1
|
Huang P, Zhang H, Liu Y, Li L. Rapid Characterization of Phospholipids from Biological Matrix Enabled by Indium Tin Oxide (ITO) Coated Slide Assisted Enrichment MALDI Mass Spectrometry. ANALYSIS & SENSING 2024; 4:e202300097. [PMID: 39309316 PMCID: PMC11415247 DOI: 10.1002/anse.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 09/25/2024]
Abstract
Lipidomic analysis of human serum is essential to monitor the individual's health status. Herein, we develop a facile strategy for rapid characterization of phospholipids in human serum via indium tin oxide (ITO) coated glass slide solid phase extraction MALDI mass spectrometry (ITO-SPE-MALDI-MS). Phospholipid species are retained on ITO slide via solid phase extraction owing to the unique property of the ITO material; the measurement of phospholipid species from 1 μl human serum within 2 min is achievable. A comparison of ITO-SPE strategy with conventional extraction methods was further carried out using liquid chromatography-mass spectrometry (LC-MS) and ion-mobility mass spectrometry (IM-MS), resulting in a comparable enrichment performance for the phospholipid analysis. Furthermore, rapid lipidomic profiling of serum samples from human colorectal cancer patients and cell lines was demonstrated. Our results indicate that ITO-SPE-MALDI-MS provides a higher throughput strategy for the analysis of phospholipid species in complex biological mixtures, showcasing its potential for applications in the analysis of clinical biofluids.
Collapse
Affiliation(s)
- Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| |
Collapse
|
2
|
Zhou Y, Wu Q, Zhao Z, Wang Y, Lu H. Photocatalytic degradation-based ambient mass spectrometry imaging for enhancing detection coverage of poorly-ionizable lipidomes. Talanta 2024; 270:125564. [PMID: 38159350 DOI: 10.1016/j.talanta.2023.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Localization of lipidomes and tracking their spatial changes in tissues by mass spectrometry imaging (MSI) plays an important role in unveiling the mechanisms of living processes, diseases and therapeutic treatments. However, it is always challenging to achieve direct MSI of poorly-ionizable lipids, such as glycolipids and glycerolipids, due to the strong ion suppression and isobaric peaks interference from high-abundance phosphatidylcholines (PCs) in tissues. Here we developed a photocatalytic degradation-based ambient liquid extraction MSI method to largely enhance the detection coverage of poorly-ionizable lipids by rapid online removal of PCs in MSI. Phospholipids were found to be selectively photodegraded on TiO2 surface in acidic conditions in the presence of water under UV irradiation, while other poorly-ionizable lipids remained. Sulfate ion could largely improve the degradation efficiencies. Anatase nanoparticles-embedded TiO2 monolith was in-situ synthesized in the capillary of ambient liquid extraction system, and rapid online photodegradation of PCs was achieved during MSI with efficiency >80 %, largely reducing ion suppression. The pathway analysis showed that PC was oxidatively degraded starting from hydroxylation of C=C bonds. With intense UV irradiation, PCs were completely degraded into small molecules<200 Da without interference on the detection of endogenous lipids. With the new MSI method, detection coverage to cerebrosides, ceramides and diglycerides was enhanced by 2-9 times comparing with traditional MSI. Clearer localizations were observed for poorly-ionizable lipids via the new method than traditional method. Thus, this work provided a complementary MSI method for traditional MSI to address the issues on direct imaging of poorly ionizable lipids in ambient conditions.
Collapse
Affiliation(s)
- Yongchang Zhou
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China.
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, 410008, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| |
Collapse
|
3
|
Hu Y, Jiang B. Selective enrichment tandem β-elimination assisted strategy for N-phosphorylation analysis. Talanta 2022; 247:123580. [DOI: 10.1016/j.talanta.2022.123580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
|
4
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110781. [PMID: 34822439 PMCID: PMC8623600 DOI: 10.3390/metabo11110781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid and direct structural characterization of lipids proves to be critical for studying the functional roles of lipids in many biological processes. Among numerous analytical techniques, ambient ionization mass spectrometry (AIMS) allows for a direct molecular characterization of lipids from various complex biological samples with no/minimal sample pretreatment. Over the recent years, researchers have expanded the applications of the AIMS techniques to lipid structural elucidation via a combination with a series of derivatization strategies (e.g., the Paternò–Büchi (PB) reaction, ozone-induced dissociation (OzID), and epoxidation reaction), including carbon–carbon double bond (C=C) locations and sn-positions isomers. Herein, this review summarizes the reaction mechanisms of various derivatization strategies for C=C bond analysis, typical instrumental setup, and applications of AIMS in the structural elucidation of lipids from various biological samples (e.g., tissues, cells, and biofluids). In addition, future directions of AIMS for lipid structural elucidation are discussed.
