1
|
Sarabamoun E, Aryal P, Bietsch JM, Curran M, Verma S, Johnson G, Yoon LU, Reid AG, Tsai EHR, Machan CW, Paolucci C, Wang G, Choi JJ. Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20599-20608. [PMID: 39660081 PMCID: PMC11626517 DOI: 10.1021/acs.jpcc.4c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
We contrast the switching of photoluminescence (PL) of PbS quantum dots (QDs) cross-linked with photochromic diarylethene molecules with different end groups, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1C) and 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenethiocarboxylic acid] (2T). Our results show that the QDs cross-linked with the carboxylic acid end group molecules (1C) exhibit a greater amount of switching in photoluminescence intensity compared to QDs cross-linked with the thiocarboxylic acid end group (2T). We also demonstrate that regardless of the molecule used, greater switching amounts are observed for smaller quantum dots. Varying these parameters allows for the fabrication of photoswitches with tunable PL change. We relate these observations to the differences in the HOMO energy levels between the QDs and the photochromic molecules. Our findings demonstrate how the size of the QDs and the energy levels of the linker ligands influences the charge tunneling rate and thus the PL switching performance in tunneling-based photoswitches.
Collapse
Affiliation(s)
- Ephraiem
S. Sarabamoun
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Pramod Aryal
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jonathan M. Bietsch
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Maurice Curran
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sugandha Verma
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lucy U. Yoon
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Amelia G. Reid
- Department
of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Esther H. R. Tsai
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Charles W. Machan
- Department
of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Guijun Wang
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Joshua J. Choi
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Chen T, Zang T, Liang J, Zhou Y, Zhou X. A highly sensitive fluorescence biosensor based on polylysine functionalized quantum dots for serum GDF-15 detection. Talanta 2024; 285:127274. [PMID: 39613492 DOI: 10.1016/j.talanta.2024.127274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine that increases in tissue injury and inflammatory states. The circulation level of GDF-15 is firmly correlated with cardiovascular diseases. Herein, we constructed a novel quantum dot-based fluorescent immunosensor for the sensitive detection of serum GDF-15. In this proposed platform, green-emission water-soluble carboxyl-capped CdTe quantum dots were synthesized as fluorescent labels, conjugated with lysine-rich biotinylated peptides P16K to amplify fluorescent signals, and then linked to antibodies via a biotin-streptavidin system to obtain the fluorescent detection probes. The probes were then integrated into a fluorescence-linked immunosorbent assay (FLISA) platform for GDF-15 detection, achieving a wide linear range (6-1600 pg/mL) and low limits of detection (0.98 pg/mL). Moreover, our approach has been demonstrated in clinical validation experiments performed on human serum samples, in which the results obtained were consistent with those from commercial ELISA kits. Due to its higher sensitivity in comparison to commercial ELISA kits, the platform shows excellent potential for early diagnosis and risk screening of cardiovascular diseases.
Collapse
Affiliation(s)
- Tongfang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Zang
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingjie Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingchun Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, China.
| | - Xie Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Liang B, Xu Y, Yu N, Yang Z, Wilson M, Xu D, Shams RA, Wang L, Lui CHJ, Yan R, Liu M. Enhanced Plasmonic Trapping and Fluorescent Emission of Nitrogen-Vacancy Nanodiamonds Using a High-Efficiency Nanofocusing Device. NANO LETTERS 2024; 24:11661-11668. [PMID: 39250914 PMCID: PMC11421074 DOI: 10.1021/acs.nanolett.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent nanodiamonds (FNDs) with nitrogen-vacancy centers are pivotal for advancing quantum photonics and imaging through deterministic quantum state manipulation. However, deterministic integration of quantum emitters into photonic devices remains a challenge due to the need for high coupling efficiency and Purcell enhancement. We report a deterministic FND-integrated nanofocusing device achieved by assembling FNDs at a plasmonic waveguide tip through plasmonic-enhanced optical trapping. This technique not only increases the emission rate by 58.6 times compared to isolated FNDs but also preferentially directs radiation into the waveguide at a rate 5.3 times higher than that into free space, achieving an exceptional figure-of-merit of ∼3000 for efficient energy transfer. Our findings represent a significant step toward deterministic integration in quantum imaging and communication, opening new avenues for quantum technology advancements.
