1
|
Yin F, Zhou X, Zhang M, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Biocompatible WSe 2@BSA Dots with Merged Catalyst and Coreactant for Efficient Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406374. [PMID: 39285809 DOI: 10.1002/smll.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Electrochemiluminescence (ECL) is a powerful tool for clinical diagnosis due to its exceptional sensitivity. However, the standard tripropylamine (TPrA) coreactant for Ru(bpy)3Cl2, the most widely studied and used ECL system, is highly toxic. Despite extensive research on alternative coreactants, they often fall short in poor efficiency. From a reaction kinetics perspective, accelerating electrooxidation rate of Ru(bpy)3Cl2 is an essential way to compensate the efficiency limitation of coreactants, but is rarely reported. Here, a hybrid electrocatalyst@coreactant dots for the ECL of Ru(bpy)3Cl2 is reported. The as-prepared WSe2@bovine serum albumin (WSe2@BSA) dots is biocompatible, and demonstrate dual functions, i.e., the BSA shell works as a coreactant, meanwhile, the WSe2 core effectively catalyzes Ru(bpy)3Cl2 oxidation. As a result, WSe2@BSA dots exhibit an exceptionally high efficiency comparable to TPrA for the ECL of Ru(bpy)3Cl2. In addition, the procedure for synthesizing WSe2@BSA dots is facile (room temperature, atmospheric conditions), rapid (5 min), and scalable (for millions of bioassays). A biosensor utilizing WSe2@BSA dots shows promise for highly sensitive detecting glypican-3 in clinical liver cancer serum samples, especially for alpha-fetoprotein-negative patients. This work opens a new avenue for developing a highly efficient ECL system for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaohe Zhou
- Medical School, Southeast University, Nanjing, 210009, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Lu S, Wu J, Luo T, Liu J, Xi F, Zhang W. Solid-phase electrochemiluminescence immunosensing platform based on bipolar nanochannel array film for sensitive detection of carbohydrate antigen 125. Front Chem 2024; 12:1493368. [PMID: 39525961 PMCID: PMC11549670 DOI: 10.3389/fchem.2024.1493368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Development of simple solid-phase electrochemiluminescence (ECL) immunosensor with convenient fabrication for high-performance detection of tumor biomarkers is crucial. Herein, a solid-phase ECL immunoassay was constructed based on a bipolar silica nanochannel film (bp-SNA) modified electrode for highly sensitive detection of carbohydrate antigen 125 (CA 125). Inexpensive and readily available indium tin oxide (ITO) electrode was used as the supporting electrode for the growth of bp-SNA. bp-SNA consists of a bilayer SNA film with different functional groups and charge properties, including negatively charged inner layer SNA (n-SNA) and positively charged outer layer SNA (p-SNA). The nanochannels of bp-SNA were used for the immobilization of ECL emitter tris(bipyridine)ruthenium(II), while the outer surface was utilized for constructing the immunorecognition interface. Due to the dual electrostatic interaction composed of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, ECL emitter could be stably confined within bp-SNA, providing stable and high ECL signals to the modified electrode. After amino groups on the outer surface of bp-SNA were derivatized with aldehyde groups, recognition antibodies could be covalently immobilized, and an immunosensor was obtained after blocking nonspecific sites. When CA 125 binds to the antibodies on the recognition interface, the formed complex reduces the diffusion of the co-reactant tripropylamine (TPrA) to the supporting electrode, decreasing the ECL signal. Based on this mechanism, the constructed immunosensor can achieve sensitive ECL detection of CA 125. The linear detection range is from 0.01 to 100 U/mL, with a detection limit of 4.7 mU/mL. CA 125 detection in serum is also achieved. The construction immunosensor has advantages including simple and convenient fabrication, high stability of the immobilized emitter, and high selectivity, making it suitable for CA 125 detection.
Collapse
Affiliation(s)
- Shaolong Lu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junjie Liu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengna Xi
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenhao Zhang
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Yang Y, Wang JM, Liang WB, Li Y, Yuan R, Xiao DR. Pyrene-Based Metal-Organic Frameworks with Coordination-Enhanced Electrochemiluminescence for Fabricating a Biosensing Platform. Anal Chem 2024; 96:16362-16369. [PMID: 39358909 DOI: 10.1021/acs.analchem.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Enhancing the electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) is a significant topic in the ECL field. Herein, we elaborately chose PAH derivative luminophore 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4TBAPy) as the organic ligand to synthesize a new Ru-complex-free ECL-active metal-organic framework Dy-TBAPy. Interestingly, Dy-TBAPy exhibited a more brilliant ECL emission and higher ECL efficiency than H4TBAPy aggregates. On the one hand, TBAPy luminophores were assembled into rigid MOF skeleton via coordination bonds, which not only enlarged the distance between pyrene cores to eliminate the aggregation-caused quenching (ACQ) effect but also obstructed the intramolecular motions of TBAPy to diminish the nonradiative relaxation, thus realizing a remarkable coordination-enhanced ECL. On the other hand, the ultrahigh porosity of Dy-TBAPy was beneficial to the diffusion of electrons, ions, and coreactant (S2O82-) in the skeleton, which efficiently boosted the excitation of interior TBAPy luminophores and led to a high utilization ratio of TBAPy, further improving ECL properties. More intriguingly, the ECL intensity of the Dy-TBAPy/S2O82- system was about 4.1, 87.0-fold higher than those of classic Ru(bpy)32+/TPrA and Ru(bpy)32+/S2O82- systems. Considering the aforementioned fabulous ECL performance, Dy-TBAPy was used as an ECL probe to construct a supersensitive ECL biosensor for microRNA-21 detection, which showed an ultralow detection limit of 7.55 aM. Overall, our study manifests that coordinatively assembling PAHs into MOFs is a simple and practicable way to improve ECL properties, which solves the ACQ issue of PAHs and proposes new ideas for developing highly efficient Ru-complex-free ECL materials, therefore providing promising opportunities to fabricate high-sensitivity ECL biosensors.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun-Mao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan Li
- Analytical and Testing Center, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials and Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Zheng L, Li Q, Deng X, Guo Q, Liu D, Nie G. A novel electrochemiluminescence biosensor based on Ru(bpy) 32+-functionalized MOF composites and cycle amplification technology of DNAzyme walker for ultrasensitive detection of kanamycin. J Colloid Interface Sci 2024; 659:859-867. [PMID: 38218089 DOI: 10.1016/j.jcis.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
An electrochemiluminescence (ECL) sensing platform for ultrasensitive and highly selective detection of kanamycin (KANA) was developed based on the prepared Ru(bpy)32+-functionalized MOF (Ru@MOF) composites by hydrothermal synthesis and Ag+-dependent DNAzyme. In this sensor, the stem-loop DNA (HP) with the ferrocene (Fc) was used as substrate chain to quench the ECL emission generated by the Ru@MOF. Using the specific recognition effect between KANA and the KANA aptamer (Apt) and the DNAzyme dependence on Ag+, the KANA aptamer as the pendant strand of the DNAzyme was assembled on Ru@MOF/GCE with the aptamer. When both Ag+ and KANA were present simultaneously, KANA specifically was binded to KANA aptamer as a pendant chain. Subsequently, Ag+-dependent DNAzyme walker continuously cleaved the HP chain and released the modified end of Fc to restore the ECL signal of Ru@MOF composites, thus achieving selective and ultrasensitive detection of KANA. The constructed KANA biosensor exhibits a wide detection range (30 pM to 300 μM) accompanied by a low detection limit (13.7 pM). The KANA in seawater and milk samples are determined to evalute the practical application results of the sensor. This ECL detection strategy could be used for detecting other similar analytes and has broad potential application in biological analysis.
