1
|
Sutton PJ, Brownlee CW. Palmitoylated Importin α Regulates Mitotic Spindle Orientation Through Interaction with NuMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620315. [PMID: 39484393 PMCID: PMC11527331 DOI: 10.1101/2024.10.25.620315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
Affiliation(s)
- Patrick James Sutton
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, 11794, United States of America
| | - Christopher W. Brownlee
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, 11794, United States of America
- Lead Contact
| |
Collapse
|
2
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
3
|
Forrester MT, Egol JR, Tata A, Tata PR, Foster MW. Analysis of Protein Cysteine Acylation Using a Modified Suspension Trap (Acyl-Trap). J Proteome Res 2024; 23:3716-3725. [PMID: 39008777 DOI: 10.1021/acs.jproteome.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 μg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 μg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.
Collapse
Affiliation(s)
- Michael T Forrester
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Jacob R Egol
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Purushothama Rao Tata
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Forrester MT, Egol JR, Tata A, Tata PR, Foster MW. Analysis of Protein Cysteine Acylation Using a Modified Suspension Trap (Acyl-Trap). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586403. [PMID: 38585928 PMCID: PMC10996552 DOI: 10.1101/2024.03.23.586403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g. H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.
Collapse
Affiliation(s)
- Michael T. Forrester
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jacob R. Egol
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Purushothama Rao Tata
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matthew W. Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Burger N, Chouchani ET. A new era of cysteine proteomics - Technological advances in thiol biology. Curr Opin Chem Biol 2024; 79:102435. [PMID: 38382148 DOI: 10.1016/j.cbpa.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Wang Z, Wang Y, Shen N, Liu Y, Xu X, Zhu R, Jiang H, Wu X, Wei Y, Tang J. AMPKα1-mediated ZDHHC8 phosphorylation promotes the palmitoylation of SLC7A11 to facilitate ferroptosis resistance in glioblastoma. Cancer Lett 2024; 584:216619. [PMID: 38211651 DOI: 10.1016/j.canlet.2024.216619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
The cystine/glutamate antiporter SLC7A11, as the key regulator of ferroptosis, functions to transport cystine for glutathione biosynthesis and antioxidant defense. Accumulating evidence has shown that SLC7A11 is overexpressed in multiple human cancers and promotes tumor growth and progression. However, the exact mechanism underlying this key protein remains unclear. In this study, we confirmed that SLC7A11 is S-palmitoylated in glioblastoma, and this modification is required for SLC7A11 protein stability. Moreover, we revealed that ZDHHC8, a member of the protein palmitoyl transferases (PATs), catalyzes S-palmitoylation of SLC7A11 at Cys327, thereby decreasing the ubiquitination level of SLC7A11. Furthermore, AMPKα1 directly phosphorylates ZDHHC8 at S299, strengthening the interaction between ZDHHC8 and SLC7A11, leading to SLC7A11 S-palmitoylation and deubiquitination. Functional investigations showed that ZDHHC8 knockdown impairs glioblastoma (GBM) cell survival via promoting intracellular ferroptosis events, which could be largely rescued by ectopic expression of SLC7A11. Clinically, ZDHHC8 expression positively correlates with SLC7A11 and AMPKα1 expression in clinical glioma specimens. This study underscores that ZDHHC8-mediated SLC7A11 S-palmitoylation is critical for ferroptosis resistance during GBM tumorigenesis, indicating a novel treatment strategy for GBM.
Collapse
Affiliation(s)
- Zhangjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyang Xu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruiqiu Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hao Jiang
- Department of Urology, The First Affiliated Hospital of Soochow University, No.899 Ping Hai Road, Suzhou 215000, China
| | - Xiaoting Wu
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210029, China
| | - Yunfei Wei
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Urology, Traditional Chinese Medicine Hospital of Ili Kazak Autonomous Prefecture, Yining 835000, China.