Collapse
|
6
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
7
|
Lu H, Zhang H, Zhou W, Chen H. Evaluation of the phytotoxicity of nano-particles on mung beans by internal extractive electrospray ionization mass spectrometry. Analyst 2021; 146:5675-5681. [PMID: 34388232 DOI: 10.1039/d1an00871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The wide application of nano-particles (NPs) has raised a serious concern over their impact on plants. However, evaluation of the effects of NPs on plant metabolism by direct detection of chemicals inside solid tissues presents a challenge. In this study, we report on a direct ionization method in mass spectrometry, internal extractive electrospray ionization (iEESI), for the direct evaluation of phytotoxicity of three different NPs (including CdTe quantum dots (CdTe QDs), gold nano-particles (Au NPs), and silver nano-particles (Ag NPs)) both on surfaces and inside solid tissues from the mung bean seeds (Vigna radiata) that were cultured in aqueous solutions of three NPs at 50 μg mL-1. The results showed that NPs could stimulate the biological accumulation of trigonelline and the decomposition of polysaccharides/oligosaccharides to glucose and maltose within 21 h of culture. To the best of our knowledge, this is the first study to apply internal extractive electrospray ionization mass spectrometry (iEESI-MS) for the direct measurement of solid tissue samples to evaluate the phytotoxicity of NPs on mung bean sprouts. Our study lays a solid foundation for further examination of other NPs-induced damaging effects such as apoptosis/necrosis, helping us to understand the phytotoxicity of NPs on plants.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Zhou
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China.
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China.
| |
Collapse
|
8
|
Liu J, Lu H, Hua X, Gu Y, Pan W, Dong D, Liang D. Direct analysis of metabolites in the liver tissue of zebrafish exposed to fiproles by internal extractive electrospray ionization mass spectrometry. Analyst 2021; 146:4480-4486. [PMID: 34160503 DOI: 10.1039/d1an00490e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring the metabolic disturbance of fipronil and its derivatives in aquatic organisms may provide a more comprehensive understanding of the impact of fipronil on the ecological environment. In this work, internal extractive electrospray ionization mass spectrometry (iEESI-MS) was used to directly analyze metabolites in the liver tissue of zebrafish exposed to fipronil and its three derivatives. Partial least squares-discriminant analysis (PLS-DA) revealed that 32 signals were considered as differential signals in zebrafish after the exposure treatment of fipronil and its derivatives, including phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), phosphatidylethanolamines (PEs), fatty acids and so on. The pathway analysis result showed that both fipronil and its derivatives have a significant impact on the glycerophospholipid metabolism of zebrafish. Besides, the intensities of PC signals in the liver samples of each group showed such a trend: mixed fiprole exposed group > fipronil sulfone exposed group ≈ fipronil sulfide exposed group > fipronil exposed group > fipronil desulfinyl exposed group > control group, indicating that mixed exposure of fipronil and its derivatives exhibited more significant metabolic disturbance in zebrafish. Taken together, iEESI-MS is applied to environmental toxicology and investigating the metabolic disturbance induced by fipronil and its derivatives in aquatic organisms, providing a new analytical method for this field.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Changchun, 130012, PR China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| | - Yu Gu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| | - Wenhao Pan
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Changchun, 130012, PR China. and College of New Energy and Environment, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
9
|
He X, Cao H, Li X, Li Y, Yu Y. MG@PD@TiO 2 nanocomposite based magnetic solid phase extraction coupled with LC-MS/MS for determination of lysophosphatidylcholines biomarkers of plasma in psoriasis patients. J Pharm Biomed Anal 2021; 201:114101. [PMID: 33984829 DOI: 10.1016/j.jpba.2021.114101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Lysophosphatidylcholine (LPC) was commonly known as a class of significant differential metabolites of high relevance with many diseases including psoriasis, of which the accurate determination is of great importance to diagnosis or prediction to many diseases. However, it is challenging and complicated because of the enormous biological sample complexity and impurities interference. In this study, we synthesized a magnetic nanocomposite MG@PD@TiO2 and took advantage of the interactions of Lewis acid-base between the phosphate groups in LPCs and Ti ions on MG@PD@TiO2 nanomaterials for selective separation and enrichment of LPCs from complex biological matrix. The solid-phase extraction sample pretreatment process by means of MG@PD@TiO2 nanomaterials coupled with LC-MS/MS method was then applied to actual determination of six typical LPCs (LPC 10:0, 14:0, 16:0, 18:0, 18:1, 22:0) in human plasma. The extraction conditions were scientifically optimized by single-factor test (adsorbent amount, adsorption and desorption time, elution solvent type, eluant volume). Under the optimal conditions, the detection limits (LOD, S/N = 3) and quantification limits (LOQ, S/N = 10) were 1 and 5 ng/mL for LPC 10:0 and LPC 14:0, 0.02 and 0.1 ng/mL for LPC 16:0 and LPC 18:1, 0.05 and 0.2 ng/mL LPC 18:0 and LPC 22:0, respectively. The intra- and inter-day precisions were 3.82-12.60 % (n = 6) and 3.29-13.50 % (n = 6) respectively, the recoveries were in the range of 91.92-113.69 % and the stability of the analytes in the matrix performed well with RSDs≤15.51 %. Finally, the developed method was successfully applied to the accurate determination of six LPCs biomarkers of plasma in patients with psoriasis (n = 10) and control groups (n = 10).