Collapse
Affiliation(s)
- Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qing Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xukun Deng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qingfu Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Chen Y, Jiang H, Liu X, Wang X. Engineered Electrochemiluminescence Biosensors for Monitoring Heavy Metal Ions: Current Status and Prospects. BIOSENSORS 2023; 14:9. [PMID: 38248386 PMCID: PMC10813191 DOI: 10.3390/bios14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Metal ion contamination has serious impacts on environmental and biological health, so it is crucial to effectively monitor the levels of these metal ions. With the continuous progression of optoelectronic nanotechnology and biometrics, the emerging electrochemiluminescence (ECL) biosensing technology has not only proven its simplicity, but also showcased its utility and remarkable sensitivity in engineered monitoring of residual heavy metal contaminants. This comprehensive review begins by introducing the composition, advantages, and detection principles of ECL biosensors, and delving into the engineered aspects. Furthermore, it explores two signal amplification methods: biometric element-based strategies (e.g., HCR, RCA, EDC, and CRISPR/Cas) and nanomaterial (NM)-based amplification, including quantum dots, metal nanoclusters, carbon-based nanomaterials, and porous nanomaterials. Ultimately, this review envisions future research trends and engineered technological enhancements of ECL biosensors to meet the surging demand for metal ion monitoring.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (H.J.); (X.L.)
| |
Collapse
|
7
|
Jiang M, Wang M, Lai W, Song X, Li J, Liu D, Wei Z, Hong C. Construction of electrochemical and electrochemiluminescent dual-mode aptamer sensors based on ferrocene dual-functional signal probes for the sensitive detection of Alternariol. Anal Chim Acta 2023; 1272:341476. [PMID: 37355320 DOI: 10.1016/j.aca.2023.341476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
In this study, a novel dual-mode aptamer sensor was developed using Fca-DNA2 as the quenching electrochemiluminescence (ECL) and electrochemical (EC) signal response probe, and Ru-MOF/Cu@Au NPs were used as the ECL substrate platform to detect Alternariol (AOH) via a competitive reaction between AOH and Fca-DNA2. Compared with the conventional aptamer sensor with a single detection signal, this dual-mode aptamer sensor has the following advantages: (1) Electrodeposition-based rapid synthesis Ru-MOF on the electrode surface. (2) The Signal amplification substance Cu@Au NPs can synergistically catalyze Triethanolamine (TEOA) to amplify ECL behavior. (3) The aptamer sensor employs the dual-functional material Fca, which can detect both ECL and EC signals, increasing the result accuracy. Both ECL and EC methods have excellent detection performance for AOH in the detection range of 0.1 pg/mL to 100 ng/mL, with detection limits of 0.014 and 0.083 pg/mL, respectively, and are expected to be used for sensitive AOH detection in real samples.
Collapse
Affiliation(s)
- Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Xuetong Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Dan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| |
Collapse
|
8
|
Su C, Jiang D, Jia S, Shan X, Chen Z. Fast cathodic electrodeposition of ZnTCPP-functionalized metal-organic framework films for preparation of a fluorescent aptamer sensor for microcystin determination. Mikrochim Acta 2023; 190:180. [PMID: 37043083 DOI: 10.1007/s00604-023-05711-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
A one-step electrodeposition-assisted self-assembly technique has been developed for preparation of ZnTCPP@MOF films with three-dimensional mesoporous structure in a three-electrode system. The internal structure of the ZnTCPP@MOF films was tuned by adjusting the electrochemical deposition voltage, deposition time, and the concentration of ZnTCPP at room temperature. The ZnTCPP@MOF films under different deposition conditions were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy, and X-ray photoelectron spectroscopy. The prepared ZnTCPP@MOF films exhibited excellent fluorescence properties, in which ZnTCPP molecules were encapsulated inside the MOF as fluorescent signal probes and structure-directing agents, which affected the electrochemical response of the ZnTCPP@MOF films. The sensing platform based on ZnTCPP@MOF film was used to detect microcystin with a wide determination range (1.0 × 10-12 mol/L ~ 1.0 × 10-5 mol/L), low determination limit (3.8 × 10-13 mol/L), and high sensitivity. More importantly, the strategy is simple, low-cost, green, and environmentally friendly, and it provides a new strategy for the direct use of MOFs films as signaling components.