Collapse
Affiliation(s)
- Boqun Liang
- Materials
Science and Engineering Program, University
of California−Riverside, Riverside, California 92521, United States
| | - Yaodong Xu
- Materials
Science and Engineering Program, University
of California−Riverside, Riverside, California 92521, United States
| | - Ning Yu
- Department
of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Zhaoxi Yang
- Department
of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Matthew Wilson
- Department
of Physics and Astronomy, University of
California−Riverside, Riverside, California 92521, United States
| | - Da Xu
- Department
of Electrical and Computer Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Rifat Ara Shams
- Department
of Electrical and Computer Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Longjian Wang
- Department
of Electrical and Computer Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Chun Hung Joshua Lui
- Department
of Physics and Astronomy, University of
California−Riverside, Riverside, California 92521, United States
| | - Ruoxue Yan
- Department
of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California 92521, United States
- Department
of Electrical and Computer Engineering, University of California−Riverside, Riverside, California 92521, United States
| | - Ming Liu
- Materials
Science and Engineering Program, University
of California−Riverside, Riverside, California 92521, United States
- Department
of Electrical and Computer Engineering, University of California−Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Ruiz-Robles MA, Solís-Pomar FJ, Travieso Aguilar G, Márquez Mijares M, Garrido Arteaga R, Martínez Armenteros O, Gutiérrez-Lazos CD, Pérez-Tijerina EG, Fundora Cruz A. Physico-Chemical Properties of CdTe/Glutathione Quantum Dots Obtained by Microwave Irradiation for Use in Monoclonal Antibody and Biomarker Testing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:684. [PMID: 38668178 PMCID: PMC11054025 DOI: 10.3390/nano14080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application in monoclonal antibody and biomarker testing was achieved. Two samples (QDYellow, QDOrange, corresponding to their emission colors) were analyzed by dynamic light scattering (DLS), and their hydrodynamic sizes were 6.7 nm and 19.4 nm, respectively. Optical characterization by UV-vis absorbance spectroscopy showed excitonic peaks at 517 nm and 554 nm. Photoluminescence spectroscopy indicated that the samples have a maximum intensity emission at 570 and 606 nm, respectively, within the visible range from yellow to orange. Infrared spectroscopy showed vibrational modes corresponding to the functional groups OH-C-H, C-N, C=C, C-O, C-OH, and COOH, which allows for the formation of functionalized QDs for the manufacture of biomarkers. In addition, the hydrodynamic radius, zeta potential, and approximate molecular weight were determined by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) techniques. Size dispersion and the structure of nanoparticles was obtained by Transmission Electron Microscopy (TEM) and by X-ray diffraction. In the same way, we calculated the concentration of Cd2+ ions expressed in mg/L by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). In addition to the characterization of the nanoparticles, the labeling of murine myeloid cells was carried out with both samples of quantum dots, where it was demonstrated that quantum dots can diffuse into these cells and connect mostly with the cell nucleus.
Collapse
Affiliation(s)
- M. A. Ruiz-Robles
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Francisco J. Solís-Pomar
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Gabriela Travieso Aguilar
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana 10400, Cuba;
| | - Maykel Márquez Mijares
- Instituto Superior de Ciencias y Tecnologías Aplicadas (InSTEC), Universidad de La Habana, La Habana 10400, Cuba; (M.M.M.); (A.F.C.)
| | - Raine Garrido Arteaga
- Grupo de Análisis, Instituto Finlay de Vacunas, Avenida 21 No. 19810, Atabey, Playa, La Habana 10400, Cuba; (R.G.A.); (O.M.A.)
| | - Olivia Martínez Armenteros
- Grupo de Análisis, Instituto Finlay de Vacunas, Avenida 21 No. 19810, Atabey, Playa, La Habana 10400, Cuba; (R.G.A.); (O.M.A.)
| | - C. D. Gutiérrez-Lazos
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Eduardo G. Pérez-Tijerina
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Abel Fundora Cruz
- Instituto Superior de Ciencias y Tecnologías Aplicadas (InSTEC), Universidad de La Habana, La Habana 10400, Cuba; (M.M.M.); (A.F.C.)
| |
Collapse
|
6
|
Wang K, Li H, Yu W, Ma T. Insights into structural and functional regulation of chalcopyrite and enhanced mechanism of reactive oxygen species (ROS) generation in advanced oxidation process (AOP): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170530. [PMID: 38311081 DOI: 10.1016/j.scitotenv.2024.170530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Chalcopyrite, renowned for its distinctive mixed redox-couple characteristics, exhibits excellent electron transfer properties both on its surface and within its crystal structure. This unique characteristic has attracted significant attention in various fields, including optics, electronics, and magnetism, as well as demonstrated remarkable catalytic efficacy in the environmental field. The rapid and effective electron transfer capability of a catalyst is crucial for advanced oxidation processes (AOPs). However, the performance of CuFeS2 in AOPs is hindered by its low electron transfer efficacy. This review aims to summarize the key steps and mechanisms of chalcopyrite-induced AOPs and provide strategies for enhancing effective electron transfer efficacies by controlling the structure and function of synthetic/natural chalcopyrite. These strategies include enhancing the catalytic performance of chalcopyrite and constructing composites to enhance catalytic activity (e.g., chelating agents, heterojunctions). Additionally, the factors influencing the generation of reactive oxygen species in chalcopyrite-induced AOPs are investigated, such as the types and properties of oxidants (e.g., H2O2, peroxymonocarbonate), the microstructure of catalysts, and reaction conditions in catalytic systems (e.g., pH values, dosage, temperature). Future perspectives on the applications of chalcopyrite are presented at the end of this paper. Overall, this review assists in narrowing the scope of chalcopyrite studies in AOPs and aids researchers in optimizing synthetic/natural catalysts for contaminant treatment.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Zhang L, Xu H, Zhang X, Chen X, Lv Y, Zhang R, Wang L, Wu R, Shen H, Li LS. Highly Sensitive, Stable InP Quantum Dot Fluorescent Probes for Quantitative Immunoassay Through Nanostructure Tailoring and Biotin-Streptavidin Coupling. Inorg Chem 2024; 63:4604-4613. [PMID: 38395777 DOI: 10.1021/acs.inorgchem.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Han Xu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xinxin Chen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruixue Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Feye J, Matthias J, Fischer A, Rudolph D, Treptow J, Popescu R, Franke J, Exarhos AL, Boekelheide ZA, Gerthsen D, Feldmann C, Roesky PW, Rösch ES. SMART RHESINs-Superparamagnetic Magnetite Architecture Made of Phenolic Resin Hollow Spheres Coated with Eu(III) Containing Silica Nanoparticles for Future Quantitative Magnetic Particle Imaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301997. [PMID: 37203272 DOI: 10.1002/smll.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented. This superparamagnetic magnetite architecture made of phenolic resin hollow spheres coated with Eu(III) containing silica nanoparticles (SMART RHESINs) was synthesized and studied. Magnetic particle spectroscopy (MPS) measurements confirm their suitability for potential MPI applications. Photobleaching studies show an unexpected photodynamic due to the fluorescence emission peak of the europium ion in combination with the phenol formaldehyde resin (PFR). Cell metabolic activity and proliferation behavior are not affected. Colocalization experiments reveal the distinct accumulation of SMART RHESINs near the Golgi apparatus. Overall, SMART RHESINs show superparamagnetic behavior and special luminescent properties without acute cytotoxicity, making them suitable for bimodal imaging probes for medical use like cancer diagnosis and treatment. SMART RHESINs have the potential to enable quantitative MPS and MPI measurements both in mobile and immobilized environments.
