of M2 TAMs into the M1 phenotype. Throughout the recognition-then-assembly process, tumor cell-targeted bioimaging is implemented in single cells, fixed tissues, and living mice. Afterward, the on-demand release of CpG-ODNs regulate the transformation of M2 TAMs into the M1 phenotype by stimulating toll-like receptor 9 to activate the NF-κB pathway and increasing inflammatory cytokines. This release-then-regulation process is verified to induce strong antitumor immune responses both in vitro and in vivo. Altogether, this proposed strategy holds tremendous promise for on-demand antitumor immunotherapy.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
- Department of Gastroenterology, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Sha Yang
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Zhuyang Zhao
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Liu Feng
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Yuan He
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Dan Luo
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853‐5701USA
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Lei Chen
- Department of Gastroenterology, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest HospitalArmy Medical University (Third Military Medical University)30 Gaotanyan, Shapingba DistrictChongqing400038China
| |
Collapse
|
11
|
Hao HL, Zhu J, Weng GJ, Li JJ, Guo YB, Zhao JW. Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens 2024; 9:942-954. [PMID: 38295764 DOI: 10.1021/acssensors.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Li Hao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
13
|
Luo Y, Xu T. Ultrasound-Induced Enrichment of Ultra-Trace miRNA Biosensing in Nanoliter Samples. Methods Mol Biol 2024; 2822:25-36. [PMID: 38907909 DOI: 10.1007/978-1-0716-3918-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The rapid and accurate analysis of micro-samples is a crucial foundation for precision medicine, particularly for early screening and monitoring of cancer, where it holds significant importance. Ultrasound-based multifunctional biocompatible manipulation techniques have been extensively applied in a variety of biomedical fields, providing insights for the development of rapid, cost-effective, and accurate biomarker detection strategies. In this chapter, we combine ultrasound-based gradient pressure fields with functionalized microsphere enrichment to develop a biosensing method for ultra-trace miRNA enrichment in nanoliter samples without PCR. This system relies on inexpensive capillaries, enabling simultaneous visual imaging and trace sample detection.
Collapse
Affiliation(s)
- Yong Luo
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Luo Y, Chen J, Liang J, Liu Y, Liu C, Liu Y, Xu T, Zhang X. Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer's disease. Biosens Bioelectron 2023; 242:115746. [PMID: 37832346 DOI: 10.1016/j.bios.2023.115746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Catalytic hairpin assembly (CHA) is a promising enzyme-free, isothermal signal amplification strategy, but the relatively time-consuming strand replacement limits its application scenarios. Here, we developed an ultrasound-enhanced catalytic hairpin assembly (UECHA) biosensing platform for early screening of Alzheimer's disease by introducing a portable acoustic-drive platform with functionalized microspheres for effective biomarkers enrichment and fluorescence enhancement. By constructing a gradient ultrasonic field in a microcavity, the platform concentrates the functionalized microspheres in a central position, accompanied by an enhanced fluorescence signal with a specific release. In addition, the programmable frequency modulation can also modify the acoustic potential well and effectively promote non-equilibrium chemical reactions such as CHA (25 min). Compared with the conventional catalytic hairpin assembly (CHA), UECHA allows for direct and quantitative measurement of AD miRNAs down to 3.55 × 10-15 M in 1 μL samples. This visual analysis of ultra-trace biomarkers based on acoustic enrichment and promotion provides a new perspective for the rapid and highly sensitive clinical detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Yong Luo
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingyu Chen
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jiahui Liang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong, 518116, PR China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| |
Collapse
|
15
|
Chen LG, Sun L, Wu NN, Tao BB, Wang HB. Cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction: Toward an ultrasensitive split-type fluorescent immunoassay. Anal Chim Acta 2023; 1279:341843. [PMID: 37827655 DOI: 10.1016/j.aca.2023.341843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