Collapse
Affiliation(s)
- Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Shuyong Jia
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Lite-On OPTO Tech(CZ) Co., Ltd, No. 88, Yanghu Rd., Wujin Hi-Tech. Industrial Development Zone, Changzhou City, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Wang X, Yuan W, Sun Z, Liu F, Wang D. Ultrasensitive multicolor electrochromic sensor built on closed bipolar electrode: Application in the visual detection of Pseudomonas aeruginosa. Food Chem 2023; 403:134240. [DOI: 10.1016/j.foodchem.2022.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
|
10
|
Xu T, Xu P, Xu G, Liu M, Zhu Y. A Signal Amplification Strategy Using ATP as a Co‐Reaction Accelerator for the Electrochemiluminescence of Ru(bpy)
3
2+
/HEPES System and Detection of Iodide Anions**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tingting Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Panpan Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Guilin Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Mengyao Liu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Yinggui Zhu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| |
Collapse
|
11
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Huang L, Su R, Xi F. Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes. Front Chem 2023; 11:1126213. [PMID: 36874060 PMCID: PMC9974660 DOI: 10.3389/fchem.2023.1126213] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Sensitive determination of noradrenaline (NE), the pain-related neurotransmitters and hormone, in complex whole blood is of great significance. In this work, an electrochemical sensor was simply constructed on the pre-activated glassy carbon electrode (p-GCE) modified with vertically-ordered silica nanochannels thin film bearing amine groups (NH2-VMSF) and in-situ deposited Au nanoparticles (AuNPs). The simple and green electrochemical polarization was employed to pre-activate GCE to realize the stable binding of NH2-VMSF on the surface of electrode without the use of any adhesive layer. NH2-VMSF was conveniently and rapidly grown on p-GCE by electrochemically assisted self-assembly (EASA). With amine group as the anchor sites, AuNPs were in-situ electrochemically deposited on the nanochannels to improve the electrochemical signals of NE. Owing to signal amplification from gold nanoparticles, the fabricated AuNPs@NH2-VMSF/p-GCE sensor can achieve electrochemical detection of NE ranged from 50 nM to 2 μM and from 2 μM to 50 μM with a low limit of detection (LOD) of 10 nM. The constructed sensor exhibited high selectivity and can be easily regenerated and reused. Owing to the anti-fouling ability of nanochannel array, direct electroanalysis of NE in human whole blood was also realized.
Collapse
Affiliation(s)
| | - Ruobing Su
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Liu Y, Li B, Liu B, Zhang K. Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. BIOSENSORS 2022; 12:1105. [PMID: 36551072 PMCID: PMC9775667 DOI: 10.3390/bios12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial-temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Du D, Wang J, Guo M, Shu J, Nie W, Bian Z, Yang D, Cui H. Charge-Dependent Signal Changes for Label-Free Electrochemiluminescence Immunoassays. Anal Chem 2022; 94:16436-16442. [DOI: 10.1021/acs.analchem.2c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dexin Du
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingquan Guo
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Nie
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiping Bian
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Di Yang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Ruthenium(II) complex encapsulated multifunctional metal organic frameworks based electrochemiluminescence sensor for sensitive detection of hydrogen sulfide. Talanta 2022; 249:123602. [DOI: 10.1016/j.talanta.2022.123602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
|
16
|
Xie FT, Li YL, Guan Y, Liu JW, Yang T, Mao GJ, Wu Y, Yang YH, Hu R. Ultrasensitive dual-signal electrochemical ratiometric aptasensor based on Co-MOFs with intrinsic self-calibration property for Mucin 1. Anal Chim Acta 2022; 1225:340219. [PMID: 36038234 DOI: 10.1016/j.aca.2022.340219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
The concentration of tumor biomarker Mucin 1 (MUC 1) is highly related with many diseases, which can be employed for the early diagnosis of cancer. In this paper, an electrochemical ratiometric aptasensor with intrinsic self-calibration property for the detection of MUC 1 is presented. In this paper, Co-MOFs themselves were employed as signal substances. This strategy was fabricated by using gold nanoparticles@black phosphorus (BP) as the substrate on the electrode, followed by modification of DNA nanotetrahedrons (DTN) via Au-S bond. The terminal of DTN contains MUC 1 aptamer. In the presence of MUC 1, the signal of DNA-labeled Co-MOFs can be detected. The current signal of Co-MOFs increased and that of thionine (as reference) was unchanged upon the addition of MUC 1. Thus, an intrinsic self-calibration aptasensor was achieved. In order to simplify the modification procedure, the electrolyte solution thionine was employed as an inner reference probe. Moreover, coupling of the hybridization chain reaction (HCR) with these MOFs signal tags presents an enzyme-free method for signal amplification, endowing the proposed ratiometric biosensor detection with high reproducibility and high sensitivity. The current ratio (IIR/ISP) remained stable over 30 individual measurements performed on ten different working electrodes. Even ten repeated scans performed on a single electrode exhibited a constant current ratio. The electrochemical ratiometric aptasensor is highly sensitivity for MUC 1 with the detection limit of 1.34 fM. Our proposed ratiometric sensor has great potential for the detection of cancer-related biomarkers.
Collapse
Affiliation(s)
- Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
17
|
Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. BIOMATERIALS ADVANCES 2022; 140:213049. [PMID: 35917685 DOI: 10.1016/j.bioadv.2022.213049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.
Collapse
Affiliation(s)
- Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Anum Shahzadi
- Faculty of Pharmacy, The university of Lahore, Lahore, Pakistan
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Izan Hafeez
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ayesha Khalid
- Physics Department, Lahore Garrison University, Lahore, Pakistan
| | - Atif Ashfaq
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Syed Ossama Ali Ahmad
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - S Dilpazir
- Department of Chemistry, Comsats University, 45550, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan.
| | - Ghafar Ali
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Maaz Khan
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Qasim Khan
- Institute of Microscale Optoelectronics, Shenzhen University, Guangdong 518000, China.
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, USA.
| |
Collapse
|
18
|
Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Mikrochim Acta 2022; 189:323. [PMID: 35933502 DOI: 10.1007/s00604-022-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
A new strategy is proposed for ultrasensitive detection of chlorogenic acid (CGA) by fabricating an electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform. The novel system designed by introducing ruthenium-based 2D metal-organic framework nanosheets (Ru@Zn-MOF) as ECL acceptor and L-cysteine capped CdS quantum dots (L-CdS QDs) as ECL donor, exhibited good ECL response. The possible mechanism of the modified electrode surface reaction was discussed. Modifying of the electrode surface by application of L-CdS QDs directly on ultrathin MOF nanosheets greatly shortened the electron-transfer distance and reduce energy loss, therefore significantly improving the ECL efficiency. The prepared sensor demonstrated good stability and highly selective detection of the target molecule. Under optimal conditions, the constructed sensor for the detection of CGA exhibited a wide linear range from 1.0 × 10-10 to 1.0 × 10-4 mol·L-1 and a low detection limit of 3.2 × 10-11 mol·L-1 with a correction coefficient of 0.995. The recovery for spiked samples was calculated to be 94.4-109% and the RSD was 1.07-1.72% in real samples. The obtained sensor is considered to be a promising platform for CGA detection. Electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform is used for the detection for chlorogenic acid.
