1
|
Zhang Y, Zhu J, Zhao J, Wang X, Wei T, Gao T. A single-microbe living bioelectronic sensor for intracellular amperometric analysis. Biosens Bioelectron 2024; 265:116648. [PMID: 39178718 DOI: 10.1016/j.bios.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of "Warburg Effect". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.
Collapse
Affiliation(s)
- Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Fernández-Vega L, Meléndez-Rodríguez DE, Ospina-Alejandro M, Casanova K, Vázquez Y, Cunci L. Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements. ACS Sens 2024; 9:2645-2652. [PMID: 38709872 PMCID: PMC11127761 DOI: 10.1021/acssensors.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.
Collapse
Affiliation(s)
- Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | | | - Mónica Ospina-Alejandro
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Karina Casanova
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Yolimar Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
3
|
Forderhase AG, Ligons LA, Norwood E, McCarty GS, Sombers LA. Optimized Fabrication of Carbon-Fiber Microbiosensors for Codetection of Glucose and Dopamine in Brain Tissue. ACS Sens 2024; 9:2662-2672. [PMID: 38689483 DOI: 10.1021/acssensors.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Dopamine (DA) signaling is critically important in striatal function, and this metabolically demanding process is fueled largely by glucose. However, DA and glucose are typically studied independently and, as such, the precise relationship between DA release and glucose availability remains unclear. Fast-scan cyclic voltammetry (FSCV) is commonly coupled with carbon-fiber microelectrodes to study DA transients. These microelectrodes can be modified with glucose oxidase (GOx) to generate microbiosensors capable of simultaneously quantifying real-time and physiologically relevant fluctuations of glucose, a nonelectrochemically active substrate, and DA, which is readily oxidized and reduced at the electrode surface. A chitosan hydrogel can be electrodeposited to entrap the oxidase enzyme on the sensor surface for stable, sensitive, and selective codetection of glucose and DA using FSCV. This strategy can also be used to entrap lactate oxidase on the carbon-fiber surface for codetection of lactate and DA. However, these custom probes are individually fabricated by hand, and performance is variable. This study characterizes the physical nature of the hydrogel and its effects on the acquired electrochemical data in the detection of glucose (2.6 mM) and DA (1 μM). The results demonstrate that the electrodeposition of the hydrogel membrane is improved using a linear potential sweep rather than a direct step to the target potential. Electrochemical impedance spectroscopy data relate information on the physical nature of the electrode/solution interface to the electrochemical performance of bare and enzyme-modified carbon-fiber microelectrodes. The electrodeposition waveform and scan rate were characterized for optimal membrane formation and performance. Finally, codetection of both DA/glucose and DA/lactate was demonstrated in intact rat striatum using probes fabricated according to the optimized protocol. Overall, this work improves the reliable fabrication of carbon-fiber microbiosensors for codetection of DA and important energetic substrates that are locally delivered to the recording site to meet metabolic demand.
Collapse
Affiliation(s)
- Alexandra G Forderhase
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lailah A Ligons
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Emilie Norwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Gregory S McCarty
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
6
|
Kimble L, Twiddy JS, Berger JM, Forderhase AG, McCarty GS, Meitzen J, Sombers LA. Simultaneous, Real-Time Detection of Glutamate and Dopamine in Rat Striatum Using Fast-Scan Cyclic Voltammetry. ACS Sens 2023; 8:4091-4100. [PMID: 37962541 PMCID: PMC10683757 DOI: 10.1021/acssensors.3c01267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Glutamate and dopamine (DA) represent two key contributors to striatal functioning, a region of the brain that is essential to motor coordination and motivated behavior. While electroanalytical techniques can be utilized for rapid, spatially resolved detection of DA in the interferent-rich brain environment, glutamate, a nonelectroactive analyte, cannot be directly detected using electroanalytical techniques. However, it can be probed using enzyme-based sensors, which generate an electroactive reporter in the presence of glutamate. The vast majority of glutamate biosensors have relied on amperometric sensing, which is an inherently nonselective detection technique. This approach necessitates the use of complex and performance-limiting modifications to ensure the desired single-analyte specificity. Here, we present a novel glutamate microbiosensor fabricated on a carbon-fiber microelectrode substrate and coupled with fast-scan cyclic voltammetry (FSCV) to enable the simultaneous quantification of glutamate and DA at single recording sites in the brain, which is impossible when using typical amperometric approaches. The glutamate microbiosensors were characterized for sensitivity, stability, and selectivity by using a voltammetric waveform optimized for the simultaneous detection of both species. The applicability of these sensors for the investigation of neural circuits was validated in the rat ventral striatum. Electrically evoked glutamate and DA release were recorded at single-micrometer-scale locations before and after pharmacological manipulation of glutamatergic signaling. Our novel glutamate microbiosensor advances the state of the art by providing a powerful tool for probing coordination between these two species in a way that has previously not been possible.