An ultrasensitive split-type fluorescent immunobiosensor has been reported based on a cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction. In this strategy, Cu2+ could oxidize chemically o-phenylenediamine (OPD) to generate photosensitive 2, 3-diaminophenazine (DAP) and Cu+/Cu0. On one hand, the generated Cu0 in turn catalyzed the oxidation of OPD. On the other hand, the introduced H2O2 reacted with Cu + ion to produce hydroxyl radicals (·OH) and Cu2+ ion through a Cu + -mediated Fenton-like reaction. The produced ·OH and recycled Cu2+ ion could take turns oxidizing OPD to generate more photoactive DAP, which triggering a self-sustaining chemical redox-cycling reaction and leading to a remarkable fluorescent improvement. It was worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Based on the H2O2-triggered cascade signal amplification, the strategy was exploited for the construction of split-type fluorescent immunoassay by taking interleukin-6 (IL-6) as the model target. It was realized for the ultrasensitive determination of IL-6 in a linear ranging from 20 fg/mL to 10 pg/mL with a limit of detection of 5 fg/mL. The study validated the practicability of the cascade signal amplification on the fluorescent bioanalysis and the superior performance in fluorescent immunoassay. It is expected that the strategy would offer new opportunities to develop ultrasensitive fluorescent methods for biosensor and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
16
|
Yao S, Zou R, Chen F, Gong H, Cai C. Engineering of catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine to rapidly detect mRNA. Mikrochim Acta 2023; 190:210. [PMID: 37169940 DOI: 10.1007/s00604-023-05708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
The catalytic hairpin-rigidified Y-shaped DNA through layer-by-layer assembly has been fixed on the surface of copper sulfide nanoparticles for the detection of survivin mRNA. The distance between the CHA probes fixed on the Y-shaped DNA is significantly shortened. The results show that the fluorescence of this nanomachine reached the maximum value in 50 min (excitation wavelength at 488 nm and emission wavelength 526 nm), and its reaction rate is more than 5-fold faster than that of the free-CHA control system. In addition, the nanomachine showed high sensitivity (LOD of 3.5 pM) and high specificity for the survivin mRNA detection. Given its fast response time and excellent detection performance, we envision that the catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine will offer potential applications in disease diagnostics and clinical applications.
Collapse
Affiliation(s)
- Shufen Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Rong Zou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
17
|
Sardaru MC, Marangoci NL, Palumbo R, Roviello GN, Rotaru A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023; 28:3561. [PMID: 37110795 PMCID: PMC10141977 DOI: 10.3390/molecules28083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Narcisa-Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alexandru Rotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Institute for Research, Innovation and Technology Transfer, UPS “Ion Creanga”, Ion Creanga Str. 1, MD2069 Chisinau, Moldova
| |
Collapse
|
18
|
Wang MY, Jing WJ, Wang LJ, Jia LP, Ma RN, Zhang W, Shang L, Li XJ, Xue QW, Wang HS. Electrochemiluminescence detection of miRNA-21 based on dual signal amplification strategies: Duplex-specific nuclease -mediated target recycle and nicking endonuclease-driven 3D DNA nanomachine. Biosens Bioelectron 2023; 226:115116. [PMID: 36753989 DOI: 10.1016/j.bios.2023.115116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
DNA nanomachines have shown potential application in the construction of various biosensors. Here, an electrochemiluminescence biosensor for the sensitive detection of miRNA-21 were reported based on three-dimensional (3D) DNA nanomachine and duplex-specific nuclease (DSN)-mediated target recycle amplification strategy. First, the bipedal DNA walkers were obtained by DSN-mediated digestion reaction initiated by target miRNA-21.3D DNA tracks were prepared by modifying Fe3O4 magnetic beads (MBs) with ferrocene-labeled DNA (Fc-DNA). The produced DNA walkers autonomously moved along 3D DNA tracks powered by nicking endonuclease. During the movement, ferrocene-labeled DNA was cleaved, resulting in large amounts of Fc-labeled DNA fragments away from the MBs surface. Finally, the liberated Fc-labeled DNA fragments were dropped on the C-g-C3N4 modified electrode surface, leading to the quenching of C-g-C3N4 electrochemiluminescence (ECL). Benefiting from the dual amplification strategy of 3D DNA nanomachine and DSN-mediated target recycling, the developed ECL biosensor exhibited an excellent performance for miRNA-21 detection with a wide linear range of 10 fM to 10 nM and a low detection limit of 1.0 fM. This work offers a new thought for the application of DNA walkers in the construction of various biosensors.