Collapse
|
19
|
Zhang X, Yang S, Lu R, Zan X, Li N. Universal Strategy to Efficiently Coat Zeolitic Imidazolate Frameworks onto Diverse Substrates. ACS OMEGA 2022; 7:17765-17773. [PMID: 35664582 PMCID: PMC9161383 DOI: 10.1021/acsomega.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Anchoring metal-organic framework (MOF) coating has attracted extensive interest due to its wide applications in drug delivery, gas storage and separation, catalysis, and so forth. Here, we reported a flexible strategy on generating ZIF-8 coatings onto diverse substrates in the scale up to hundreds cm2, independent of the geometry of the substrate, with controllable thickness, texture structure, and crystal size of coating. By understanding the mechanism and factors on the formation of ZIF-8 coatings, various zeolitic imidazolate framework coatings were successfully produced. This general strategy and in-depth insights pave the new highway to the design and synthesis of MOF coatings onto diverse substrates.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoshuo Yang
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
- Hubei
Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruofei Lu
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
| | - Na Li
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
| |
Collapse
|
20
|
Hesari M, Jia R, Mirkin MV. Metal Organic Framework (MOF) Based Electrochemical Nanosensor for Hydrogen Peroxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdi Hesari
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Rui Jia
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Michael V. Mirkin
- Queens College Department of Chemistry and Biochemistry 65-30 Kissena Blvd 11367 Flushing UNITED STATES
| |
Collapse
|
21
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
22
|
Su Z, Tang D, Yang X, Peng Y, Wang B, Li X, Chen J, Hu Y, Qin X. Selective and fast growth of CdS nanocrystals on zinc (II) metal–organic framework architectures for photoelectrochemical response and electrochemical immunosensor of foot-and-mouth disease virus. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Wang J, Hu C, Wang YS, Cui H. Chemiluminescent Two-Dimensional Metal-Organic Framework with Multiple Metal Catalytic Centers and Its Peroxidase-like Activity for Sensing of Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3156-3164. [PMID: 34982526 DOI: 10.1021/acsami.1c20092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) porphyrin-based metal-organic frameworks (MOFs) hold great promise in a variety of areas with the merits of large lateral size and abundant functional groups. The chemiluminescent 2D MOF has rarely been reported. In this work, a chemiluminescence (CL) reagent and noble metal nanoparticle dual-functionalized 2D MOF (ABEI/AuNPs/CuTCPP) was developed through the surfactant-assisted and in situ synthetic growth method, exhibiting strong and stable CL property and outstanding peroxidase-mimicking activity. The special nanostructure of ABEI/AuNPs/CuTCPP endowed it with multi-catalytic routes in the CL reaction, which showed a unique pH-regulated and time-resolved CL kinetic curve. A CL mechanism with multi-catalytic centers has been proposed. AuNPs participated in the fast catalytic process and CuTCPP in the slow and strong catalytic reaction. Owing to the impressive structural features and intrinsic enzymatic tandem reaction from natural enzyme to artificial enzyme, a model biosensor was designed for the detection of small metabolic molecules. Employing choline as a model target, the proposed biosensor showed a highly sensitive response to choline in the linear range from 0.3 to 300 μM with a detection limit of 82.6 nM. Significantly, the strategy may be generalized to the monitoring of other biologically important compounds involved in the production of H2O2.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Hu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi-Sha Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
24
|
Zhang G, Liu J, Liu C, Ding F, Li Y, Tang H, Ma M. Phosphate Group-Derivated Bipyridine-Ruthenium Complex and Titanium Dioxide Nanoparticles for Electrochemical Sensing of Protein Kinase Activity. ACS Sens 2021; 6:4451-4460. [PMID: 34870972 DOI: 10.1021/acssensors.1c01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring of protein kinase activity is of significance for fundamentals of biochemistry, biomedical diagnose, and drug screening. To reduce the usage of a relatively complicated bio-labeled signal probe, the phosphate group-derivated bipyridine-ruthenium (Pbpy-Ru) complex and titanium dioxide nanoparticles (TiO2 NPs) were employed as signal probes to develop an electrochemical sensor for evaluating the protein kinase A (PKA) activity. Through the specific interaction between the phosphate groups and TiO2 NPs, the preparation of a Pbpy-Ru-TiO2 NP signal probe and its linkage with the phosphorylated PKA substrate peptides could be performed in a simple and effective way. The tethering of Pbpy-Ru onto the TiO2 NP surface does not degrade the electrochemical property of the complex. The Pbpy-Ru-TiO2 NP probe exhibits well-defined redox signals at about 1.0 V versus Ag/AgCl reference and notably has about fivefold current response than that of the TiO2 NPs with physically adsorbed tris-(bipyridine)-Ru. The PKA activity evaluation was realized by measuring the electrochemical response of the Pbpy-Ru-TiO2 NPs at the phosphorylated peptide-assembled electrode. Operating at optimal conditions, the cathodic signals at the potential of 1.03 V exhibit a good linearity with the PKA concentrations of 0.5-40 U mL-1. The electrochemical sensor shows good selectivity, low detection limit (0.2 U mL-1, signal/noise = 3), qualified reproducibility, and satisfactory applicability for PKA determination in the cell lysate. The Pbpy-Ru-TiO2 NPs/electrode system would be an excellent electrochemical platform for protein phosphorylation monitoring and sensing.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Jingwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Chengying Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Fan Ding
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Yingqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| |
Collapse
|
25
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Wang H, Wang F, Wu T, Liu Y. Highly Active Electrochemiluminescence of Ruthenium Complex Co-assembled Chalcogenide Nanoclusters and the Application for Label-Free Detection of Alkaline Phosphatase. Anal Chem 2021; 93:15794-15801. [PMID: 34779626 DOI: 10.1021/acs.analchem.1c04130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rational design of electrochemiluminescence (ECL) reagents is essential for the development of ECL biosensors with superior performances. In this work, the assembly of tris(1,10-phenanthroline)ruthenium(II) [Ru(phen)32+] and tetrahedral chalcogenide nanoclusters of [Cd32S14(SC6H5)38]2- in the formation of complex nanoclusters (CdS-Ru) was developed, in which Ru(phen)32+ was uniformly encapsulated and dispersed at a molecular level in the chalcogenide nanocluster via multiple noncovalent interactions. It was observed that the promoted ECL emission was realized by the charge transfer between the tetrahedral CdS nanocluster and Ru(phen)32+ by the formation of the assembly complex, which was elucidated by cyclic voltammetry curves, ECL-potential curves, and in situ dynamic ECL spectra. Taking advantages of the facile charge transfer in the open framework CdS-Ru, a high ECL efficiency has been achieved with remarkable stability. Moreover, a solid-state ECL sensor based on the CdS-Ru modified electrode was fabricated for label-free detection of alkaline phosphatase (ALP) activity with a detection limit as low as 0.35 U/L and superior reproducibility. This solid-state ECL sensor also displayed favorable selectivity among various interferences and was applied for ALP activity analysis in human serum samples. These results implicated the potential applications of CdS-Ru for sensitive ECL analysis in complicated reaction systems and enlightened the rational design for self-enhanced and highly efficient ECL materials.
