1
|
Li Y, Wang F, Liang M, Sun M, Xia L, Qu F. Fabrication of a two-dimensional bi-lanthanide metal-organic framework as a ratiometric fluorescent sensor based on energy competition. Talanta 2024; 278:126456. [PMID: 38917551 DOI: 10.1016/j.talanta.2024.126456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Bimetallic lanthanide metal-organic frameworks (bi-Ln-MOFs) exhibit great appeal for ratiometric luminescent sensors due to their unique advantages. Specially, the low-lying energy of the empty 4f band of Ce4+ ions benefits Ce-MOFs with robust and broad fluorescent emission. Therefore, constructing ratiometric sensors based on Ce-MOFs is of significance but remains a challenge. Here, a two-dimensional (2D) bi-Ln-MOF is fabricated using Eu3+/Ce4+ and 5-boronoisophthalic acid (5-bop) via a crystal phase transformation strategy to construct a ratiometric luminescent Hg2+ sensor. Due to the lower energy gap of Ce4+ compared to Eu3+ and the corresponding stronger energy-absorption ability, the Ce4+ in bi-Ln-MOF shows a stronger and broader fluorescent emission than that of Eu3+. The substitution of the boric acid group in the bi-Ln-MOF by Hg2+ amplifies the difference between the two lanthanide ions. Therefore, the fluorescence intensity of Ce4+ increases whereas that of Eu3+ decreases accordingly, a behavior distinct from individual Eu-MOF or Ce-MOF performance. This novel bi-Ln-MOF sensor not only achieves a wide linear response range from 0.5 to 120 μM with a low detection limit of 167 nM for Hg2+, but also demonstrates exceptional selectivity and stability. The intriguing sensing mechanism of energy competition and the novel synthesis approach for 2D bi-Ln-MOF are anticipated to broaden the application possibilities of bi-Ln-MOFs for designing ratiometric sensors.
Collapse
Affiliation(s)
- Yingying Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Maosheng Liang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Mengyu Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Wu L, Yang F, Xue Y, Gu R, Liu H, Xia D, Liu Y. The biological functions of europium-containing biomaterials: A systematic review. Mater Today Bio 2023; 19:100595. [PMID: 36910271 PMCID: PMC9996443 DOI: 10.1016/j.mtbio.2023.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
The biological functions of rare-earth elements (REEs) have become a focus of intense research. Recent studies have demonstrated that ion doping or alloying of some REEs can optimize the properties of traditional biomaterials. Europium (Eu), which is an REE with low toxicity and good biocompatibility, has promising applications in biomedicine. This article systematically reviews the osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties of Eu-containing biomaterials, thereby paving the way for biomedical applications of Eu. Data collection for this review was completed in October 2022, and 30 relevant articles were finally included. Most articles indicated that doping of Eu ions or Eu-compound nanoparticles in biomaterials can improve their osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties. The angiogenic, antibacterial, and potential neuritogenic effects of Eu(OH)3 nanoparticles have also been demonstrated.
Collapse
Affiliation(s)
- Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Corresponding author. Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Li T, Zhu X, Hai X, Bi S, Zhang X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens 2023; 8:994-1016. [PMID: 36848439 DOI: 10.1021/acssensors.2c02596] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The traditional sensors are designed based on the "lock-and-key" strategy with high selectivity and specificity for detecting specific analytes, which however are not suitable for detecting multiple analytes simultaneously. With the help of pattern recognition technologies, the sensor arrays excel in distinguishing subtle changes caused by multitarget analytes with similar structures in a complex system. To construct a sensor array, the multiple sensing elements are undoubtedly indispensable units that will selectively interact with targets to generate the unique "fingerprints" based on the distinct responses, enabling the identification among various analytes through pattern recognition methods. This comprehensive review mainly focuses on the construction strategies and principles of sensing elements, as well as the applications of sensor array for identification and detection of target analytes in a wide range of fields. Furthermore, the present challenges and further perspectives of sensor arrays are discussed in detail.