Collapse
Affiliation(s)
- Ming-Yue Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wen-Jie Jing
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Li-Juan Wang
- No. 3 Middle School of Liaocheng, Liaocheng, Shandong Province, 252000, China
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qing-Wang Xue
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
19
|
Luo Y, Zhou M, Fan C, Song Y, Wang L, Xu T, Zhang X. Active Enrichment of Nanoparticles for Ultra-Trace Point-of-Care COVID-19 Detection. Anal Chem 2023; 95:5316-5322. [PMID: 36917097 PMCID: PMC10022751 DOI: 10.1021/acs.analchem.2c05381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/15/2023]
Abstract
Active enrichment can detect nucleic acid at ultra-low concentrations without relatively time-consuming polymerase chain reaction (PCR), which is an important development direction for future rapid nucleic acid detection. Here, we reported an integrated active enrichment platform for direct hand-held detection of nucleic acid of COVID-19 in nanoliter samples without PCR. The platform consists of a capillary-assisted liquid-carrying system for sampling, integrated circuit system for ultrasound output, and cell-phone-based surface-enhanced Raman scattering (SERS) system. Considering the acoustic responsiveness and SERS-enhanced performance, gold nanorods were selected for biomedical applications. Functionalized gold nanorods can effectively capture and enrich biomarkers under ultrasonic aggregation. Such approaches can actively assemble gold nanorods in 1-2 s and achieved highly sensitive (6.15 × 10-13 M) SERS detection of COVID-19 biomarkers in nanoliter (10-7 L) samples within 5 min. We further demonstrated the high stability, repeatability, and selectivity of the platform, and validated its potential for the detection of throat swab samples. This simple, portable, and ultra-trace integrated active enrichment detection platform is a promising diagnostic tool for the direct and rapid detection of COVID-19.
Collapse
Affiliation(s)
- Yong Luo
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Mengyun Zhou
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| | - Chuan Fan
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology,
College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles,
Qingdao University, Qingdao 266071, P.R.
China
| | - Lirong Wang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Tailin Xu
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Xueji Zhang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| |
Collapse
|
20
|
Shahbazi-Derakhshi P, Mahmoudi E, Majidi MM, Sohrabi H, Amini M, Majidi MR, Niaei A, Shaykh-Baygloo N, Mokhtarzadeh A. An Ultrasensitive miRNA-Based Genosensor for Detection of MicroRNA 21 in Gastric Cancer Cells Based on Functional Signal Amplifier and Synthesized Perovskite-Graphene Oxide and AuNPs. BIOSENSORS 2023; 13:172. [PMID: 36831939 PMCID: PMC9953341 DOI: 10.3390/bios13020172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In the present research work, the state-of-art label-free electrochemical genosensing platform was developed based on the hybridization process in the presence of [Fe(CN)6]3-/4- as an efficient redox probe for sensitive recognition of the miRNA-21 in human gastric cell lines samples. To attain this aim, perovskite nanosheets were initially synthesized. Afterward, the obtained compound was combined with the graphene oxide resulting in an effective electrochemical modifier, which was dropped on the surface of the Au electrode. Then, AuNPs (Gold Nano Particles) have been electrochemically-immobilized on perovskite-graphene oxide/Au-modified electrode surface through the chronoamperometry (CA) technique. Finally, a self-assembling monolayer reaction of ss-capture RNA ensued by the thiol group at the end of the probe with AuNPs on the modified electrode surface. miRNA-21 has been cast on the Au electrode surface to apply the hybridization process. To find out the effectiveness of the synthesized modifier agent, the electrochemical behavior of the modified electrode has been analyzed through DPV (differential pulse voltammetry) and CV (cyclic voltammetry) techniques. The prepared biomarker-detection bioassay offers high sensitivity and specificity, good performance, and appropriate precision and accuracy for the highly-sensitive determination of miRNA-21. Different characterization methods have been used, such as XRD, Raman, EDS, and FE-SEM, for morphological characterization and investigation of particle size. Based on optimal conditions, the limit of detection and quantification have been acquired at 2.94 fM and 8.75 fM, respectively. Furthermore, it was possible to achieve a wide linear range which is between 10-14 and 10-7 for miRNA-21. Moreover, the selectivity of the proposed biosensing assay was investigated through its potential in the detection of one, two, and three-base mismatched sequences. Moreover, it was possible to investigate the repeatability and reproducibility of the related bio-assay. To evaluate the hybridization process, it is important that the planned biomarker detection bio-assay could be directly re-used and re-generated.