Collapse
Affiliation(s)
- Hongye Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Feng Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Li L, Liu X, He S, Cao H, Su B, Huang T, Chen Q, Liu M, Yang DP. Electrochemiluminescence Immunosensor Based on Nanobody and Au/CaCO 3 Synthesized Using Waste Eggshells for Ultrasensitive Detection of Ochratoxin A. ACS OMEGA 2021; 6:30148-30156. [PMID: 34778686 PMCID: PMC8582264 DOI: 10.1021/acsomega.1c05213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
A novel ultrasensitive electrochemiluminescence (ECL) immunoassay based on Au/CaCO3 was proposed for detecting ochratoxin A (OTA) in coffee. Au/CaCO3 nanocomposites synthesized using waste eggshells as the template with a large surface area and excellent electrochemical properties were applied for immobilizing a large amount of Ru(bpy)3 2+ and conjugating a high-affinity nanobody (prepared by the phage display technique). Coupling of the Au/CaCO3 nanocomposites and nanobody technologies provided an ultrasensitive and highly selective ECL immunosensor for OTA detection in the range of 10 pg/mL-100 ng/mL with a low detection limit of 5.7 pg/mL. Moreover, the as-prepared ECL immunosensor showed excellent performance and high stability. Finally, the proposed ECL sensor was applied to analyze OTA in coffee samples, confirming the desirable accuracy and practical applicability potential. Overall, this work presents a new nanomaterial for fabricating the sensing interface of immunosensors by harnessing natural waste as the source and a method for detecting toxic OTA in foods.
Collapse
Affiliation(s)
- Linzhi Li
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xing Liu
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Saijun He
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Hongmei Cao
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Benchao Su
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Tianzeng Huang
- College
of Chemistry and Engineering Technology, Hainan University, 58
Renmin Avenue, Haikou 570228, China
| | - Qi Chen
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Minghuan Liu
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
| | - Da-Peng Yang
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
- School
of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
28
|
Wang C, Li Z, Ju H. Copper-Doped Terbium Luminescent Metal Organic Framework as an Emitter and a Co-reaction Promoter for Amplified Electrochemiluminescence Immunoassay. Anal Chem 2021; 93:14878-14884. [PMID: 34702024 DOI: 10.1021/acs.analchem.1c03988] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work designed a signal amplification strategy for construction of a highly sensitive electrochemiluminescence (ECL) biosensor by doping Cu2+ in a terbium luminescent metal organic framework (Cu:Tb-MOF) to act as a co-reaction promoter, which enhanced the generation of SO4•- radical during the cathodic process in the presence of K2S2O8 as a co-reactant. The porous and hollow morphology and the size of Cu:Tb-MOF could be efficiently tuned via changing the molar ratio of Cu2+ and Tb3+ and the reaction time, which were related to the specific surface area, pore diameter, and the ECL intensity of the MOF structure. To further improve the sensitivity of the ECL biosensor, H2O2 was introduced into the ECL system to act as another co-reaction promoter, leading to a new ECL mechanism involving dual co-reaction promoters. In view of the low electron transfer resistance of Cu:Tb-MOF, a label-free ECL immunosensor was conveniently constructed by co-immobilizing Cu:Tb-MOF and the capture antibody on the electrode surface. Using pro-gastrin-releasing peptide (ProGRP, a biomarker of small-cell lung cancer) as the model target, the proposed immunosensor exhibited excellent performance with a detection range of 1.0 pg·mL-1 to 50 ng·mL-1 and a limit of detection down to 0.68 pg·mL-1 (3σ). This work demonstrated a strategy to use the MOF structures as both an emitter and a co-reaction promoter for amplified ECL emission and proposed an innovative route to extend the application of lanthanide MOFs.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
29
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X. One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46225-46232. [PMID: 34553591 DOI: 10.1021/acsami.1c09095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.
Collapse
Affiliation(s)
- Daili Tang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolan Yang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Birui Wang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yanbin Ding
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Xu
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Junjie Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yang Peng
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaohong Su
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Qin
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
31
|
Hu S, Chen H, Zhan X, Qin X, Kuang Y, Li M, Liang Z, Yang J, Su Z. One-pot electrodeposition of metal organic frameworks composites accelerated by electroreduced graphene oxide and gold nanoparticles for rutin electroanalysis. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ma Y, Yu Y, Mu X, Yu C, Zhou Y, Chen J, Zheng S, He J. Enzyme-induced multicolor colorimetric and electrochemiluminescence sensor with a smartphone for visual and selective detection of Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125538. [PMID: 33721776 DOI: 10.1016/j.jhazmat.2021.125538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/06/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, we developed a novel dual-analytical platform for the visual, sensitive, and reliable analysis of mercury ions (Hg2+) in environmental water samples. Importantly, thymine (T)-rich DNA probes were utilized to form T-Hg2+-T base pairs in the presence of Hg2+ to ensure the specificity of the method. We synthesized new luminescent tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)32+)-modified metal-polydopamine frameworks (MPFs@Ru), which were then applied to construct an electrochemiluminescence (ECL) system for the first time, and it achieved accurate and sensitive quantitative detection of Hg2+. To achieve rapid on-site determination, a multicolorimetric system based on a smartphone was established by inducing deposition of silver shells on gold nanorods (Au NRs). Under optimized conditions, the dual-modal assay showed an excellent response for Hg2+ in the linear range of 2 pmol L-1 to 500 nmol L-1, with a low detection limit of 0.32 pmol L-1. Moreover, the proposed method demonstrated satisfactory selectivity, stability, and acceptable reproducibility for the detection of Hg2+. The recovery of lake water samples ranged from 98.53% to 111.97% for the ECL method and from 95.04% to 106.11% for the colorimetric method, indicating the potential applicability of the proposed method for monitoring environmental water samples.