Collapse
Affiliation(s)
- Tian Li
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
4
|
Zhao Y, Gao B, Chen Y, Liu J. An aptamer array for discriminating tetracycline antibiotics based on binding-enhanced intrinsic fluorescence. Analyst 2023; 148:1507-1513. [PMID: 36891736 DOI: 10.1039/d3an00154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Tetracyclines are a class of antibiotics with a similar four-ringed structure. Due to this structural similarity, they are not easily differentiated from each other. We recently selected aptamers using oxytetracycline as a target and focused on an aptamer named OTC5, which has similar affinities for oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX). Tetracyclines exhibit an intrinsic fluorescence that is enhanced upon aptamer binding, allowing convenient binding assays and label-free detection. In this study, we analyzed the top 100 sequences from the previous selection library. Three other sequences were found to differentiate between different tetracyclines (OTC, DOX, and TC) by the selective enhancement of their intrinsic fluorescence. Among them, the OTC43 aptamer was more selective for OTC with a limit of detection (LOD) of 0.7 nM OTC, OTC22 was more selective for DOX (LOD 0.4 nM), and OTC2 was more selective for TC (0.3 nM). Using these three aptamers to form a sensor array, principal component analysis was able to discriminate between the three tetracyclines from each other and from the other molecules. This group of aptamers could be useful as probes for the detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwen Gao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yijing Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Xie R, Song X, Chen H, Lin P, Guo S, Zhuang Z, Chen Y, Zhao W, Zhao P, Long H, Tao J. Intelligent Clinical Lab for the Diagnosis of Post-Neurosurgical Meningitis Based on Machine-Learning-Aided Cerebrospinal Fluid Analysis. Anal Chem 2022; 94:15720-15728. [DOI: 10.1021/acs.analchem.2c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruirui Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangfei Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siyun Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zehong Zhuang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Martinon TLM, Pierre VC. Luminescent Lanthanide Probes for Inorganic and Organic Phosphates. Chem Asian J 2022; 17:e202200495. [PMID: 35750633 PMCID: PMC9388549 DOI: 10.1002/asia.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Indexed: 11/09/2022]
Abstract
Inorganic and organic phosphates-including orthophosphate, nucleotides, and DNA-are some of the most fundamental anions in cellular biology, regulating numerous processes of both medical and environmental significance. The characteristic long lifetimes of emitting lanthanides, including the brighter europium(III) and terbium(III), make them ideally suited for the development of molecular probes for the detection of phosphates directly in complex aqueous media. Moreover, given their high oxophilicity and the exquisite sensitivity of their quantum yields to their hydration number, those luminescent lanthanides are perfect for the detection of phosphates. Herein we discuss the principles that have guided the recent developments of molecular probes selective for inorganic or organic phosphates and how these lanthanide complexes facilitate the study of numerous biological processes.
Collapse
Affiliation(s)
- Thibaut L. M. Martinon
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| | - Valérie C. Pierre
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| |
Collapse
|
7
|
Han Q, Zhang X, Jia Y, Guo S, Zhu J, Luo S, Na N, Ouyang J. Synthesis and Characteristics of Self‐Assembled Multifunctional Ln
3+
‐DNA Hybrid Coordination Polymers. Chemistry 2022; 28:e202200281. [DOI: 10.1002/chem.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qingzhi Han
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Xinlian Zhang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shaoshi Guo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jiale Zhu
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shirui Luo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
8
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
9
|
Pu F, Ren J, Qu X. Recent progress in sensor arrays using nucleic acid as sensing elements. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Jiménez-Reyes M, Almazán-Sánchez PT, Solache-Ríos M. Radioactive waste treatments by using zeolites. A short review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 233:106610. [PMID: 33839541 DOI: 10.1016/j.jenvrad.2021.106610] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Radionuclides in the environment is an important issue, many techniques have been developed for the removal of radionuclides from the environment. One of those techniques is the adsorption and natural and synthesized materials have been used to remove different radionuclides from water. The adsorbents used for removal of radionuclides should have high retention capacity and they should be resistant to radiation. One of the natural materials used is the zeolites due to its high ion exchange capacities, adsorption efficiency, resistance to radiation and abundance. The present review describes the advances made on radioactive waste treatments using zeolites as adsorbents, the elements: cesium, strontium, cobalt, molybdenum, uranium, plutonium, americium, samarium, and europium were selected according to their nuclear importance and their presence in the environment. Firstly, a brief description of the zeolites is given and then a review on the separation of these radionuclides from water by using zeolites is presented.