Collapse
Affiliation(s)
- Xinying He
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China
| | - Han Cao
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, Pudong, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| | - Yunqiu Yu
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, Pudong, China.
| |
Collapse
|
10
|
Mi D, Cui J, Kuang S, Dong X, Lu H. Facile Atmospheric Generation of Water Radical Cations via
TiO
2
‐Nanoneedle Arrays for Aromatic Hydrocarbon Detection Based on Corona Discharge. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongbo Mi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Jinhaojie Cui
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Siliang Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 China
| | - Xiaofeng Dong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
11
|
Chen L, Ghiasvand A, Rodriguez ES, Innis PC, Paull B. Applications of nanomaterials in ambient ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Lu H, Zhang H, Wei Y, Chen H. Ambient mass spectrometry for the molecular diagnosis of lung cancer. Analyst 2020; 145:313-320. [PMID: 31872201 DOI: 10.1039/c9an01365b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death worldwide. Among the technologies suitable for the rapid and accurate molecular diagnosis of lung cancer, ambient mass spectrometry (AMS) has gained increasing interest as it allows the direct profiling of molecular information from various biological samples (e.g., tissue, serum, urine and sputum) in real-time and with minimal or no sample pretreatment. This minireview summarizes the applications of AMS in lung cancer studies (including tissue molecular identification, the discovery of potential biomarkers, and surgical margin assessment), and discusses the challenges and perspectives of AMS in the clinical precision molecular diagnosis of lung cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | |
Collapse
|
13
|
Jia C, Bai J, Liu Z, Gao S, Han Y, Yan H. Application of a titanium-based metal-organic framework to protein kinase activity detection and inhibitor screening. Anal Chim Acta 2020; 1128:99-106. [DOI: 10.1016/j.aca.2020.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
|
14
|
Lu H, Zhang H, Xiao Y, Chingin K, Dai C, Wei F, Wang N, Frankevich V, Chagovets V, Zhou F, Chen H. Comparative study of alterations in phospholipid profiles upon liver cancer in humans and mice. Analyst 2020; 145:6470-6477. [PMID: 32856629 DOI: 10.1039/d0an01080d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comparative studies of molecular alterations upon cancer between mice and humans are of great importance in order to determine the relevance of research involving mouse cancer models to the development of diagnostic and therapeutic approaches in clinical practice as well as for the mechanistic studies of pathology in humans. Herein, using molecular fingerprinting by internal extractive electrospray ionization mass spectrometry (iEESI-MS), we identified 50 differential signals in mouse liver tissue and 62 differential signals in human liver tissue that undergo significant intensity alterations (variable importance in the project (VIP) >1.0) upon liver cancer, out of which only 27 were common in both mouse and human tissues. Out of the 27 common differential signals, six types of phospholipids were also identified to undergo significant alterations in human serum upon liver cancer, including PC(34:2), PC(36:4), PC(38:6), PC(36:2), PC(38:4) and PC(42:9). Statistical analysis of the relative intensity distribution of these six identified phospholipids in serum allowed confident determination of liver cancer in humans (sensitivity 91.0%, specificity 88.0%, and accuracy 90.0%). Our results indicate that, despite the significant difference in the overall alterations of phospholipid profiles upon liver cancer between humans and mice, the six identified 'core' differential phospholipids of liver cancer found in the liver tissues of both humans and mice as well as in human serum show high potential as a minimal panel for the rapid targeted diagnosis of liver cancer with high accuracy, sensitivity and specificity using direct mass spectrometry (MS) analysis.