Collapse
Affiliation(s)
- Yidan Ma
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yujie Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuan Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shuting Zheng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Jiao Y, Zhuang J, Zhang T, He L. Research on the Adaptive Sensitivity Scanning Method for Ion Conductance Microscopy with High Efficiency and Reliability. Anal Chem 2021; 93:12296-12304. [PMID: 34347443 DOI: 10.1021/acs.analchem.1c01918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a type of in situ measurement technology for noncontact detection of samples in electrolytes with nanoscale resolution and has been used increasingly in biomedical and electrochemical fields in recent years. However, there is an inherent contradiction in the technique that makes SICM's sensitivity and accuracy difficult to balance. Higher sensitivity allows for faster probe speeds and higher scanning reliability but leads to lower accuracy, and vice versa. To resolve this problem, an adaptive sensitivity scanning method is proposed here that is designed to increase SICM's imaging efficiency without reducing its scanning reliability and accuracy. In the proposed scanning method, the sensitivity is automatically switched via the bias voltage based on the probe-sample distance. When the probe is located far away from the sample, the probe then predetects the sample position rapidly with high sensitivity. When the sample has been sensed in the high-sensitivity phase, the probe then detects the sample with low sensitivity. The basic theory and the feasibility of the alterable sensitivity detection strategy is also studied using the finite element method (FEM) and by performing experiments in this work. Finally, through testing of the standard silicon and polydimethylsiloxane (PDMS) samples, the proposed method is shown to increase SICM imaging efficiency significantly by up to 5 times relative to the conventional hopping mode without sacrificing the scanning accuracy and reliability.
Collapse
Affiliation(s)
- Yangbohan Jiao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Langchong He
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
34
|
Souri Z, Alizadeh S, Nematollahi D, Mazloum-Ardakani M, Karami A. A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Wang M, Liu J, Liang X, Gao R, Zhou Y, Nie X, Shao Y, Guan Y, Fu L, Zhang J, Shao Y. Electrochemiluminescence Based on a Dual Carbon Ultramicroelectrode with Confined Steady-State Annihilation. Anal Chem 2021; 93:4528-4535. [PMID: 33657320 DOI: 10.1021/acs.analchem.0c04954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing novel microelectronic devices for electrochemical measurements and electrochemiluminescence (ECL) study is of great importance. Herein, we fabricated a submicrometer-sized dual carbon electrode (DCE) and investigated its annihilation ECL behavior under steady-state conditions for the first time. The oxidation and reduction of the model luminophore, [Ru(bpy)3]2+, occurred separately at the two sides of the DCE, and the electrogenerated ions then diffused to the gap between the two electrodes to generate the excited-state intermediate [Ru(bpy)3]2+* and ECL emission. Compared with other types of two-electrode systems, the prepared DCE possesses a smaller total size and an ultrasmall interelectrode distance of 60 nm or less, which could result in a shorter diffusion time and an amplified ECL signal without the purification of the solvent and supporting electrolytes. On the basis of the constructed ECL microscopic platform, we successfully obtained a stable and confined ECL signal in the vicinity of the electrode tip. Furthermore, a two-dimensional finite element method simulation of this model system was performed to quantitively analyze the concentration profiles of the electrogenerated species around the tip of the DCE and predict the concentrations of [Ru(bpy)3]2+* with various gap distances. The simulation results also proved that the higher concentrations of [Ru(bpy)3]2+* could be achieved with a smaller distance with a possible amplification factor of 6 (compared with the concentration when the gap distance is greater than 300 nm). This work provides an experimental model for further improvement of ECL efficiency and broadens the availability for annihilation ECL applications in small confined spaces.
Collapse
Affiliation(s)
- Minghan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rongyao Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yiming Zhou
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yan Guan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Limin Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Jianping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
36
|
Evtugyn G, Belyakova S, Porfireva A, Hianik T. Electrochemical Aptasensors Based on Hybrid Metal-Organic Frameworks. SENSORS 2020; 20:s20236963. [PMID: 33291498 PMCID: PMC7729924 DOI: 10.3390/s20236963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) offer a unique variety of properties and morphology of the structure that make it possible to extend the performance of existing and design new electrochemical biosensors. High porosity, variable size and morphology, compatibility with common components of electrochemical sensors, and easy combination with bioreceptors make MOFs very attractive for application in the assembly of electrochemical aptasensors. In this review, the progress in the synthesis and application of the MOFs in electrochemical aptasensors are considered with an emphasis on the role of the MOF materials in aptamer immobilization and signal generation. The literature information of the use of MOFs in electrochemical aptasensors is classified in accordance with the nature and role of MOFs and a signal mode. In conclusion, future trends in the application of MOFs in electrochemical aptasensors are briefly discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
- Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence: (G.E.); (T.H.); Tel.: +7-843-2337491 (G.E.); +421-2-6029-5683 (T.H.)
| | - Svetlana Belyakova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
- Correspondence: (G.E.); (T.H.); Tel.: +7-843-2337491 (G.E.); +421-2-6029-5683 (T.H.)
| |
Collapse
|
37
|
Nagatomi H, Gallington LC, Goswami S, Duan J, Chapman KW, Yanai N, Kimizuka N, Farha OK, Hupp JT. Regioselective Functionalization of the Mesoporous Metal-Organic Framework, NU-1000, with Photo-Active Tris-(2,2'-bipyridine)ruthenium(II). ACS OMEGA 2020; 5:30299-30305. [PMID: 33251464 PMCID: PMC7689908 DOI: 10.1021/acsomega.0c04823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Solvent-assisted ligand incorporation is an excellent method for the post-synthetic functionalization of Zr-based metal-organic frameworks (MOFs), as carboxylate-derivative functionalities readily coordinate to the Zr6 nodes by displacing node-based aqua and terminal hydroxo ligands. In this study, a photocatalytically active ruthenium complex RuII(bpy)2(dcbpy), that is, bis-(2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine)ruthenium, was installed in the mono-protonated (carboxylic acid) form within NU-1000 via SALI. Crystallographic information regarding the siting of the ruthenium complex within the MOF pores is obtained by difference envelope density analysis. The ruthenium-functionalized MOF, termed Ru-NU-1000, shows excellent heterogeneous photocatalytic activity for an oxidative amine coupling reaction.