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
7
|
Qu M, Liu X, Wang X, Li Z, Zhou L, Li H. Palmitoylation of vacuole membrane protein 1 promotes small extracellular vesicle secretion via interaction with ALIX and influences intercellular communication. Cell Commun Signal 2024; 22:150. [PMID: 38403678 PMCID: PMC10895845 DOI: 10.1186/s12964-024-01529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital), 47 Youyi Road, Shenzhen, 518000, Guangdong, China.
| | - Xinyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaotong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- Wuhan Huake Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
8
|
Wu R, Ji G, Chen W, Zhang L, Fang C, Lu H. Simultaneous and site-specific profiling of heterogeneity and turnover in protein S-acylation by intact S-acylated peptide analysis with a cleavable bioorthogonal tag. Analyst 2024; 149:1111-1120. [PMID: 38170640 DOI: 10.1039/d3an02059b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein S-acylation is an important lipid modification characteristic for heterogeneity in the acyl chain and dynamicity in the acylation/deacylation cycle. Most S-acylproteomic research has been limited by indirect identification of modified proteins/peptides without attached fatty acids, resulting in the failure to precisely characterize S-acylated sites with attached fatty acids. The study of S-acylation turnover is still limited at the protein level. Herein, aiming to site-specifically profile both the heterogeneity and the turnover of S-acylation, we first developed a site-specific strategy for intact S-acylated peptide analysis by introducing an acid cleavable bioorthogonal tag into a metabolic labelling method (ssMLCC). The cleavable bioorthogonal tag allowed for the selective enrichment and efficient MS analysis of intact S-acylated peptides so that S-acylated sites and their attached fatty acids could be directly analysed, enabling the precise mapping of S-acylated sites, as well as circumventing false positives from previous studies. Moreover, 606 S-palmitoylated (C16:0) sites of 441 proteins in HeLa cells were identified. All types of S-acylated peptides were further characterized by an open search, providing site-specific profiling of acyl chain heterogeneity, including S-myristoylation, S-palmitoylation, S-palmitoleylation, and S-oleylation. Furthermore, site-specific monitoring of S-palmitoylation turnover was achieved by coupling with pulse-chase methods, facilitating the detailed observation of the dynamic event at each site in multi-palmitoylated proteins, and 85 rapidly cycling palmitoylated sites in 79 proteins were identified. This study provided a strategy for the precise and comprehensive analysis of protein S-acylation based on intact S-acylated peptide analysis, contributing to the further understanding of its complexity and biological functions.
Collapse
Affiliation(s)
- Roujun Wu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China.
| | - Guanghui Ji
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China.
| | - Weiyu Chen
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China.
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Caiyun Fang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China.
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Cai J, Song M, Li M, Merchant M, Benz F, McClain C, Klein J. Site-Specific Identification of Protein S-Acylation by IodoTMT0 Labeling and Immobilized Anti-TMT Antibody Resin Enrichment. J Proteome Res 2024; 23:673-683. [PMID: 38157263 DOI: 10.1021/acs.jproteome.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.
Collapse
Affiliation(s)
- Jian Cai
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Ming Song
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
| | - Ming Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Michael Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Frederick Benz
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
| | - Craig McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jon Klein
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
| |
Collapse
|
10
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Mesquita FS, Abrami L, Samurkas A, van der Goot FG. S-acylation: an orchestrator of the life cycle and function of membrane proteins. FEBS J 2024; 291:45-56. [PMID: 37811679 DOI: 10.1111/febs.16972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
S-acylation is a covalent post-translational modification of proteins with fatty acids, achieved by enzymatic attachment via a labile thioester bond. This modification allows for dynamic control of protein properties and functions in association with cell membranes. This lipid modification regulates a substantial portion of the human proteome and plays an increasingly recognized role throughout the lifespan of affected proteins. Recent technical advancements have propelled the S-acylation field into a 'molecular era', unveiling new insights into its mechanistic intricacies and far-reaching implications. With a striking increase in the number of studies on this modification, new concepts are indeed emerging on the roles of S-acylation in specific cell biology processes and features. After a brief overview of the enzymes involved in S-acylation, this viewpoint focuses on the importance of S-acylation in the homeostasis, function, and coordination of integral membrane proteins. In particular, we put forward the hypotheses that S-acylation is a gatekeeper of membrane protein folding and turnover and a regulator of the formation and dynamics of membrane contact sites.