Collapse
Affiliation(s)
- Laney
C. Kimble
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jack S. Twiddy
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint
Department of Biomedical Engineering, North
Carolina State University and University of North Carolina at Chapel
Hill, Raleigh, North Carolina 27695, United States
| | - Jenna M. Berger
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandra G. Forderhase
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Meitzen
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, Department of Biological Sciences, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Zhou Y. ELECTROCHEMICAL SENSOR FOR SWEAT MONITORING. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: Attention is given to developing electrochemical sensors for the rapid and real-time measurement of lactate levels. The synthesis of electrochemical sensors is based on an electrode modified with a nanocomposite. Objective: Analyze an electrochemical sensor's feasibility for sports monitoring sweat in lactate. The Au@CNTs were the main focus of this study. Methods: The Au@CNTs composite was synthesized on the GCE surface and tested under pre-established protocols as a sensor. Results: The shape and structure of the modified electrodes were analyzed using SEM. The results showed that the Au@CNTs nanoparticles in the Au@CNTs nanocomposite were evenly distributed throughout the porous CNTs network. The performance of the developed sensor was measured using cyclic voltammetry and amperometry. The electrochemical biosensor responded linearly to lactate over phosphate buffer solution with a low detection limit and sensitivity. Conclusion: The experiment of this sensor evaluated lactate concentrations in real sweat samples that were exceptionally close to the injection amount, enabling it as an effective biosensor for the detection of lactate in sweat samples. Level of Evidence: Therapeutic Studies - Outcome Investigation.
Collapse
Affiliation(s)
- Yanling Zhou
- Guilin University of Aerospace Technology, China
| |
Collapse
|
8
|
Dias C, Fernandes E, Barbosa RM, Ledo A. A Platinized Carbon Fiber Microelectrode-Based Oxidase Biosensor for Amperometric Monitoring of Lactate in Brain Slices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7011. [PMID: 36146360 PMCID: PMC9501957 DOI: 10.3390/s22187011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Direct and real-time monitoring of lactate in the extracellular space can help elucidate the metabolic and modulatory role of lactate in the brain. Compared to in vivo studies, brain slices allow the investigation of the neural contribution separately from the effects of cerebrovascular response and permit easy control of recording conditions. METHODS We have used a platinized carbon fiber microelectrode platform to design an oxidase-based microbiosensor for monitoring lactate in brain slices with high spatial and temporal resolution operating at 32 °C. Lactate oxidase (Aerococcus viridans) was immobilized by crosslinking with glutaraldehyde and a layer of polyurethane was added to extend the linear range. Selectivity was improved by electropolymerization of m-phenylenediamine and concurrent use of a null sensor. RESULTS The lactate microbiosensor exhibited high sensitivity, selectivity, and optimal analytical performance at a pH and temperature compatible with recording in hippocampal slices. Evaluation of operational stability under conditions of repeated use supports the suitability of this design for up to three repeated assays. CONCLUSIONS The microbiosensor displayed good analytical performance to monitor rapid changes in lactate concentration in the hippocampal tissue in response to potassium-evoked depolarization.