Collapse
Affiliation(s)
- M Jiménez-Reyes
- Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, C. P. 52750, Mexico
| | | | - M Solache-Ríos
- Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, C. P. 52750, Mexico.
| |
Collapse
|
12
|
Lin X, Shuang E, Chen X. Metal-organic framework/3,3',5,5'-tetramethylbenzidine based multidimensional spectral array platform for sensitive discrimination of protein phosphorylation. J Colloid Interface Sci 2021; 602:513-519. [PMID: 34144305 DOI: 10.1016/j.jcis.2021.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
A multifunctional metal-organic framework (MOF) hybrid Zr-FeTCPP-MOF is fabricated with 2-aminoterephthalic acid (NH2-BDC) and Fe (III) meso-Tetra (4-carboxyphenyl) porphine chloride (FeTCPPCl) participating in the coordination to Zr6 clusters via one-pot hydrothermal method. The adsorption of phosphoproteins on the surface of Zr-FeTCPP-MOF hybrid cause the chances on the absorbance (Abs), fluorescence (FL) and resonance light scattering (RLS) signals of Zr-FeTCPP-MOF/3,3',5,5'-Tetramethylbenzidine (TMB) system, and an array sensing platform is successfully built for sensitive identification of protein phosphorylation based on the three-dimensional spectral changes of MOF/TMB sensing system induced by the variations on the structure, size, and phosphorylation site of phosphoproteins. This array sensing system is robust in recognizing different phosphoprotein species, and shows high sensitivity in discriminating similar phosphoproteins of different phosphorylation distribution, i.e., caseins (α-, β- and κ-cas). The detection limit of this array sensing platform to individual phosphoprotein is low down to 5 nM. The practical application of this MOF/TMB-base sensing system is substantially demonstrated by identifying tau peptides with different phosphorylation distribution, and distinguishing cancer cells of abnormal phosphorylations from normal cells. This work proves the reliability, sensitivity, and practicality of the MOF/TMB-base sensing system platform for the diagnosis of phosphorylation-related diseases in clinical trials.
Collapse
Affiliation(s)
- Xin Lin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China; Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, Liaoning, China
| | - E Shuang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, Liaoning, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, Liaoning, China.
| |
Collapse
|
13
|
On the use of Europium (Eu) for designing new metal-based anticancer drugs. Biochem Biophys Res Commun 2020; 531:372-376. [DOI: 10.1016/j.bbrc.2020.07.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
|
14
|
Sun Z, Fan YZ, Du SZ, Yang YZ, Ling Y, Li NB, Luo HQ. Conversion of Fluorescence Signals into Optical Fingerprints Realizing High-Throughput Discrimination of Anionic Sulfonate Surfactants with Similar Structure Based on a Statistical Strategy and Luminescent Metal–Organic Frameworks. Anal Chem 2020; 92:7273-7281. [DOI: 10.1021/acs.analchem.0c00907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Zhu Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi Zhe Du
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Zhu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Feng Y, Song H, Deng D, Lv Y. Engineering Ratiometric Persistent Luminous Sensor Arrays for Biothiols Identification. Anal Chem 2020; 92:6645-6653. [DOI: 10.1021/acs.analchem.0c00464] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Chen ZH, Fan QX, Han XY, Shi G, Zhang M. Design of smart chemical ‘tongue’ sensor arrays for pattern-recognition-based biochemical sensing applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Wang QQ, Fang ZQ, Wu YT, Zhang M, Shi G. A single-component yet multifunctional tongue-mimicking sensor array for upconversion fluorescence biosensing. Analyst 2020; 145:7191-7196. [DOI: 10.1039/d0an01641a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel single-component nanoprobe has been created for the pattern recognition of antioxidants in a “turn on” manner by integrating with the prevention of PDA formation with an antioxidant.