Collapse
Affiliation(s)
- Payam Shahbazi-Derakhshi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756-151818, Iran
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| | - Elham Mahmoudi
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
| | - Mir Mostafa Majidi
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 1591-634311, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
| | - Mohammad Amini
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
| | - Aligholi Niaei
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
| | - Nima Shaykh-Baygloo
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756-151818, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| |
Collapse
|
21
|
Wang J, Wang C, Xu JJ, Xia XH, Chen HY. Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Core-satellite nanostructures and their biomedical applications. Mikrochim Acta 2022; 189:470. [DOI: 10.1007/s00604-022-05559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
23
|
Hu Y, Li Y, Yu L, Zhang Y, Lai Y, Zhang W, Xie W. Universal linker-free assembly of core-satellite hetero-superstructures. Chem Sci 2022; 13:11792-11797. [PMID: 36320924 PMCID: PMC9580622 DOI: 10.1039/d2sc02843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal superstructures comprising hetero-building blocks often show unanticipated physical and chemical properties. Here, we present a universal assembly methodology to prepare hetero-superstructures. This straightforward methodology allows the assembly of building block materials varying from inorganic nanoparticles to living cells to form superstructures. No molecular linker is required to bind the building blocks together and thus the products do not contain any unwanted adscititious material. The Fourier transform infrared spectra, high resolution transmission electron microscopic images and nanoparticle adhesion force measurement results reveal that the key to self-organization is stripping surface ligands by adding non-polar solvents or neutralizing surface charge by adding salts, which allow us to tune the balance between van der Waals attraction and electrostatic repulsion in the colloid so as to trigger the assembling process. As a proof-of-concept, the superior photocatalytic activity and single-particle surface-enhanced Raman scattering of the corresponding superstructures are demonstrated. Our methodology greatly extends the scope of building blocks for superstructure assembly and enables scalable construction of colloidal multifunctional materials.
Collapse
Affiliation(s)
- Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Linfeng Yu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuming Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
24
|
Dong C, Fang X, Xiong J, Zhang J, Gan H, Song C, Wang L. Simultaneous Visualization of Dual Intercellular Signal Transductions via SERS Imaging of Membrane Proteins Dimerization on Single Cells. ACS NANO 2022; 16:14055-14065. [PMID: 35969886 DOI: 10.1021/acsnano.2c03914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The visualization of protein dimerization on live cells is an urgent need and of vital importance for facile monitoring the signal transduction during intercellular communication. Herein, a highly sensitive and specific SERS strategy for simultaneously imaging dual homodimerizations of membrane proteins on single live cells was proposed by networking of AuNPs-based dual-recognition probes (dual-RPs) and SERS tags via proximity ligation-assisted catalytic hairpin assembly (CHA). The dual-RPs were prepared by comodifying hairpin-structured ssDNAs H1-Met and H1-TβRII on 50 nm AuNPs and two SERS tags for membrane proteins Met and TβRII were prepared respectively by labeling their corresponding Raman molecules and hairpin-structured single-stranded DNAs H2-Met or H2-TβRII on 15 nm AuNPs. The membrane proteins were ligated proximally by specific aptamers, and the dimerizations of proteins resulted in the proximity ligation-assisted CHA-based networking of dual-RPs and SERS tags to form 15Au-50Au network nanostructures with significantly enhanced SERS effect. The SERS strategy for visualizing the membrane protein dimerization was established and the good performance on simultaneously SERS imaging dual dimerizations of membrane proteins (i.e., Met-Met and TβRII-TβRII) was confirmed. Furthermore, the membrane protein dimerization-based signaling pathways between cancer cells and stromal cells or stem cells were observed by SERS, which indicates that the proposed SERS strategy is a good method for high-sensitivity monitoring of membrane proteins dimerizations-based multiple intercellular signal transductions in a natural and complex cellular microenvironment.