Collapse
Affiliation(s)
- Cândida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Eliana Fernandes
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui M. Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Lambers H, Wachsmuth L, Thomas D, Boumezbeur F, Hoesker V, Pradier B, Faber C. Fiber-based lactate recordings with fluorescence resonance energy transfer sensors by applying an magnetic resonance-informed correction of hemodynamic artifacts. NEUROPHOTONICS 2022; 9:032212. [PMID: 35558647 PMCID: PMC9084224 DOI: 10.1117/1.nph.9.3.032212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Significance: Fluorescence resonance energy transfer (FRET) sensors offer enormous benefits when studying neurophysiology through confocal microscopy. Yet, their use for fiber-based in vivo recordings is hampered by massive confounding effects and has therefore been scarcely reported. Aim: We aim to investigate whether in vivo fiber-based lactate recordings in the rodent brain are feasible with FRET sensors and implement a correction algorithm for the predominant hemodynamic artifact. Approach: We performed fiber-based FRET recordings of lactate (Laconic) and calcium (Twitch-2B) simultaneously with functional MRI and pharmacological MRI. MR-derived parameters were applied to correct hemodynamic artifacts. Results of FRET measurements were validated by local field potential, magnetic resonance spectroscopy, and blood analysis. Results: Hemodynamic artifacts dominated fiber-based in vivo FRET measurements with both Laconic and Twitch-2B. Our MR-based correction algorithm enabled to remove the artifacts and detect lactate and calcium changes during sensory stimulation or intravenous lactate injections. Conclusions: In vivo fiber-based lactate recordings are feasible using FRET-based sensors. However, signal corrections are required. MR-derived hemodynamic parameters can successfully be applied for artifact correction.
Collapse
Affiliation(s)
- Henriette Lambers
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Lydia Wachsmuth
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Dominik Thomas
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-Sur-Yvette, France
| | - Vanessa Hoesker
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Bruno Pradier
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| | - Cornelius Faber
- University Hospital Münster, Translational Research Imaging Center (TRIC), Clinic for Radiology, Münster, Germany
| |
Collapse
|
10
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|
11
|
Fernandes E, Ledo A, Barbosa RM. Design and Evaluation of a Lactate Microbiosensor: Toward Multianalyte Monitoring of Neurometabolic Markers In Vivo in the Brain. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020514. [PMID: 35056837 PMCID: PMC8780383 DOI: 10.3390/molecules27020514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.
Collapse
Affiliation(s)
- Eliana Fernandes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Ledo
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rui M. Barbosa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
12
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Li Q, Zhang Y, Fan H, Gong Y, Xu Y, Lv Q, Xu Y, Xiao F, Wang S, Wang Z, Wang L. In vitro and in vivo detection of lactate with nanohybrid-functionalized Pt microelectrode facilitating assessment of tumor development. Biosens Bioelectron 2021; 191:113474. [PMID: 34246894 DOI: 10.1016/j.bios.2021.113474] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Accelerated glucose uptake and "aerobic glycolysis" of tumor cells generates a high-level lactate in extracellular space and within tumor tissue, which is thought to be a hallmark of tumor and closely correlated with tumor development. Here, we report the development of an enzyme-free electrochemical sensing platform based on a Pt-microneedle electrode functionalized with Au nanoparticles (Au-NPs) decorated polydopamine nanospheres (PDA-NSs), and explore its practical application in in vitro and in vivo detection of lactate in different biological samples. Our results demonstrate that in virtue of the nanostructured merits and high electrocatalytic activity, the resultant nanohybrid-microelectrode exhibits good sensitivity and selectivity to the nonenzymatic electrochemical detection of lactate, with a detection limit of 50 μM, a liner range of 0.375-12 mM, and a sensitivity of 11.25 mA mM-1 cm-2, as well as a good anti-interference ability to other active small molecules. The platform quantifies lactate in complex bio-fluids, including cancerous and non-cancerous cell culture media, as well as serum samples, with detecting time 7.5-fold faster than does a clinically-used approach. Moreover, owing to miniaturized size and satisfactory electrochemical performance, the sensor achieves in vivo recording of lactate-related characteristic voltammetric signals within a living tumor, which are positively correlated with tumor burden and growth. Therefore, the platform cannot only be employed for cancer metabolic investigation, but also potentially for clinical assessment of tumor progression, and even clinical diagnosis of other lactate metabolism disorders.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huiling Fan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuji Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiying Lv
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunruo Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
15
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
16
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
17
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
18
|
Forderhase AG, Styers HC, Lee CA, Sombers LA. Simultaneous voltammetric detection of glucose and lactate fluctuations in rat striatum evoked by electrical stimulation of the midbrain. Anal Bioanal Chem 2020; 412:6611-6624. [PMID: 32666141 PMCID: PMC7484411 DOI: 10.1007/s00216-020-02797-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/02/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023]
Abstract
Glucose and lactate provide energy for cellular function in the brain and serve as an important carbon source in the synthesis of a variety of biomolecules. Thus, there is a critical need to quantitatively monitor these molecules in situ on a time scale commensurate with neuronal function. In this work, carbon-fiber microbiosensors were coupled with fast-scan cyclic voltammetry to monitor glucose and lactate fluctuations at a discrete site within rat striatum upon electrical stimulation of the midbrain projection to the region. Systematic variation of stimulation parameters revealed the distinct dynamics by which glucose and lactate responded to the metabolic demand of synaptic function. Immediately upon stimulation, extracellular glucose and lactate availability rapidly increased. If stimulation was sufficiently intense, concentrations then immediately fell below baseline in response to incurred metabolic demand. The dynamics were dependent on stimulation frequency, such that more robust fluctuations were observed when the same number of pulses was delivered at a higher frequency. The rates at which glucose was supplied to, and depleted from, the local recording region were dependent on stimulation intensity, and glucose dynamics led those of lactate in response to the most substantial stimulations. Glucose fluctuated over a larger concentration range than lactate as stimulation duration increased, and glucose fell further from baseline concentrations. These real-time measurements provide an unprecedented direct comparison of glucose and lactate dynamics in response to metabolic demand elicited by neuronal activation. Graphical abstract.