Collapse
Affiliation(s)
- Qian-Qian Wang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Zheng-Qi Fang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Ya-Ting Wu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Min Zhang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| |
Collapse
|
18
|
Zhang W, Li Y, Liang Y, Yin X, Liu C, Wang S, Tian L, Dong H, Li G. Direct Determination of Redox Statuses in Biological Thiols and Disulfides with Noncovalent Interactions of Poly(ionic liquid)s. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30137-30145. [PMID: 31353883 DOI: 10.1021/acsami.9b09413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The three most important redox couples, including cysteine (Cys)/cystine (Cyss), homocysteine (Hcys)/homocystine (Hcyss), and reduced glutathione (GSH)/glutathione disulfide (GSSG), are closely associated with human aging and many diseases. Thus, it is highly important to determine their redox statuses at the following two levels: (i) the redox identity in different thiols/disulfides and (ii) the redox ratio in a mixture of a specific couple. Herein, by using one single AIE-doped (AIE, aggregation-induced emission) photonic-structured poly(ionic liquid) (PIL) sphere as a virtual sensor array, we realize a direct determination of the redox status without a reducing pretreatment of disulfides, which will greatly promote the development of high-throughput and simple procedures. The pattern-recognition method uses the multiple noncovalent interactions of imidazolium-based PILs with these redox species to produce differential responses in both the photonic crystal and fluorescence dual channels. On the one hand, a single sphere enables the direct and simultaneous discrimination of the redox identities of Cys, Cyss, Hcys, Hcyss, GSH, and GSSG under the interference of other five commonly occurring thiols. On the other hand, this sphere also allows for not only a direct quantification of the GSH/GSSG ratios without previously determining the individual concentrations of GSH and GSSG but also the accurate prediction of the ratios in unknown redox samples. To further demonstrate applications of this method, redox mixtures in a biological sample are differentiated. Additionally, quantum calculations further support our assignments for interactions between the imidazolium-based PILs and these redox species.
Collapse
Affiliation(s)
- Wanlin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
- Aerospace Research Institute of Special Material and Processing Technology , Beijing 100074 , P. R. China
| | - Yao Li
- Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yun Liang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| | - Xianpeng Yin
- Aerospace Research Institute of Special Material and Processing Technology , Beijing 100074 , P. R. China
| | - Chengcheng Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| | - Shiqiang Wang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| | - Li Tian
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
19
|
KUNISAWA E, ISHIMATSU R, NAKANO K, IMATO T. Electrogenerated Chemiluminescence of Tris(dibenzoylmethane)phenanthroline Europium(III) as a Light Source: An Application for the Detection of PO<sub>4</sub><sup>3−</sup> Based on the Ion Associate Formation of Phosphomolybdic Acid and Malachite Green. ANAL SCI 2019; 35:799-802. [DOI: 10.2116/analsci.19n003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Eri KUNISAWA
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Ryoichi ISHIMATSU
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Koji NAKANO
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Toshihiko IMATO
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
20
|
Han XY, Fan QX, Chen ZH, Deng LX, Fang ZQ, Shi G, Zhang M. Coordination polymers of Tb 3+/Nucleotide as smart chemical nose/tongue toward pattern-recognition-based and time-resolved fluorescence sensing. Biosens Bioelectron 2019; 139:111335. [PMID: 31128478 DOI: 10.1016/j.bios.2019.111335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
The abundant functional groups on guanosine monophosphate (GMP) make it possible to interact with various metal ions. The subtle difference in the structure of GMP and deoxy-guanosine monophosphate (dGMP) coupled with Tb3+ can be readily exploited to form two coordination polymers, which have been unveiled as two time-resolved fluorescence (TRF) sensing reporters (Tb-GMP and Tb-dGMP) in our study. Based on this finding, herein, we have proposed a novel TRF orthogonal sensing array (Tb-GMP/dGMP) for pattern-recognition-based sensing of various metal ions. In addition, upon integration of some thiol-affinity metal ions, Tb-GMP/dGMP can be further extended to construct two metal ion-involved pattern-recognition-based sensor arrays (Tb-GMP/dGMP-Cu, Tb-GMP/dGMP-Ag) for the TRF sensing different levels of disease-relevant biothiols in biofluids, illustrating the powerful and multifunctional capabilities of the Tb-GMP/dGMP system and would inspire simpler and more widespread designs of chemical nose/tongue-based applications.