Collapse
Affiliation(s)
- Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
25
|
A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA. Anal Chim Acta 2022; 1221:340139. [DOI: 10.1016/j.aca.2022.340139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/15/2023]
|
26
|
Duan N, Yao T, Li C, Wang Z, Wu S. Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta 2022; 245:123445. [DOI: 10.1016/j.talanta.2022.123445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/04/2023]
|
27
|
Tian Z, Zhou C, Zhang C, Wu M, Duan Y, Li Y. Recent advances of catalytic hairpin assembly and its application in bioimaging and biomedicine. J Mater Chem B 2022; 10:5303-5322. [PMID: 35766024 DOI: 10.1039/d2tb00815g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hairpin assembly (CHA) appears to be a particularly appealing nucleic acid circuit because of its powerful amplification capability, simple protocols, and enzyme-free and isothermal conditions, and can combine with various signal output modes for the biosensing of various analytes. Especially in the last five years, vast CHA related studies have sprung up. With the deep exploration of the CHA mechanism, some novel and excellent CHA strategies have been proposed; meanwhile the CHA cascade strategies with various amplification techniques further improve the analysis performance. Furthermore, diverse CHA based biosensors have been tactfully engineered and extensively employed in imaging applications in living cells and in vivo ascribed to its gentle reaction, efficient amplification and universality. Hence, we present a comprehensive and systematic summary of the progress in CHA and its application in bioimaging and biomedicine to date. At first, we introduced the mechanism and diversification of CHA in detail, including the newly developed CHA and its ingenious combination with a variety of other technologies. Concurrently, we summarized the latest application progress of different CHA strategies in bioimaging and biomedicine, highlighting the merits and drawbacks of representative approaches. Finally, we put forward some views on the challenges and prospects of CHA in bioimaging and biomedicine in the future.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Sun Y, Fang L, Yi Y, Feng A, Zhang K, Xu JJ. Multistage nucleic acid amplification induced nano-aggregation for 3D hotspots-improved SERS detection of circulating miRNAs. J Nanobiotechnology 2022; 20:285. [PMID: 35710556 PMCID: PMC9205088 DOI: 10.1186/s12951-022-01500-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNAs in the blood can regulate disease development and thus indicate disease states via their various expression levels. For these reasons, circulating miRNAs constitute useful biomarkers, and an approach to the accurate detection of circulating miRNAs is attractive in the diagnosis and treatment of diseases. However, methods for clinical detecting of circulating miRNA that take both sensitivity and practicality into account are still needed. Therefore, we aimed herein to solve some inherent problems in the actual detection using a robust surface-enhanced Raman scattering (SERS) platform with integrated nucleic acid amplification and nanoparticle aggregation to construct 3D hotspots for improving performance of analyzing circulating miRNAs. After target recognition and initial signal amplification by DNAzyme, we observed that release triggered an open hairpin DNA on gold nanoparticles (AuNPs), which then promote AuNP aggregation, causing the accumulation of a large number of hotspots in three-dimention. The SERS biosensor achieved a better performance than the sandwich-type separation detection, with a low detection limit (0.37 fM) and a broad linear range (1 fM–10 nM) in liquids. This SERS platform can be used as a powerful tool for the detection of circulating miRNAs, and it can be used to improve the sensitivity and accuracy of various clinical-disease diagnoses.
Collapse
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - La Fang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Yang Yi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Aobo Feng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nan-Jing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
29
|
Xu H, Zhang Z, Wang Y, Zhang X, Zhu JJ, Min Q. Sense and Validate: Fluorophore/Mass Dual-Encoded Nanoprobes for Fluorescence Imaging and MS Quantification of Intracellular Multiple MicroRNAs. Anal Chem 2022; 94:6329-6337. [PMID: 35412806 DOI: 10.1021/acs.analchem.2c00513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simultaneously monitoring and quantifying intracellular multiple microRNAs (miRNAs) is highly essential to clinical diagnosis and pathological research. However, revealing the intracellular distribution of multiple miRNAs while determining their content in a multiplex and quantitative format remains challenging. Considering the respective technical merit of fluorescence imaging and mass spectrometry (MS) in in situ detection and multiplex assaying, we herein propose fluorophore/mass dual-encoded nanoprobes (FMNPs) that can execute target-triggered hairpin self-assembly to enable in situ amplified imaging and follow-up MS quantification of intracellular multiple miRNAs. The FMNPs responsive to the target miRNA were constructed by codecorating gold nanoparticles (AuNPs) with locked hairpin DNA probes (LH1) and corresponding mass tags (MTs) for fluorescent and mass spectrometric dual-modal readout. Cellular miRNAs can separately trigger recycled hairpin self-assembly, leading to the continuous liberation of fluorophore-labeled bolt DNA (bDNA) for fluorescence imaging in cells. Moreover, the postreaction FMNPs afford an extra chance to validate the fluorescence output of miRNA-21 and miRNA-141 by accurate MS quantification relying on the ion signal of the barcoded MTs. Fluorescence imaging and MS quantification of miRNA-21 and miRNA-141 have also been successfully accomplished in different cell lines, highlighting its potential in cell subtyping. This "sense-and-validate" strategy creates a new modality for assaying multiple intracellular miRNAs and holds great promise in unveiling multicomponent-involved events in cellular processes and determining multiple biomarkers in accurate clinical diagnosis.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/13/2023]