Collapse
Affiliation(s)
- Julia Feye
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Alena Fischer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - David Rudolph
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jens Treptow
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jochen Franke
- Bruker, BioSpin MRI GmbH, Preclinical Imaging Division, 76275, Ettlingen, Germany
| | | | | | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Esther S Rösch
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
| |
Collapse
|
9
|
Liu D, Sun XM, Zhu L, Li CY. Using time-shared scanning optical tweezers assisted two-photon fluorescence imaging to establish a versatile CRISPR/Cas12a-mediated biosensor. Biosens Bioelectron 2023; 227:115158. [PMID: 36827793 DOI: 10.1016/j.bios.2023.115158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Based on the admirable precision to identify target nucleic acids and the particular trans-cleavage feature, CRISPR/Cas12a system is a useful means to further improve the sensing accuracy and the design flexibility of fluorescence biosensors. However, the current construction concepts still suffer from insufficient sensitivity, unsuitable for complicated real samples and limited detection species. In this work, much efforts are achieved to address these obstacles. At first, we adopt a microsphere sustained signal enrichment, under which a home-made time-shared scanning optical tweezers assisted fluorescence imaging is employed to guarantee a stable excitation and also realize multiflux measurement. Furthermore, by taking advantage of the low background merit of the near-infrared light excited two-photon fluorescence, a commendable anti-interference capability is endowed to operate in complex media. After utilizing a functional DNA (e.g. aptamer and DNAzyme) regulated mediation pathway to respond non-nucleic acid analytes (alpha fetal protein and Pb2+), the newly-established CRISPR/Cas12a-mediated fluorescence biosensor is found to display favorable assay performance. More importantly, our analytical methodology can act as a versatile and reliable toolbox in various applications such as disease diagnosis and environmental analysis, propelling the development of CRISPR system in biosensing field.
Collapse
Affiliation(s)
- Da Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Xiao-Ming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
10
|
He YF, Cheng K, Zhong ZT, Hou XL, An CZ, Chen W, Liu B, Zhao YD. Simultaneous labeling and multicolor fluorescence imaging of multiple immune cells on liver frozen section by polychromatic quantum dots below freezing points. J Colloid Interface Sci 2023; 636:42-54. [PMID: 36621128 DOI: 10.1016/j.jcis.2022.12.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
A method for simultaneous labeling and multicolor fluorescence imaging of different hepatic immune cells below freezing point is established based on quantum dots. In the experiment, carbon quantum dots with emission wavelength of 435 nm, CdTe@CdS quantum dots at 542 nm and CdSe@ZnS quantum dots at 604 nm are synthesized respectively, it is found that when the mass fractions of KCl (as antifreeze) are 12 %, 14 %, and 12 %, respectively, the three quantum dot dispersion systems remain liquid state at -20 °C. After they are conjugated with the corresponding secondary antibodies, agarose gel electrophoresis, circular dichroism and capillary electrophoresis confirm the effectiveness of conjugation. By indirect immunofluorescence method, the above three quantum dot fluorescent probes are used to simultaneously and specifically target a variety of liver immune cells, and the multi-color simultaneous imaging of different liver immune cells is realized under the same excitation wavelength, it is found that hepatic macrophages are arranged radially in the liver, hepatic stellate cells present punctate distribution, and hepatic sinusoidal endothelial cells present circular distribution, which is consistent with the results of H&E staining and ultrathin section TEM. This study provides an important technical means for elucidating the structure and function of the liver.
Collapse
Affiliation(s)
- Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chang-Zhi An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Ke Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
11
|
Jin Q, Zhang X, Zhang L, Li J, Lv Y, Li N, Wang L, Wu R, Li LS. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification-Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorg Chem 2023; 62:3474-3484. [PMID: 36789761 DOI: 10.1021/acs.inorgchem.2c03783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
CuInS2 quantum dots (CIS QDs) are considered to be promising alternatives for Cd-based QDs in the fields of biology and medicine. However, high-quality hydrophobic CIS QDs are difficult to be transferred to water due to their 1-dodecylmercaptan (DDT) ligands. Therefore, the fluorescence and stability of the prepared aqueous CIS QDs is not enough to meet the requirement for sensitive detection. Here, as large as 13 nm CuInZnS/ZnS QDs with DDT ligands were first synthesized, and then, CuInZnS/ZnS microbeads (QBs) containing thousands of QDs were successfully fabricated by a two-step approach of emulsion-solvent evaporation and surfactant substitution. Through emulsion-solvent evaporation, the CuInZnS/ZnS QDs formed microbeads in the microemulsion with dodecyl trimethylammonium bromide (DTAB), and the Förster resonance energy transfer (FRET) has been effectively overcome. Then, CO-520 was introduced to substitute DTAB to improve the stability and water solubility. Lastly, the microbeads were coated with a SiO2 shell and carboxylated. Subsequently, the constructed QBs (∼210 nm) were used as labels in a fluorescence immunosorbent assay (FLISA) for quantitative detection of heart type fatty acid binding protein (H-FABP), and the limit of detection was 0.48 ng mL-1, which indicated a greatly improved detection sensitivity compared to that of the Cd-free QDs. The highly fluorescent and stable CuInZnS/ZnS QBs will have great application prospects in many biological fields.