Collapse
Affiliation(s)
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Arthur Samurkas
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Ji G, Wu R, Zhang L, Yao J, Zhang C, Zhang X, Liu Z, Liu Y, Wang T, Fang C, Lu H. Global Analysis of Endogenously Intact S-Acylated Peptides Reveals Localization Differentiation of Heterogeneous Lipid Chains in Mammalian Cells. Anal Chem 2023; 95:13055-13063. [PMID: 37611173 DOI: 10.1021/acs.analchem.3c01484] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
S-acylation is a widespread lipidation form in eukaryotes in which various fatty acids can be covalently attached to specific cysteine residues. However, due to the low reactivity of the lipid moieties and lack of specific antibodies, purification of intact S-acylated peptides remains challenging. Here, we developed a pretreatment method for direct separation and global analysis of endogenously intact S-acylated peptides by nanographite fluoride-based solid-phase extraction (nGF-SPE), together with the investigation and optimization of the enrichment procedure as well as the LC-MS/MS analysis process. Consequently, we performed the first global profiling of endogenously intact S-acylated peptides, with 701 S-palmitoylated peptides from HeLa cell lysates in a restricted search. Furthermore, coupling the nGF-SPE method with open search mode, altogether 1119 intact S-acylated peptides were identified with the attached palmitate, palmitoleate, myristate, and octanoate chain, respectively, providing a global insight into the endogenously heterogeneous modification state. Notably, we found and validated that S-palmitoleoylation (C16:1) provided less affinity toward lipid rafts compared with S-palmitoylation (C16:0). This study developed the first straightforward way to characterize endogenously intact S-acylated peptides on a proteome-wide scale, providing the modified residues together with their attached lipid moieties simultaneously, which paves the way for further understanding of protein S-acylation.
Collapse
Affiliation(s)
- Guanghui Ji
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Roujun Wu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Jun Yao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Xiaoqin Zhang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Zhiyong Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yang Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ting Wang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Caiyun Fang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Sardana S, Nederstigt AE, Baggelaar MP. S-Palmitoylation during Retinoic Acid-Induced Neuronal Differentiation of SH-SY5Y Neuroblastoma Cells. J Proteome Res 2023. [PMID: 37294931 DOI: 10.1021/acs.jproteome.3c00151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
S-Palmitoylation is the covalent attachment of C14:0-C22:0 fatty acids (mainly C16:0 palmitate) to cysteines via thioester bonds. This lipid modification is highly abundant in neurons, where it plays a role in neuronal development and is implicated in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The knowledge of S-palmitoylation in neurodevelopment is limited due to technological challenges in analyzing this highly hydrophobic protein modification. Here, we used two orthogonal methods, acyl-biotin exchange (ABE) and lipid metabolic labeling (LML), to identify S-palmitoylated proteins and sites during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. We identified 2002 putative S-palmitoylated proteins in total, of which 650 were found with both methods. Significant changes in the abundance of S-palmitoylated proteins were detected, in particular for several processes and protein classes that are known to be important for neuronal differentiation, which include proto-oncogene tyrosine-protein kinase receptor (RET) signal transduction, SNARE protein-mediated exocytosis, and neural cell adhesion molecules. Overall, S-palmitoylation profiling by employing ABE and LML in parallel during RA-induced differentiation of SH-SY5Y cells revealed a subset of high confidence bona fide S-palmitoylated proteins and suggested an important role for S-palmitoylation in neuronal differentiation.