Abstract
DNA-based nanoprobes integrated with various imaging signals have been employed for fabricating versatile biosensor platforms for the study of intracellular biological process and biomarker detection. The nanoprobes developments also provide opportunities for endogenous microRNA (miRNA) in situ analysis. In this review, the authors are primarily interested in various DNA-based nanoprobes for miRNA biosensors and declare strategies to reveal how to customize the desired nanoplatforms. Initially, various delivery vehicles for nanoprobe architectures transmembrane transport are delineated, and their biosecurity and ability for resisting the complex cellular environment are evaluated. Then, the novel strategies for designing DNA sequences as target miRNA specific recognition and signal amplification modules for miRNA detection are presented. Afterward, recent advances in imaging technologies to accurately respond and produce significant signal output are summarized. Finally, the challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Fan Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
31
|
Wu L, Dias A, Diéguez L. Surface enhanced Raman spectroscopy for tumor nucleic acid: Towards cancer diagnosis and precision medicine. Biosens Bioelectron 2022; 204:114075. [DOI: 10.1016/j.bios.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
|
32
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
33
|
Chen Y, Yu F, Wang Y, Liu W, Ye J, Xiao J, Liu X, Jiang H, Wang X. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. J Biomed Nanotechnol 2022; 18:1-23. [PMID: 35180897 DOI: 10.1166/jbn.2022.3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, noble metal nanomaterials have been extensively studied in the fields of biosensing, environmental catalysis, and cancer diagnosis and treatment, due to their excellent electrical conductivity, high surface area, and individual physical and optical properties. Early research on the surface-enhanced Raman scattering (SERS) effect was focused on the cognition of the SERS phenomenon and enhancing its sensitivity for single-molecule detection. With the development of nanomaterials and nanotechnology, the advances and applications based on SERS substrates have been accelerated. Among them, noble metal nanomaterials are mainly used as SERS-active substrates to enhance SERS signals owing to their compelling surface plasmon resonance (SPR) properties. This review provides recent advances, perspectives, and challenges in SERS assays based on engineered noble metal nanomaterials for early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
34
|
Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021; 235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Accumulative evidences have indicated that abnormal expression of microRNAs (miRNAs) is closely associated with many health disorders, making them be regarded as potentialbiomarkers for early clinical diagnosis. Therefore, it is extremely necessary to develop a highly sensitive, specific and reliable approach for miRNA analysis. Catalytic hairpin assembly (CHA) signal amplification is an enzyme-free toehold-mediated strand displacement method, exhibiting significant potential in improving the sensitivity of miRNA detection strategies. In this review, we first describe the potential of miRNAs as disease biomarkers and therapeutics, and summarize the latest advances in CHA signal amplification-based sensing strategies for miRNA monitoring. We describe the characteristics and mechanism of CHA signal amplification and classify the CHA-based miRNA sensing strategies into several categories based on the "signal conversion substance", including fluorophores, enzymes, nanomaterials, and nucleotide sequences. Sensing performance, limit of detection, merits and disadvantages of these miRNA sensing strategies are discussed. Moreover, the current challenges and prospects are also presented.
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| |
Collapse
|
35
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
36
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
37
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
38
|
Mai CY, Lai YF, Zou L. Smartphone-assisted colorimetric detection of BRCA-1 gene based on catalytic hairpin assembly amplification and G-quadruplex DNAzyme. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Jiang X, Hao C, Zhang H, Wu X, Xu L, Sun M, Xu C, Kuang H. Dual-Modal Fe xCu ySe and Upconversion Nanoparticle Assemblies for Intracellular MicroRNA-21 Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41405-41413. [PMID: 32191832 DOI: 10.1021/acsami.0c00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In situ quantification and imaging of low-level intracellular microRNAs (miRs) are important areas in biosensor research. Herein, DNA-driven FexCuySe@upconversion nanoparticle (UCNP) core@satellite nanostructures were developed to probe microRNA-21 (miR-21). FexCuySe@UCNP probes displayed dual signals: upconversion luminescence (UCL) and magnetic resonance imaging (MRI). In the presence of miR-21, the luminescence signal was restored and the T2 value was significantly increased because of dissociation of UCNPs from the assemblies. There was a good linear relationship between the dual signals and the expression levels of miR-21 in the range of 0.035-31.824 amol/ngRNA. The limit of detection (LOD) was 0.0058 amol/ngRNA for the luminescence intensity and 0.0182 amol/ngRNA for the MRI signal. This method opens a new avenue for intracellular miR-21 detection with high sensitivity and specificity.