Collapse
Affiliation(s)
- Qiaoli Jin
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lifang Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Jinjie Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ning Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
13
|
Single-virus tracking with quantum dots in live cells. Nat Protoc 2023; 18:458-489. [PMID: 36451053 DOI: 10.1038/s41596-022-00775-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022]
Abstract
Single-virus tracking (SVT) offers the opportunity to monitor the journey of individual viruses in real time and to explore the interactions between viral and cellular structures in live cells, which can assist in characterizing the complex infection process and revealing the associated dynamic mechanisms. However, the low brightness and poor photostability of conventional fluorescent tags (e.g., organic dyes and fluorescent proteins) greatly limit the development of the SVT technique, and challenges remain in performing multicolor SVT over long periods of time. Owing to the outstanding photostability, high brightness and narrow emission with tunable color range of quantum dots (QDs), QD-based SVT (QSVT) enables us to follow the fate of individual viruses interacting with different cellular structures at the single-virus level for milliseconds to hours, providing more accurate and detailed information regarding viral infection in live cells. So far, the QSVT technique has yielded spectacular achievements in uncovering the mechanisms associated with virus entry, trafficking and egress. Here, we provide a detailed protocol for QSVT implementation using the viruses that we have previously studied systematically as an example. The specific procedures for performing QSVT experiments in live cells are described, including virus preparation, the QD labeling strategies, imaging approaches, image processing and data analysis. The protocol takes 1-2 weeks from the preparation of viruses and cellular specimens to image acquisition, and 1 d for image processing and data analysis.
Collapse
|
14
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. New insight into the application of fluorescence platforms in tumor diagnosis: From chemical basis to clinical application. Med Res Rev 2022; 43:570-613. [PMID: 36420715 DOI: 10.1002/med.21932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Early and rapid diagnosis of tumors is essential for clinical treatment or management. In contrast to conventional means, bioimaging has the potential to accurately locate and diagnose tumors at an early stage. Fluorescent probe has been developed as an ideal tool to visualize tumor sites and to detect biological molecules which provides a requirement for noninvasive, real-time, precise, and specific visualization of structures and complex biochemical processes in vivo. Rencently, the development of synthetic organic chemistry and new materials have facilitated the development of near-infrared small molecular sensing platforms and nanoimaging platforms. This provides a competitive tool for various fields of bioimaging such as biological structure and function imaging, disease diagnosis, in situ at the in vivo level, and real-time dynamic imaging. This review systematically focused on the recent progress of small molecular near-infrared fluorescent probes and nano-fluorescent probes as new biomedical imaging tools in the past 3-5 years, and it covers the application of tumor biomarker sensing, tumor microenvironment imaging, and tumor vascular imaging, intraoperative guidance and as an integrated platform for diagnosis, aiming to provide guidance for researchers to design and develop future biomedical diagnostic tools.
Collapse
Affiliation(s)
- Yanchen Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Qinhua Chen
- Department of Pharmacy Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen China
| | - Xiaoyan Pan
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Wen Lu
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| |
Collapse
|
15
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Omidifar N, Lai CW, Vijayakameswara Rao N, Gholami A, Chiang WH. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals (Basel) 2022; 15:880. [PMID: 35890178 PMCID: PMC9319763 DOI: 10.3390/ph15070880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | | | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
17
|
Li CY, Liu JX, Xin MK, He JW, Chen YL. A Self-Made Optical Tweezers Integrated Upconversion Luminescence Confocal Scanning Instrument Enables Stable and Noninvasive Long-Term In Situ Imaging a Single Suspension Cell Under Exceptionally Efficient Luminescent Resonance Energy Transfer Sensing. Anal Chem 2022; 94:6909-6917. [PMID: 35481762 DOI: 10.1021/acs.analchem.2c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is necessary to explore labeling probes with worthy optical properties and a noninvasive fluorescence imaging manner for stable long-term in situ measuring a single suspension cell. In response to these goals, we herein make a breakthrough on two fronts. On one hand, a co-sensitizer-induced efficient 808 nm near-infrared light-excited luminescence-confined upconversion nanoparticle with a low thermal effect is fabricated by employing a layer-by-layer seed growing approach to develop a sandwich structure, under which the luminescence domain is vastly restricted into an extremely thin inner shell (∼ 2.77 nm) to finally bring about a high-efficiency luminescent resonance energy transfer (LRET) sensing behavior. On the other hand, a self-made optical tweezers integrated upconversion luminescence confocal scanning instrument is applied to enhance the imaging accuracy, after which the liquid viscous force is sufficiently overcome by the resulting single beam gradient force and the analyzed suspension cell is always immobilized to the focal plane to ensure a constant luminescence excitation condition. By making use of a metal ion-dependent DNAzyme and a hairpin DNA strand to design a corresponding LRET sensing system, our nanoprobe shows satisfactory assay performance for two model biomolecules (Ca2+ and TK1 messenger RNA). Following the optical trapping-assisted imaging, this exceptional measurement method is capable of effectively monitoring the intracellular target changes in different physiological states, endowing a powerful toolbox for single cell analysis.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| |