Collapse
Affiliation(s)
- Alexandra G Forderhase
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Hannah C Styers
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Christie A Lee
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Leslie A Sombers
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, NC, 27695-8204, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
19
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Baba K, Mikhailov A, Sankai Y. Long-term safety of the carbon fiber as an implant scaffold material. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1105-1110. [PMID: 31946087 DOI: 10.1109/embc.2019.8856629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Permanent therapeutically placed implants often used in situations when regeneration or transplantation are not practical or possible. They include metallic grafts for osteosynthesis, bulk metallic glasses, ceramics, and non-resorbable polymers providing mechanical support. Repair of the tissues on micro scale can also benefit from the biocompatible permanent implants. Vascular graft engineering and repairs of the spinal cord and peripheral nerves are among the most demanding application. Carbon fibers (CF) have superior mechanical and chemical properties, however, their long-time safety was never systematically estimated. The biggest concern comes from residual polymers used for pyrolysis and epoxy laminating resins. Here we attempted to investigate survival of the cells cultured on carbon fibers and to evaluate the tissue responses towards the long-term implanted material. Immortalized rat Schwann cells displayed efficient sporadic attachment to the carbon fibers with survival rate over 90%. Carbon fiber implants in adipose and on connective tissues were tolerable by animals during about 40% of their lifespan with no signs of inflammation on physiological, morphological or gene expression level.
Collapse
|
21
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Meunier CJ, McCarty GS, Sombers LA. Drift Subtraction for Fast-Scan Cyclic Voltammetry Using Double-Waveform Partial-Least-Squares Regression. Anal Chem 2019; 91:7319-7327. [PMID: 31081629 DOI: 10.1021/acs.analchem.9b01083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background-subtracted fast-scan cyclic voltammetry (FSCV) provides a method for detecting molecular fluctuations with high spatiotemporal resolution in the brain of awake and behaving animals. The rapid scan rates generate large background currents that are subtracted to reveal changes in analyte concentration. Although these background currents are relatively stable, small changes do occur over time. These changes, referred to as electrochemical drift, result in background-subtraction artifacts that constrain the utility of FSCV, particularly when quantifying chemical changes that gradually occur over long measurement times (minutes). The voltammetric features of electrochemical drift are varied and can span the entire potential window, potentially obscuring the signal from any targeted analyte. We present a straightforward method for extending the duration of a single FSCV recording window. First, we have implemented voltammetric waveforms in pairs that consist of a smaller triangular sweep followed by a conventional voltammetric scan. The initial, abbreviated waveform is used to capture drift information that can serve as a predictor for the contribution of electrochemical drift to the subsequent full voltammetric scan using partial-least-squares regression (PLSR). This double-waveform partial-least-squares regression (DW-PLSR) paradigm permits reliable subtraction of the drift component to the voltammetric data. Here, DW-PLSR is used to improve quantification of adenosine, dopamine, and hydrogen peroxide fluctuations occurring >10 min from the initial background position, both in vitro and in vivo. The results demonstrate that DW-PLSR is a powerful tool for evaluating and interpreting both rapid (seconds) and gradual (minutes) chemical changes captured in FSCV recordings over extended durations.
Collapse
Affiliation(s)
- Carl J Meunier
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Gregory S McCarty
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Leslie A Sombers
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|