Collapse
|
40
|
|
41
|
Wu J, Zhou X, Li P, Lin X, Wang J, Hu Z, Zhang P, Chen D, Cai H, Niessner R, Haisch C, Sun P, Zheng Y, Jiang Z, Zhou H. Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Anal Chem 2021; 93:8799-8809. [PMID: 34076420 DOI: 10.1021/acs.analchem.1c00478] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive and simultaneous detection of multiple cancer-related biomarkers in serum is essential for diagnosis, therapy, prognosis, and staging of cancer. Herein, we proposed a magnetically assisted sandwich-type surface-enhanced Raman scattering (SERS)-based biosensor for ultrasensitive and multiplex detection of three hepatocellular carcinoma-related microRNA (miRNA) biomarkers. The biosensor consists of an SERS tag (probe DNA-conjugated DNA-engineered fractal gold nanoparticles, F-AuNPs) and a magnetic capture substrate (capture DNA-conjugated Ag-coated magnetic nanoparticles, AgMNPs). The proposed strategy achieved simultaneous and sensitive detection of three miRNAs (miRNA-122, miRNA-223, and miRNA-21), and the limits of detection of the three miRNAs in human serum are 349 aM for miRNA-122, 374 aM for miRNA-223, and 311 aM for miRNA-21. High selectivity and accuracy of the SERS biosensor were proved by practical analysis in human serum. Moreover, the biosensor exhibited good practicability in multiplex detection of three miRNAs in 92 clinical sera from AFP-negative patients, patients before and after hepatectomy, recurred and relapse-free patients after hepatectomy, and hepatocellular carcinoma patients at distinct Barcelona clinic liver cancer stages. The experiment results demonstrate that our SERS-based assay is a promising candidate in clinical application and exhibited potential for the prediction, diagnosis, monitoring, and staging of cancers.
Collapse
Affiliation(s)
- Jiamin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xia Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ping Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaoling Lin
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinhua Wang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziwei Hu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengcheng Zhang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Dong Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University of Munich, Marchioninistr. 17, Munich D-81377, Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University of Munich, Marchioninistr. 17, Munich D-81377, Germany
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yun Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhengjin Jiang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
42
|
Sun Y, Shi L, Mi L, Guo R, Li T. Recent progress of SERS optical nanosensors for miRNA analysis. J Mater Chem B 2021; 8:5178-5183. [PMID: 32432312 DOI: 10.1039/d0tb00280a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses on emerging applications of surface-enhanced Raman spectroscopy (SERS) optical nanosensors for miRNA analysis, in which the key enhancement factors of the SERS signal, i.e. SERS-active substrates, SERS nanoprobes and nano-assembly strategy, are emphasized. This article includes many nanomaterials for miRNA analysis by the SERS technique. We summarize these reported nanomaterials mainly according to their function in the miRNA assay biosensor. We also briefly summarize the research progress of these nanomaterials in SERS detection of intracellular miRNA. Finally, we discussed the prospect and limitations of SERS nanosensors for analyzing miRNA.