Collapse
|
18
|
Roy SM, Barman S, Basu A, Ghatak T, Pore SK, Ghosh SK, Mukherjee R, Maity AR. Amine as a bottom-line functionality on DDS surface for efficient endosomal escape and further subcellular targets. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Li J, Fan J, Wu R, Li N, Lv Y, Shen H, Li LS. Biomolecular Surface Functionalization and Stabilization Method to Fabricate Quantum Dots Nanobeads for Accurate Biosensing Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4969-4978. [PMID: 35412839 DOI: 10.1021/acs.langmuir.2c00392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The surface functionalization of quantum dots (QDs) is essential for their application as a label material in a biological field. Here, a protein surface functionalization approach was introduced to combine with silica encapsulation for the sustainable and stable synthesis of QDs nanobeads for biomarker detection. The formation of QDs nanobeads was achieved by multiple mercapto groups in bovine serum albumin (BSA) macromolecules as multidentate ligands to replace hydrophobic ligands on the surface of QDs and decompression. The resulting QDs nanobeads exhibited 20 times more photoluminescence than the corresponding hydrophobic QDs and presented excellent stability under physiological conditions due to the protection of BSA and silica. The nanobeads served as a robust signal-generating reagent to construct the lateral flow immunoassay (LFIA) biosensor for the detection of glycosylated hemoglobin (HbA1c). The concentration of HbA1c was determined within 10 min with high specificity using only 60 μL of whole blood samples collected clinically. The nanobeads-based LFIA biosensor exhibited linear detection of HbA1c from 4.2% to 13.6%. The accuracy and stability of this approach in clinical utility was demonstrated by the detection of HbA1c after a long-term storage of test strips. This protein surface modification technology provides a new way for improving the biological properties of QDs in clinical diagnosis.
Collapse
Affiliation(s)
- Jinjie Li
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinjin Fan
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Ruili Wu
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Ning Li
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Yanbing Lv
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Lin Song Li
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
20
|
Chen ZL, Xu JQ. Purification of quantum dot-based bioprobes with a salting out strategy. NANOSCALE ADVANCES 2022; 4:393-396. [PMID: 36132697 PMCID: PMC9417310 DOI: 10.1039/d1na00569c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 06/16/2023]
Abstract
A salting out strategy is reported for purification of IgG-conjugated QD (IgG-QD) bioprobes. Adding NaCl can precipitate free IgG selectively, while the IgG-QD maintains good colloidal stability. The dynamic light scattering technique reveals that this is due to the relatively positive zeta potential of free IgG than that of the IgG-QD.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- School of Pharmacy, Shaoyang University Shaoyang 422000 P. R. China
| | - Jia-Quan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 China +86-739-5308282
| |
Collapse
|
21
|
Wang ZG, Zhao L, Chen LL, Liu HY, Wang L, Hu Y, Shi XH, Zhao D, Liu SL, Pang DW. Spatiotemporal Quantification of Endosomal Acidification on the Viral Journey. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104200. [PMID: 34786839 DOI: 10.1002/smll.202104200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Many enveloped viruses utilize endocytic pathways and vesicle trafficking to infect host cells, where the acidification of virus-containing endosomes triggers the virus-endosome fusion events. Therefore, simultaneous correlation of intracellular location, local pH, and individual virus dynamics is important for gaining insight into viral infection mechanisms. Here, an imaging approach is developed for spatiotemporal quantification of endosomal acidification on the viral journey in host cells using a fluorescence resonance energy transfer based ratiometric pH sensor consisting of a photostable and high-brightness QD, pH-sensitive fluorescent dyes, and virus-binding proteins. Ratiometric analysis of sensor-based single-virus tracking data enables to dissect a two-step endosomal acidification process during the infection of influenza viruses and elucidates the occurrence of the fission and sorting of virus-containing endosomes to recycling endosomes after initial acidification. This technique should serve as a robust approach for in situ quantification of endosomal acidification on the viral journey.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lu-Lu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Song D, Zhu M, Li C, Zhou Y, Xie Y, Li Z, Liu Z. Boosting and Activating NIR-IIb Luminescence of Ag 2Te Quantum Dots with a Molecular Trigger. Anal Chem 2021; 93:16932-16939. [PMID: 34878251 DOI: 10.1021/acs.analchem.1c04164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Near-infrared (NIR) excited and NIR-IIb emissive Ag2Te quantum dots (QDs) display significant advantages in luminescence bioimaging and biosensing due to their unique photophysical properties. However, the poor luminescence intensity and limited strategy for constructing activatable probes severely restrict the wide bioapplications of Ag2Te QDs. Herein, we proposed a NIR dye-sensitization strategy to solve these two problems. First, we used IR-780 as the antenna for Ag2Te QDs to improve the ability of harvesting excitation light, obtaining 21-fold luminescence enhancement at 1620 nm under an 808 nm laser irradiation. Subsequently, by further functionalizing the heptamethine cyanine with a recognition unit of glutathione (GSH), Cy-GSH with target-triggered emission was yielded, which served as the potential sensitizer for Ag2Te QDs to fabricate an activatable ratiometric NIR-IIb nanoprobe for visualizing GSH in vivo with high contrast. This new strategy is expected as a powerful tool to promote the bioapplication of NIR-IIb QDs in the future.