Collapse
Affiliation(s)
- Xin-Yue Han
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qian-Xi Fan
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zi-Han Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ling-Xue Deng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zheng-Qi Fang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
21
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H 2O 2 and glucose. Biosens Bioelectron 2019; 135:208-215. [PMID: 31026775 DOI: 10.1016/j.bios.2019.04.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
Abstract
A Eu-metal organic framework (Eu-MOF) probe with dual-emission was reported for the ratiometric fluorescence detection of H2O2 and glucose. Because of the special nucleophilic reaction between boric group and H2O2, Eu3+ and 5-boronobenzene-1,3-dicarboxylic acid (BBDC) were selected to synthesize the functional MOF probe via a simple one-pot solvothermal method. The Eu-MOF shows dual-emission at 370 and 623 nm with the single excitation at 270 nm due to the energy transfer efficiency change for antenna effect procedure. After addition of H2O2, the red emission of Eu-MOF weakened and the blue emission enhances immediately under 270 nm irradiation, so the ratiometric fluorescence detection is established. Moreover, the obvious color change for visual measuring of H2O2 and glucose is illustrated to reveal the merit of Eu-MOF probe. The proposed method was demonstrated to be highly sensitive and selective for H2O2 and glucose, with the low detection limits of 0.0335 and 0.0643 μM, respectively. The established boric-acid-functional Eu-MOF sensing platform was proved as the powerful probe for H2O2 and the metabolites involved in H2O2-generating reaction.
Collapse
|
23
|
Lin ZY, Han XY, Chen ZH, Shi G, Zhang M. Label-free non-invasive fluorescent pattern discrimination of thiols and chiral recognition of cysteine enantiomers in biofluids using a bioinspired copolymer-Cu 2+ hybrid sensor array regulated by pH. J Mater Chem B 2018; 6:6877-6883. [PMID: 32254704 DOI: 10.1039/c8tb02353k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiols play a crucial role in various biological processes, and the discrimination of thiols in biofluids is a significant but difficult issue. Herein, a facile label-free non-invasive fluorescent sensor array has been presented based on PDA/PEIn-Cu2+ in three different pH buffer solutions for pattern discrimination of thiols and chiral recognition of cysteine (Cys) enantiomers in biofluids toward health monitoring. The proposed sensor array was fabricated based on the fact that Cu2+ has a strong affinity toward thiols, which prevents Cu2+ from binding PDA/PEIn, and the fluorescence properties of PDA/PEIn were recovered to a certain degree. Different thiols exhibited different affinities toward Cu2+, generating distinct fluorescence response patterns. These response patterns are characteristic for each thiol and can be discriminated by principal component analysis (PCA). In this work, three types of PDA/PEI48-Cu2+ sensors (PDA/PEI48-Cu4 2+, PDA/PEI48-Cu4.5 2+ and PDA/PEI48-Cu5 2+) were prepared by using acetate buffer with different pHs (at 4, 4.5, and 5) to form our proposed sensor array, which could realize the pattern discrimination of 8 thiols. Moreover, we successfully realized the sensitivity and selectivity assays to these thiols. Furthermore, the proposed sensor array could discriminate mixtures of thiols as well as the chiral recognition of mixtures of Cys enantiomers, promising its potential practical usage. Significantly, the resultant practical application in real samples showed that it could be a fascinating assay for the development of non-invasive diagnosis. This method promises the facile, sensitive and powerful discrimination of thiols in biofluids and would sprout more relevant strategies toward a broad range of applications.
Collapse
Affiliation(s)
- Zi-Yang Lin
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | |
Collapse
|