Collapse
Affiliation(s)
- Hisanori Nagatomi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Leighanne C. Gallington
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4858, United States
| | - Subhadip Goswami
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jiaxin Duan
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Karena W. Chapman
- Department
of Chemistry, Stony Brook University, 100 Nichols Rd, Stony Brook, New York 11794-3400, United States
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
38
|
Ye J, Yan M, Zhu L, Huang J, Yang X. Novel electrochemiluminescence solid-state pH sensor based on an i-motif forming sequence and rolling circle amplification. Chem Commun (Camb) 2020; 56:8786-8789. [PMID: 32618291 DOI: 10.1039/d0cc03694c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a pH-dependent i-motif forming sequence and rolling circle amplification (RCA) strategy, a novel electrochemiluminescence (ECL) solid-state pH sensor was proposed herein. The sensor showed a wide dynamic response range from pH 4 to 7.4. Furthermore, our sensor could be used to determine glucose, demonstrating its practical applicability.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| | - Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| |
Collapse
|
39
|
Quinone-based antibody labeling reagent for enzyme-free chemiluminescent immunoassays. Application to avidin and biotinylated anti-rabbit IgG labeling. Biosens Bioelectron 2020; 160:112215. [DOI: 10.1016/j.bios.2020.112215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
|
40
|
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020; 164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) as porous materials have attracted much attention in various fields such as gas storage, catalysis, separation, and nanomedical engineering. However, their applications in electrochemiluminescence (ECL) biosensing are limited due to the poor conductivity, lack of modification sites, low stability and specificity, and weak biocompatibility. Integrating the functional materials into MOF structures endows MOF composites with improved conductivity and stability and facilitates the design of ECL sensors with multifunctional MOFs, which are potentially advantageous over their individual components. This review summarizes the strategies for designing ECL-active MOF composites including using luminophore as a ligand, in situ encapsulation of luminophore within the framework, and post-synthetic modification. As-prepared MOF composites can serve as innovative emitters, luminophore carriers, electrode modification materials and co-reaction accelerators in ECL biosensors. The sensing applications of ECl-active MOF composites in the past five years are highlighted including immunoassays, genosensors, and small molecule detection. Finally, the prospects and challenges associated with MOF composites and their related materials for ECL biosensing are tentatively proposed.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
41
|
Chen K, Xue J, Zhou Q, Zhang Y, Zhang M, Zhang Y, Zhang H, Shen Y. Coupling metal-organic framework nanosphere and nanobody for boosted photoelectrochemical immunoassay of Human Epididymis Protein 4. Anal Chim Acta 2020; 1107:145-154. [DOI: 10.1016/j.aca.2020.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
42
|
Yang Y, Hu GB, Liang WB, Yao LY, Huang W, Zhang YJ, Zhang JL, Wang JM, Yuan R, Xiao DR. An AIEgen-based 2D ultrathin metal-organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. NANOSCALE 2020; 12:5932-5941. [PMID: 32108836 DOI: 10.1039/c9nr10712f] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a novel two-dimensional (2D) ultrathin metal-organic layer (MOL) based on the aggregation-induced emission (AIE) ligand H4ETTC (H4ETTC = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid))) was developed and used to construct a novel electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of carcinoembryonic antigen (CEA). The newly synthesized AIE luminogen (AIEgen)-based MOL (Hf-ETTC-MOL) yielded a higher ECL intensity and efficiency than did H4ETTC monomers, H4ETTC aggregates and 3D bulk Hf-ETTC-MOF. This improvement occurred not only because the ETTC ligands were coordinatively immobilized in a rigid MOL matrix, which restricted the intramolecular free rotation and vibration of these ligands and then reduced the non-radiative transition, but also because the porous ultrathin 2D MOL greatly shortened the transport distances of ions, electrons, coreactant (triethylamine, TEA) and coreactant intermediates (TEA˙ and TEA˙+), which made more ETTC luminophores able to be excited and yielded a high ECL efficiency. On the basis of using the Hf-ETTC-MOL as a novel ECL emitter and rolling circle amplification (RCA) as a signal amplification strategy, the constructed ECL aptasensor exhibited a linear range from 1 fg mL-1 to 1 ng mL-1 with a detection limit of 0.63 fg mL-1. This work has opened up new prospects for developing novel ECL materials and is expected to lead to increased interest in using AIEgen-based MOLs for ECL sensing.
Collapse
Affiliation(s)
- Yang Yang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Gui-Bing Hu
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wen-Bin Liang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Li-Ying Yao
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wei Huang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yong-Jiang Zhang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Jin-Ling Zhang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Jun-Mao Wang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Dong-Rong Xiao
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
43
|
Husain RA, Barman SR, Chatterjee S, Khan I, Lin ZH. Enhanced biosensing strategies using electrogenerated chemiluminescence: recent progress and future prospects. J Mater Chem B 2020; 8:3192-3212. [DOI: 10.1039/c9tb02578b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of enhancement strategies for highly sensitive ECL-based sensing of bioanalytes enabling early detection of cancer.