Collapse
Affiliation(s)
- Samiksha Sardana
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anneroos E Nederstigt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Marc P Baggelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
14
|
Buffa V, Adamo G, Picciotto S, Bongiovanni A, Romancino DP. A Simple, Semi-Quantitative Acyl Biotin Exchange-Based Method to Detect Protein S-Palmitoylation Levels. MEMBRANES 2023; 13:361. [PMID: 36984748 PMCID: PMC10053657 DOI: 10.3390/membranes13030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Protein S-palmitoylation is a reversible post-translational lipidation in which palmitic acid (16:0) is added to protein cysteine residue by a covalent thioester bond. This modification plays an active role in membrane targeting of soluble proteins, protein-protein interaction, protein trafficking, and subcellular localization. Moreover, palmitoylation is related to different diseases, such as neurodegenerative pathologies, cancer, and developmental defects. The aim of this research is to provide a straightforward and sensitive procedure to detect protein palmitoylation based on Acyl Biotin Exchange (ABE) chemistry. Our protocol setup consists of co-immunoprecipitation of native proteins (i.e., CD63), followed by the direct detection of palmitoylation on proteins immobilized on polyvinylidene difluoride (PVDF) membranes. With respect to the conventional ABE-based protocol, we optimized and validated a rapid semi-quantitative assay that is shown to be significantly more sensitive and highly reproducible.
Collapse
Affiliation(s)
- Valentina Buffa
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
- Integrare UMR_S951 Genethon, Inserm, University of Evry, Université Paris Saclay Genethon, 91000 Evry, France
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Daniele P. Romancino
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| |
Collapse
|
15
|
Gal J, Bondada V, Mashburn CB, Rodgers DW, Croall DE, Geddes JW. S-acylation regulates the membrane association and activity of Calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119298. [PMID: 35643222 DOI: 10.1016/j.bbamcr.2022.119298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Charles B Mashburn
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Yang X, Zheng E, Chatterjee V, Ma Y, Reynolds A, Villalba N, Wu MH, Yuan SY. Protein palmitoylation regulates extracellular vesicle production and function in sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e50. [PMID: 38419739 PMCID: PMC10901530 DOI: 10.1002/jex2.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 06/19/2022] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are bioactive membrane-encapsulated particles generated by a series of events involving membrane budding, fission and fusion. Palmitoylation, mediated by DHHC palmitoyl acyltransferases, is a lipidation reaction that increases protein lipophilicity and membrane localization. Here, we report palmitoylation as a novel regulator of EV formation and function during sepsis. Our results showed significantly decreased circulating EVs in mice with DHHC21 functional deficiency (Zdhhc21dep/dep), compared to wild-type (WT) mice 24 h after septic injury. Furthermore, WT and Zdhhc21dep/dep EVs displayed distinct palmitoyl-proteomic profiles. Ingenuity pathway analysis indicated that sepsis altered several inflammation related pathways expressed in EVs, among which the most significantly activated was the complement pathway; however, this sepsis-induced complement enrichment in EVs was greatly blunted in Zdhhc21dep/dep EVs. Functionally, EVs isolated from WT mice with sepsis promoted neutrophil adhesion, transmigration, and neutrophil extracellular trap production; these effects were significantly attenuated by DHHC21 loss-of-function. Furthermore, Zdhhc21dep/dep mice displayed reduced neutrophil infiltration in lungs and improved survival after CLP challenges. These findings indicate that blocking palmitoylation via DHHC21 functional deficiency can reduce sepsis-stimulated production of complement-enriched EVs and attenuates their effects on neutrophil activity.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Ethan Zheng
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Yonggang Ma
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Amanda Reynolds
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Nuria Villalba
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Mack H. Wu
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
17
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
18
|
Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase. Proc Natl Acad Sci U S A 2022; 119:2022050119. [PMID: 35140179 PMCID: PMC8851515 DOI: 10.1073/pnas.2022050119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein palmitoylation is one of the most highly abundant protein modifications, through which long-chain fatty acids get attached to cysteines by a thioester linkage. It plays critically important roles in growth signaling, the organization of synaptic receptors, and the regulation of ion channel function. Yet the molecular mechanism of the DHHC family of integral membrane enzymes that catalyze this modification remains poorly understood. Here, we present the structure of a precatalytic complex of human DHHC20 with palmitoyl CoA. Together with the accompanying functional data, the structure shows how a bivalent recognition of palmitoyl CoA by the DHHC enzyme, simultaneously at both the fatty acyl group and the CoA headgroup, is essential for catalytic chemistry to proceed. S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.