Collapse
Affiliation(s)
- Dan Song
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Mengting Zhu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chenchen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yan Zhou
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yudan Xie
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Sun F, Zhang J, Yang Q, Wu W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Due to the increasing number of food-borne diseases, more attention is being paid to food safety. Food-borne pathogens are the main cause of food-borne diseases, which seriously endanger human health, so it is necessary to detect and control them. Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings, such as being time-consuming, laborious or requiring expensive instrumentation. Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties. New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity. In this review, we summarize the different characteristics of quantum dots synthesized by carbon, heavy metals and composite materials firstly. Then, attention is paid to the principles, advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens. Finally, the great potential of quantum dots in pathogen detection is summarized.
Collapse
|
24
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
De Rosa C, Melchior A, Sanadar M, Tolazzi M, Duerkop A, Piccinelli F. Isoquinoline-based Eu(iii) luminescent probes for citrate sensing in complex matrix. Dalton Trans 2021; 50:4700-4712. [PMID: 33729252 DOI: 10.1039/d1dt00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral Eu(iii) complex containing the S,S enantiomer of isoQC3A3- ligand (isoQC3A3- = N-isoquinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) was synthesized and characterized. The complex was spectroscopically investigated and the results compared with those obtained for the similar bis-anionic ligand bisoQcd2- (bisoQcd2- = N,N'-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate). Both Eu(iii)-complexes show similar binding constants upon titration with the main analytes contained in interstitial extracellular fluid (i.e. hydrogen carbonate, serum albumin and citrate). However, the analyte affinity is accompanied by different enhancements of the Eu(iii) intrinsic quantum yield (QY). Structures and hydration numbers of the complexes are determined by luminescence decay measurements and DFT calculations. The QYs as well as the binding constants of the individual adducts of the complexes with hydrogen carbonate, bovine serum albumin (BSA) and citrate are determined. The study of the Eu(iii) emission upon the systematic variation of one analyte in a complex mixture has been carried out to predict the performance of the luminescent sensor in conditions close to the real extracellular environment. Both Eu(iii) complexes can detect citrate at extracellular concentrations up to 500 μM, even at millimolar concentrations of the other interfering species. In the case of the Eu(bisoQcd)OTf complex, an increase of 23% of the Eu(iii) luminescence intensity at 615 nm upon addition of 0.3 mM of citrate was recorded. This feature makes the latter complex a viable probe for luminescence analysis of citrate in a complex matrix.
Collapse
Affiliation(s)
- Chiara De Rosa
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Ma Z, Xu Y, Li P, Cheng D, Zhu X, Liu M, Zhang Y, Liu Y, Yao S. Self-Catalyzed Surface Reaction-Induced Fluorescence Resonance Energy Transfer on Cysteine-Stabilized MnO2 Quantum Dots for Selective Detection of Dopamine. Anal Chem 2021; 93:3586-3593. [DOI: 10.1021/acs.analchem.0c05102] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhangyan Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yifan Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
27
|
Wang ZG, Wang L, Lamb DC, Chen HJ, Hu Y, Wang HP, Pang DW, Liu SL. Real-Time Dissecting the Dynamics of Drug Transportation in the Live Brain. NANO LETTERS 2021; 21:642-650. [PMID: 33290082 DOI: 10.1021/acs.nanolett.0c04216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain diseases are becoming a more and more serious threat to human health. Many critical properties of the transport mechanisms of drugs in live brains remain poorly understood. In this work, single-particle tracking was used to dissect the transport dynamics of wheat germ agglutinin (WGA) in live brain and characterize the geometry and rheology of the extracellular space (ECS). The results revealed that the movements of WGA were influenced by the specific-binding molecules and the nature of the ECS. We further analyzed the mobility behaviors of WGA globally and quantitatively and found that movement of WGA in brain cells of acute slices was an active transport process associated with actin filaments and microtubules. This work paves the way for studies aiming at characterizing the biophysics of drug transport in the context of live brains, which may contribute to developing potential new therapeutic applications for brain diseases.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
28
|
Bao MN, Zhang LJ, Tang B, Fu DD, Li J, Du L, Hou YN, Zhang ZL, Tang HW, Pang DW. Influenza A Viruses Enter Host Cells via Extracellular Ca2+ Influx-Involved Clathrin-Mediated Endocytosis. ACS APPLIED BIO MATERIALS 2021; 4:2044-2051. [DOI: 10.1021/acsabm.0c00968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng-Ni Bao
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Shu Y, Gao J, Chen J, Yan J, Sun J, Jin D, Xu Q, Hu X. A near-infrared fluorescent sensor based on the architecture of low-toxic Ag 2S quantum dot and MnO 2 nanosheet for sensing glutathione in human serum sample. Talanta 2021; 221:121475. [PMID: 33076088 DOI: 10.1016/j.talanta.2020.121475] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Near-infrared (NIR) emitting Ag2S quantum dots (QDs) are excellent fluorescent nanoprobes for bioassays with low toxicity. A novel fluorescent sensing platform which employing NIR fluorescent Ag2S QDs and MnO2 2D nanosheets as NIR emitters and quenchers is designed for rapid and selective determination of glutathione (GSH). A facile and efficient approach was demonstrated for the synthesis of NIR fluorescent Ag2S QDs with the emission of 845 nm. Then the NIR fluorescent nanoprobe of Ag2S QDs-MnO2 nanosheets is obtained by adsorbing Ag2S QDs onto the surface of MnO2 nanosheets which have atomically thick two-dimensional structure and high specific surface area. And the NIR fluorescence of Ag2S QDs is quenched by the MnO2 nanosheets. The presence of GSH could reduce MnO2 to Mn2+ that results in the restoration of NIR fluorescence for Ag2S QDs. The NIR fluorescent nanoprobe could be used for highly selective detection of GSH. Also a low detection limit of 60 μmol/L was obtained. Because NIR fluorescence of the Ag2S QDs can efficiently reduce the interferences from background scattering and autofluorescence. The NIR fluorescent nanoprobe was directly applied to monitor the GSH level in human serum sample with high accuracy and precision.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jinlong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jingyuan Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jing Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jiawei Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dangqin Jin
- Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
30
|
Lu JM, Wang HF, Pan JZ, Fang Q. Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Tufani A, Qureshi A, Niazi JH. Iron oxide nanoparticles based magnetic luminescent quantum dots (MQDs) synthesis and biomedical/biological applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111545. [DOI: 10.1016/j.msec.2020.111545] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
|
32
|
Reveal heterogeneous motion states in single nanoparticle trajectory using its own history. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Carrizo AF, Argüello JE, Schmidt LC, Colomer JP. Thioglucopyranose Ligands Promote Phase‐Transfer of Cadmium Selenide Quantum Dots from Organic Solvents to Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonella F. Carrizo
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Juan E. Argüello
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Luciana C. Schmidt
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Juan P. Colomer
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| |
Collapse
|
34
|
Mao G, Ma Y, Wu G, Du M, Tian S, Huang S, Ji X, He Z. Novel Method of Clickable Quantum Dot Construction for Bioorthogonal Labeling. Anal Chem 2020; 93:777-783. [PMID: 33300344 DOI: 10.1021/acs.analchem.0c03078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioorthogonal chemistry has been considered as a powerful tool for biomolecule labeling due to its site specificity, moderate reaction conditions, high yield, and simple post-treatment. Covalent coupling is commonly used to modify quantum dots (QDs) with bioorthogonal functional group (azide or cycloalkyne), but it has a negative effect in the decrease of QDs' quantum yield and stability and increase of QDs' hydrodynamic diameter. To overcome these disadvantages, we propose a novel method for the preparation of two kinds of clickable QDs by the strong interaction of -SH with metal ions. One system involves azide-DNA-functionalized QDs, which are used for bioconjugation with dibenzocyclooctyne (DBCO)-modified glucose oxidase (GOx) to form a GOx-QDs complex. After bioconjugation, the stability of QDs was improved, and the activity of GOx was also enhanced. The GOx-QDs complex was used for rapid detection of blood glucose by spectroscopy, naked eye, and paper-based analytical devices. The second system involves DBCO-DNA-functionalized QDs, which are used for an in situ bioorthogonal labeling of HeLa cells through metabolic oligosaccharide engineering. Therefore, these clickable QDs based on DNA functionalization can be applied for rapid and effective labeling of biomolecules of interest.
Collapse
Affiliation(s)
- Guobin Mao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yingxin Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Guoqiang Wu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Mingyuan Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Songbai Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Siqi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
35
|
Wang L, Shi XH, Zhang YF, Liu AA, Liu SL, Wang ZG, Pang DW. CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Lv J, Yang W, Miao Y. Preparation of galactose oxidase functional phosphorescent quantum dots and detection of D-galactose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118599. [PMID: 32563030 DOI: 10.1016/j.saa.2020.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Environmental friendly nano biosensor can improve the detection performance of traditional biomolecular sensors and have important application value in practical applications. In this study, a kind of room temperature phosphorescence (RTP) quantum dots (QDs) (GOX RTP QDs) nanobiosensor was prepared by mineralization at room temperature (25 °C), using galactose oxidase (GOX) as template, which improved the catalytic ability of traditional GOx to D-Galactose. The specific enzyme substrate reaction between GOx and D-Galactose and photoinduced electron transfer (Piet) were used to detect the RTP of D-galactose. The linear range of D-galactose detection is 0.02-0.8 mM, and the detection limit of the method is 0.008 mM. This method is based on the RTP property of QDs, which can effectively avoid the interference of background fluorescence of biological samples, and does not need complex sample pretreatment process. Therefore, this method is more suitable for the quantitative detection of D-Galactose in biological samples.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Wenli Yang
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
37
|
Wu M, Chen Z, Xie Q, Xiao B, Zhou G, Chen G, Bian Z. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens Bioelectron 2020; 171:112733. [PMID: 33096430 DOI: 10.1016/j.bios.2020.112733] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
As promising fluid biomarkers for non-invasive diagnosis, naturally-occurring exosomes in saliva have attracted a wide interest for their potential application in oral diseases especially oral cancers. However, accurate quantification of salivary exosomes is still challenging due to the current difficulties in simultaneous identification and measurement of these nano-sized vesicles. In this study, we developed a novel fluorescent biosensor for one-step sensitive quantification of salivary exosomes based on magnetic and fluorescent bio-probes (MFBPs). Within the MFBPs, self-assembled DNA concatamers loaded with numerous quantum dots (QDs) were ingeniously tethered to aptamers, which were anchored on the surface of magnetic microspheres (MMs). Efficient recognition and capture of an exosome by the aptamer would simultaneously trigger the release of a DNA concatamer as the detection signal carrier, thereby generating a "one exosome-numerous QDs" amplification effect. As the result, this biosensor allowed one-step quantification with less assay time and achieved a high sensitivity with low limit of detection. Moreover, unique fluorescent properties of QDs and the superparamagnetism of MMs offered a strong anti-interference ability, enabling a robust quantification in complex matrices. Furthermore, this biosensor exhibited a good clinical feasibility with favorable accuracy comparable to nanoscale flow cytometry, and a superiority in label-free analysis and convenient operation. This study provides a novel and general strategy for one-step sensitive quantification of exosomes from body fluids, facilitating the development of exosome-based liquid biopsy for disease diagnosis.