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang Z, Wu Q, Lu H, Wang Y, Zhang Z. Separation of Glycolipids/Sphingolipids from Glycerophospholipids on TiO 2 Coating in Aprotic Solvent for Rapid Comprehensive Lipidomic Analysis with Liquid Microjunction Surface Sampling-Mass Spectrometry. Anal Chem 2020; 92:11250-11259. [PMID: 32667194 DOI: 10.1021/acs.analchem.0c01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In lipidomic analysis by direct mass spectrometry (MS), high abundance lipids with high ionizability (such as glycerophospholipids) would cause ion suppression to lipids with poor ionizability and low abundance (such as glycolipids, sphingolipids, or glycerides), which largely limits the detection coverage for lipidomics. In this work, TiO2-based liquid microjunction surface sampling (LMJSS) coupled with MS was used for separation of glycerides, phospholipids and glycolipids/sphingolipids in biological samples and rapid analysis of lipids in different classes with high lipidome coverage. We found that, in nonaqueous aprotic solvents, lipids with a glycosyl or sphingosine group could be selectively separated from lipids with a phosphate group (selectivity >10) after being coenriched on TiO2 by tuning the solvent composition. Accordingly, a selective multistep extraction method was developed by loading the biosamples on TiO2 slides in neutral aprotic solvent, and sequentially eluting glycerides in pure acetonitrile, glycerophospholipids in 6% ammonia-94% acetonitrile (v/v) and glycolipids/sphingolipids in 5% formic acid-95% methanol (v/v) by LMJSS probe from TiO2 slide. Each eluate from TiO2 slide was directly delivered by LMJSS to MS for analysis. The total detection time with three desorption steps would be controlled in 3 min. The method performance for each lipid class was evaluated using lipid standards, including matrix effects (107-128%), RSDs (0.4-16%), linearity (0.98-0.99), detection limits (5-3000 ng/mL), the adsorption equilibrium constants (102-104) and adsorption capacity (1-38 μg/mm2) of TiO2 coated slides to lipids. Finally, the TiO2-based-LMJSS-MS method was applied to lipidomic analysis for blood plasma and brain tissue, and compared with direct infusion MS. Results showed that (2-5)-fold more sphingolipids/glycolipids and 40-50 more glycerophospholipids/glycerides were identified in both plasma and brain extract by the new method comparing with direct infusion MS method. Detected lipids were quantified with standard addition calibration method, and the absolute quantitation results measured by TiO2-based-LMJSS-MS were verified with that by the traditional LC-MS method (correlation coefficient >0.98, slope of correlation line = 0.87-1.05).
Collapse
Affiliation(s)
- Zehui Huang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha 410008, P. R. China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| |
Collapse
|
16
|
Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta 2020; 212:120769. [DOI: 10.1016/j.talanta.2020.120769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/23/2022]
|
17
|
Zhang H, Lu H, Huang K, Li J, Wei F, Liu A, Chingin K, Chen H. Selective detection of phospholipids in human blood plasma and single cells for cancer differentiation using dispersed solid-phase microextraction combined with extractive electrospray ionization mass spectrometry. Analyst 2020; 145:7330-7339. [DOI: 10.1039/d0an01204a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid and selective determination of phospholipids in microvolume biofluid samples for cancer differentiation was achieved by d-SPME–iEESI-MS.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiajia Li
- Department of Obstetrics and Gynecology
- The First Hospital of Jilin University
- P. R. China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery
- The First Hospital of Jilin University
- P. R. China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
18
|
Lu H, Zhang H, Chingin K, Wei Y, Xu J, Ke M, Huang K, Feng S, Chen H. Sequential Detection of Lipids, Metabolites, and Proteins in One Tissue for Improved Cancer Differentiation Accuracy. Anal Chem 2019; 91:10532-10540. [DOI: 10.1021/acs.analchem.9b01507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Yiping Wei
- Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Mufang Ke
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
19
|
Unified representation of high- and low-resolution spectra to facilitate application of mass spectrometric techniques in clinical practice. CLINICAL MASS SPECTROMETRY 2019; 12:37-46. [DOI: 10.1016/j.clinms.2019.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/06/2023]
|