Collapse
|
19
|
Yan Y, Zhou B, Qian C, Vasquez A, Kamra M, Chatterjee A, Lee YJ, Yuan X, Ellis L, Di Vizio D, Posadas EM, Kyprianou N, Knudsen BS, Shah K, Murali R, Gertych A, You S, Freeman MR, Yang W. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nat Commun 2022; 13:669. [PMID: 35115556 PMCID: PMC8813925 DOI: 10.1038/s41467-022-28340-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite progress in prostate cancer (PC) therapeutics, distant metastasis remains a major cause of morbidity and mortality from PC. Thus, there is growing recognition that preventing or delaying PC metastasis holds great potential for substantially improving patient outcomes. Here we show receptor-interacting protein kinase 2 (RIPK2) is a clinically actionable target for inhibiting PC metastasis. RIPK2 is amplified/gained in ~65% of lethal metastatic castration-resistant PC. Its overexpression is associated with disease progression and poor prognosis, and its genetic knockout substantially reduces PC metastasis. Multi-level proteomics analyses reveal that RIPK2 strongly regulates the stability and activity of c-Myc (a driver of metastasis), largely via binding to and activating mitogen-activated protein kinase kinase 7 (MKK7), which we identify as a direct c-Myc-S62 kinase. RIPK2 inhibition by preclinical and clinical drugs inactivates the noncanonical RIPK2/MKK7/c-Myc pathway and effectively impairs PC metastatic outgrowth. These results support targeting RIPK2 signaling to extend metastasis-free and overall survival.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- InterVenn Biosciences, South San Francisco, CA, USA
| | - Chen Qian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alex Vasquez
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohini Kamra
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yeon-Joo Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaopu Yuan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
21
|
Yan Y, Yeon SY, Qian C, You S, Yang W. On the Road to Accurate Protein Biomarkers in Prostate Cancer Diagnosis and Prognosis: Current Status and Future Advances. Int J Mol Sci 2021; 22:13537. [PMID: 34948334 PMCID: PMC8703658 DOI: 10.3390/ijms222413537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is a leading cause of morbidity and mortality among men worldwide. Molecular biomarkers work in conjunction with existing clinicopathologic tools to help physicians decide who to biopsy, re-biopsy, treat, or re-treat. The past decade has witnessed the commercialization of multiple PC protein biomarkers with improved performance, remarkable progress in proteomic technologies for global discovery and targeted validation of novel protein biomarkers from clinical specimens, and the emergence of novel, promising PC protein biomarkers. In this review, we summarize these advances and discuss the challenges and potential solutions for identifying and validating clinically useful protein biomarkers in PC diagnosis and prognosis. The identification of multi-protein biomarkers with high sensitivity and specificity, as well as their integration with clinicopathologic parameters, imaging, and other molecular biomarkers, bodes well for optimal personalized management of PC patients.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Su Yeon Yeon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Chen Qian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Yan Y, Zhou B, Lee YJ, You S, Freeman MR, Yang W. BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics 2021; 22:e2100172. [PMID: 34897998 DOI: 10.1002/pmic.202100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Prostate cancer (PC) is a major health and economic problem in industrialized countries, yet our understanding of the molecular mechanisms of PC progression and drug response remains limited. Accumulating evidence showed that certain E3 ubiquitin ligases such as SIAH2, RNF7, and SPOP play important roles in PC development and progression. However, the roles and mechanisms of other E3s in PC progression remain largely unexplored. Through an integration analysis of clinical genomic and transcriptomic profiles of PC tumors, this study identified UBR5 as a top PC-relevant E3 ubiquitin ligase whose expression levels are strongly associated with PC progression and aggressiveness. BoxCar and shotgun proteomic analyses of control and UBR5-knockdown PC3 cells complementarily identified 75 UBR5-regulated proteins. Bioinformatic analysis suggested that the 75 proteins form four molecular networks centered around FANCD2, PAF1, YY1, and LAMB3 via direct protein-protein interactions. Experimental