Collapse
Affiliation(s)
- Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuokun Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Qihui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
38
|
Luo F, Qin G, Xia T, Fang X. Single-Molecule Imaging of Protein Interactions and Dynamics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:337-361. [PMID: 32228033 DOI: 10.1146/annurev-anchem-091619-094308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
Collapse
Affiliation(s)
- Fang Luo
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Xia
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Abstract
Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.
Collapse
|
40
|
Hong ZY, Liu SL, Pang DW. A method for the statistical evaluation of the fluorescence intensity of single blinking quantum dots using a confocal fluorescence microscope. Analyst 2020; 145:3131-3135. [PMID: 32186553 DOI: 10.1039/d0an00010h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evaluation of the fluorescence intensity of single quantum dots (QDs) using a confocal fluorescence microscope can provide an alternative approach for estimating the effects of environmental changes or surface modifications on the fluorescence intensity of single QDs. In the case of blinking QDs, irregular blinking would significantly influence the intensity evaluation results that are based on the analysis of one or a few single QDs. In this regard, statistical intensity evaluations based on a large number of single QDs would be helpful to estimate an approximate intensity value of single QDs with reduced effects of blinking on the evaluation results. Herein, we developed a convenient method to statistically evaluate the fluorescence intensity of a large number of single blinking QDs using Gaussian distribution. Based on the intensity analysis of thousands of single QDs, the fluorescence intensity of the single QDs evaluated using a confocal fluorescence microscope was approximately 4090 with little data fluctuation induced by blinking.
Collapse
Affiliation(s)
- Zheng-Yuan Hong
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
41
|
Xiong LH, Huang S, Huang Y, Yin F, Yang F, Zhang Q, Cheng J, Zhang R, He X. Ultrasensitive Visualization of Virus via Explosive Catalysis of an Enzyme Muster Triggering Gold Nano-aggregate Disassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12525-12532. [PMID: 32106677 DOI: 10.1021/acsami.9b23247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensitive and accurate diagnosis of viral infection is important for human health and social safety. Herein, by means of explosive catalysis from an enzyme muster, a powerful naked-eye readout platform has been successfully constructed for ultrasensitive immunoassay of viral entities. Liposomes were used to encapsulate multiple enzymes into an active unit. In addition, its triggered rupture could boost the disassembly of gold nano-aggregates that were cross-linked by peptides with opposite charges. As a result, plasmonically colorimetric signals were rapidly generated for naked-eye observation. Further harnessing the immunocapture, enterovirus 71 (EV71), a class of highly infective virus, was sensitively assayed with a detection limit down to 16 copies/μL. It is superior to the single enzyme-anchored immunoassay system. Most importantly, the colorimetric assay was demonstrated with 100% clinical accuracy, displaying strong anti-interference capability. It is expectable that this sensitive, accurate, and convenient strategy could provide a prospective alternative for viral infection analysis, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suibin Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
42
|
Chen ZL, Lin Y, Zhu CN, Zhang ZL, Pang DW. A salt-out strategy for purification of amphiphilic polymer-coated quantum dots. NEW J CHEM 2020. [DOI: 10.1039/d0nj03541f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A purification strategy is presented that the OPA micelles are precipitated selectively in an OPA–QD solution by adding NaCl.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- School of Pharmacy
- Shaoyang University
- Shaoyang
- P. R. China
- College of Chemistry and Molecular Sciences
| | - Yi Lin
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
- Wuhan 430072
| | - Chun-Nan Zhu
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment,College of Biomedical Engineering
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
- Wuhan 430072
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
- Wuhan 430072
| |
Collapse
|
43
|
Huang LY, Zhu S, Cui R, Zhang M. Noninvasive In Vivo Imaging in the Second Near-Infrared Window by Inorganic Nanoparticle-Based Fluorescent Probes. Anal Chem 2019; 92:535-542. [DOI: 10.1021/acs.analchem.9b04156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lu-Yao Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
44
|
|
45
|
Chen YA, Chou KH, Kuo YY, Wu CY, Hsiao PW, Chen PW, Yuan SH, Wuu DS. Formation of ZnO/Zn 0.5Cd 0.5Se Alloy Quantum Dots in the Presence of High Oleylamine Contents. NANOMATERIALS 2019; 9:nano9070999. [PMID: 31373313 PMCID: PMC6669603 DOI: 10.3390/nano9070999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yi-Yang Kuo
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Cheng-Ye Wu
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Po-Wen Hsiao
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Po-Wei Chen
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Shuo-Huang Yuan
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Dong-Sing Wuu
- Department of Materials Science and Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan.
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
46
|
Li CY, Kang YF, Qi CB, Zheng B, Zheng MQ, Song CY, Guo ZZ, Lin Y, Pang DW, Tang HW. Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Anal Chem 2019; 91:7950-7957. [DOI: 10.1021/acs.analchem.9b01941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ming-Qiu Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chong-Yang Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|