Collapse
Affiliation(s)
- Rashaad A. Husain
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Subhodeep Chatterjee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Imran Khan
- Institute of NanoEngineering and MicroSystems
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Power Mechanical Engineering
| |
Collapse
|
44
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
45
|
Alizadeh S, Nematollahi D. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Sci Rep 2019; 9:14325. [PMID: 31586078 PMCID: PMC6778079 DOI: 10.1038/s41598-019-50390-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023] Open
Abstract
Employing the environmentally friendly methods for synthesis of the metal-organic frameworks (MOFs) is an urgent need and sustainable development in the synthesis of these compounds is essential. In this way, ignoring the counter electrode reaction is a potentially negative point from green chemistry standpoint which increases some issues like energy consumption and reaction time. We wish to introduce the "paired electrodeposition" (PED) technique as a new method for the simultaneous synthesis and deposition of the MOF thin films (MOFTFs). This protocol implements the uniform pattern of two MOFTF modified substrates by "convergent (CPED: Zna/Znc-MOFTFs) and divergent (DPED: Cua/Znc-MOFTFs) paired electrodeposition" via a one-step synthesis. With the rule of thumb, enhanced energy efficiency and atom economy, increasing electrochemical yield, time-saving along with a variety of products are advantages of this technique. Besides, the "Electrode Modification Efficiency" has introduced for the evaluation of functionality and modification efficiency of electrochemical heterogeneous systems, especially MOFTFs. To investigate this concept, we synthesized Zn3(BTC)2 and Cu3(BTC)2 as MOF models under constant current electrolysis in water and at room temperature. This work can make a breakthrough in the green synthesis of metal-organic frameworks.
Collapse
Affiliation(s)
- Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 65174-38683, Iran.
| | - Davood Nematollahi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 65174-38683, Iran.
| |
Collapse
|
46
|
Wang C, Zhang N, Wei D, Feng R, Fan D, Hu L, Wei Q, Ju H. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens Bioelectron 2019; 142:111521. [DOI: 10.1016/j.bios.2019.111521] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023]
|
47
|
Liao X, Fu H, Yan T, Lei J. Electroactive metal-organic framework composites: Design and biosensing application. Biosens Bioelectron 2019; 146:111743. [PMID: 31586760 DOI: 10.1016/j.bios.2019.111743] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
Metal-organic frameworks (MOFs) as molecular crystalline materials have been extensively applied in various fields such as catalysis, separation, and biomedical engineering. However, the applications of MOFs materials are limited in electrochemical biosensing due to the poor conductivity, less selectivity, and lack of modification sites. By incorporating the functionalized nanoparticles into MOF structures, MOF-based composites are endowed with high electronic conductivity and strong catalytic activity, which process the advantages over single-component MOFs. With a particular focus on the electrochemical applications of MOF composites, this review summarizes the comprehensive guidelines on design of electroactive MOF composites: dopant modification of electroactive ligands, in situ synthesis of nanoparticle@MOF composites and post-modification of MOF structure. The illustrative examples of electroactive MOF composites in the last five years are highlighted in electrochemical, electrochemiluminescent, and photoelectrochemical biosensing. The prospects and challenges for future work are also included. Understanding the structure-function relationship of electroactive MOF composites benefits the design of next-generation electrochemical biosensors.
Collapse
Affiliation(s)
- Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tingting Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
48
|
Bai W, Cui A, Liu M, Qiao X, Li Y, Wang T. Signal-Off Electrogenerated Chemiluminescence Biosensing Platform Based on the Quenching Effect between Ferrocene and Ru(bpy) 32+-Functionalized Metal-Organic Frameworks for the Detection of Methylated RNA. Anal Chem 2019; 91:11840-11847. [PMID: 31414596 DOI: 10.1021/acs.analchem.9b02569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N6-methyladenine (m6A), one of the most common chemical modifications of eukaryotic RNA, participates in many important biological processes. An effective strategy for the quantitative determination of m6A is of great significance. Herein, we used methylated microRNA-21 (miRNA21) as the model target to propose a simple and sensitive electrogenerated chemiluminescence (ECL) biosensing platform to detect a specific m6A RNA sequence. This strategy is based on the fact that the anti-m6A-antibody can specifically recognize and bind to the m6A site in the RNA sequence, resulting in a quenching effect between Ru(bpy)32+-functionalized metal-organic frameworks and ferrocene. Luminescent metal-organic frameworks (Ru@MOFs) not only act as ECL indicators but also serve as nanoreactors for the relative ECL reactions owing to their porous or multichannel structure, which overcomes the fact that Ru(bpy)32+ is easily released when used for aqueous-phase detection, thus enhancing the ECL efficiency. Moreover, the ECL method has fewer modification steps and uses only one antibody to recognize the target RNA sequence, which simplifies the operation process and reduces the detection time, presenting a wide linear range (0.001-10 nM) for m6A RNA determination with a low detection limit (0.0003 nM). Additionally, this developed strategy was validated for m6A RNA detection in human serum. Thus, the ECL biosensing method provides a new method for m6A RNA determination that is simple, highly specific, and sensitive.
Collapse
Affiliation(s)
- Wanqiao Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Aiping Cui
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Meizhou Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
49
|
Zhang J, Jin R, Jiang D, Chen HY. Electrochemiluminescence-Based Capacitance Microscopy for Label-Free Imaging of Antigens on the Cellular Plasma Membrane. J Am Chem Soc 2019; 141:10294-10299. [PMID: 31180678 DOI: 10.1021/jacs.9b03007] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemiluminescence (ECL)-based capacitance microscopy using a square-wave voltage is established unprecedentedly to realize the label-free visualization of species on electrode surfaces and cellular plasma membranes. The drop in the local capacitance upon the binding of species to the surface or to a cellular membrane is derived to induce a relatively larger potential drop ( Vdl) across the double layer on the local electrode surface, which is utilized to prompt enhanced ECL at the binding position. The square-wave voltage with a frequency of as high as 1.5 kHz is proven to be favorable for the discrimination of the local ECL from the surrounding signal. Using this new detection principle and resultant capacitance microscopy, carcinoembryonic antigens (CEA) at amounts of as low as 1 pg can be visualized. Further application of this approach permits the direct imaging of CEA antigens on single MCF-7 cells through the capacitance change after the formation of the antigen-antibody complex. Successful visualization of the analyte without any ECL tag will allow not only special capacitance microscopy for label-free bioassays but also a novel ECL detection approach for the sensitive detection of biomolecules.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China.,School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211126 , P. R. China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
50
|
Xu Y, Zheng B, Gao T, Meng Y, Yuan H, Xiao D. Improved Electrochemiluminescence Behavior of Glassy Carbon Electrode Through In Situ Chemical Bonding Modification. ChemElectroChem 2019. [DOI: 10.1002/celc.201801849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanxue Xu
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Baozhan Zheng
- College of ChemistrySichuan University Chengdu 610065 P. R. China
| | - Taotao Gao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Yan Meng
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Hongyan Yuan
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Dan Xiao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| |
Collapse
|