Collapse
Affiliation(s)
- Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China. and School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lin Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Lan Mi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Ruiyan Guo
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
43
|
Bodulev OL, Zhao S, Sakharov IY. Improving the Sensitivity of the miRNA Assay Coupled with the Mismatched Catalytic Hairpin Assembly Reaction by Optimization of Hairpin Annealing Conditions. Anal Chem 2021; 93:6824-6830. [PMID: 33899474 DOI: 10.1021/acs.analchem.1c00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mismatched catalytic hairpin assembly (mCHA), a programmable oligonucleotide circuit, is one of the promising isothermal amplification methods used in nucleic acid detection. Its limitations are related to a high background noise observed due to the target-independent hybridization of the reacting hairpins (HPs). In this work, it was shown that the introduction of salts such as NaCl and MgCl2 to HP1/HP2 annealing solutions sharply reduces the background in mCHA and simultaneously increases the signal-to-background (S/B) ratio. A comparison of the salts demonstrated the higher activity of MgCl2 as compared to NaCl. A similar effect of reducing the background was observed with a decrease in the concentration of H1/H2 probes in annealing solutions. Using the favorable annealing conditions allowed the development of an ultrasensitive chemiluminescence assay coupled with mCHA for miRNA quantitation. Except mCHA, the use of a streptavidin-polyHRP conjugate and an enhanced chemiluminescence reaction additionally increased the assay sensitivity. Notably, the optimization of the HP annealing diminished the detection limit of the assay by 2 orders of magnitude and increased the sensitivity and precision of miRNA-141 determination. The discovered fact of reducing the background by the variation of HP annealing conditions may be valuable not only for the mCHA performance but also likely for other HP-based biochemical methods.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| |
Collapse
|
44
|
Zhang N, Gao H, Jia YL, Pan JB, Luo XL, Chen HY, Xu JJ. Ultrasensitive Nucleic Acid Assay Based on AIE-Active Polymer Dots with Excellent Electrochemiluminescence Stability. Anal Chem 2021; 93:6857-6864. [PMID: 33890762 DOI: 10.1021/acs.analchem.1c00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregation-induced emission (AIE) active Pdots are attractive nanomaterials applied in electrochemiluminescence (ECL) fields, while the irreversible redox reaction of these Pdots is a prevailing problem, resulting in instability of ECL emission. Herein, we first designed and synthesized an AIE-active Pdot with reversible redox property, which contains a tetraphenylethene derivate and benzothiadiazole (BT) to achieve stable ECL emission. BT has a good rigid structure with excellent electrochemical behaviors, which is beneficial for avoiding the destruction of the conjugated structure as much as possible during the preparation of Pdots, thus maintaining good redox property. The tetraphenylethene derivate, as a typical AIE-active moiety, provides a channel for highly efficient luminescence in the aggregated states. The Pdots exhibited reversible and quasi-reversible electrochemical behaviors during cathodic and anodic scanning, respectively. The stable annihilation, reductive-oxidative, and oxidative-reductive ECL signals were observed. Subsequently, we constructed an ultrasensitive ECL biosensor based on the oxidative-reductive ECL mode for the detection of miRNA-21 with a detection limit of 32 aM. This work provides some inspiration for the future design of ECL materials featuring AIE-active property and stable ECL emission.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Liang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Zhou H, Zhang J, Li B, Liu J, Xu JJ, Chen HY. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal Chem 2021; 93:6120-6127. [PMID: 33821629 DOI: 10.1021/acs.analchem.0c05221] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jishou Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
Wang G, Guo Y, Liu Y, Zhou W, Wang G. Algorithm-Assisted Detection and Imaging of microRNAs in Living Cancer Cells via the Disassembly of Plasmonic Core-Satellite Probes Coupled with Strand Displacement Amplification. ACS Sens 2021; 6:958-966. [PMID: 33445872 DOI: 10.1021/acssensors.0c02136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute detection and high-resolution imaging of microRNAs (miRNAs) in living cancer cells have attracted great attention in clinical diagnosis and therapy. However, current methods suffer from low detection sensitivity or heavy dependence on expensive and sophisticated spectrometers. Herein, a novel algorithm-assisted system of detecting and imaging miRNAs in living cancer cells was developed via the disassembly of plasmonic core-satellite probes coupled with strand displacement amplification (SDA). The target miRNAs in the system could trigger the disassembly of plasmonic core-satellite probes, leading to the color change in the scattering light of the probes, which could be captured by dark-field microscopy (DFM). The concentration of the target miRNAs was obtained by analyzing the dark-field image based on the proposed algorithm with a detection limit of 2 pM for miRNA-21. Thus, the performance in terms of simplicity and sensitivity of the system compared with one of the conventional spectrophotometers was well presented, which could inspire more clinical applications of inexpensive, intelligent, and rapid screening of cancer cells. The application software based on the proposed algorithm running on the Android platform was also developed, demonstrating the potential of remote diagnosis.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yanbin Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yingbin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Weihang Zhou
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Guoping Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
47
|
Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Kang T, Zhu J, Luo X, Jia W, Wu P, Cai C. Controlled Self-Assembly of a Close-Packed Gold Octahedra Array for SERS Sensing Exosomal MicroRNAs. Anal Chem 2021; 93:2519-2526. [DOI: 10.1021/acs.analchem.0c04561] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuli Kang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
49
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
50
|
Yi R, Wu Y. Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|