analyses demonstrated that UBR5 associates with and downregulates two key DNA damage repair proteins (XRCC3 and FANCD2) and confers PC cell sensitivity to olaparib, a PARP inhibitor in clinical use for cancer therapy. This study represents the first application of BoxCar in PC research, provides new insights into the molecular functions of UBR5 in PC, and suggests that PC patients with UBR5-high tumors may potentially benefit from PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yeon-Joo Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Lin X, Fonseca MAS, Breunig JJ, Corona RI, Lawrenson K. In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. RNA Biol 2021; 18:2203-2217. [PMID: 34006179 PMCID: PMC8648264 DOI: 10.1080/15476286.2021.1917215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2. RPL discovers target RNA proximal proteins in vivo via proximity-based biotinylation. RPL applied to U1 identified proteins involved in both U1 canonical and noncanonical functions. Profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs and provided additional evidence for 5'-3' proximity and unexplored subcellular localizations of poly(A)+ RNA. Our results suggest that RPL allows rapid identification of target RNA binding proteins in native cellular contexts, and is expected to pave the way for discovery of novel RNA-protein interactions important for health and disease.
Collapse
Affiliation(s)
- Xianzhi Lin
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcos A. S. Fonseca
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J. Breunig
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosario I. Corona
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
24
|
Losada de la Lastra A, Hassan S, Tate EW. Deconvoluting the biology and druggability of protein lipidation using chemical proteomics. Curr Opin Chem Biol 2021; 60:97-112. [PMID: 33221680 DOI: 10.1016/j.cbpa.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023]
Abstract
Lipids are indispensable cellular building blocks, and their post-translational attachment to proteins makes them important regulators of many biological processes. Dysfunction of protein lipidation is also implicated in many pathological states, yet its systematic analysis presents significant challenges. Thanks to innovations in chemical proteomics, lipidation can now be readily studied by metabolic tagging using functionalized lipid analogs, enabling global profiling of lipidated substrates using mass spectrometry. This has spearheaded the first deconvolution of their full scope in a range of contexts, from cells to pathogens and multicellular organisms. Protein N-myristoylation, S-acylation, and S-prenylation are the most well-studied lipid post-translational modifications because of their extensive contribution to the regulation of diverse cellular processes. In this review, we focus on recent advances in the study of these post-translational modifications, with an emphasis on how novel mass spectrometry methods have elucidated their roles in fundamental biological processes.
Collapse
Affiliation(s)
- Ana Losada de la Lastra
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Sarah Hassan
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
25
|
Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat Cell Biol 2021; 23:87-98. [PMID: 33420488 DOI: 10.1038/s41556-020-00613-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer shows remarkable clinical heterogeneity, which manifests in spatial and clonal genomic diversity. By contrast, the transcriptomic heterogeneity of prostate tumours is poorly understood. Here we have profiled the transcriptomes of 36,424 single cells from 13 prostate tumours and identified the epithelial cells underlying disease aggressiveness. The tumour microenvironment (TME) showed activation of multiple progression-associated transcriptomic programs. Notably, we observed promiscuous KLK3 expression and validated the ability of cancer cells in altering T-cell transcriptomes. Profiling of a primary tumour and two matched lymph nodes provided evidence that KLK3 ectopic expression is associated with micrometastases. Close cell-cell communication exists among cells. We identified an endothelial subset harbouring active communication (activated endothelial cells, aECs) with tumour cells. Together with sequencing of an additional 11 samples, we showed that aECs are enriched in castration-resistant prostate cancer and promote cancer cell invasion. Finally, we created a user-friendly web interface for users to explore the sequenced data.
Collapse
|
26
|
Abstract
Protein S-acylation (commonly known as palmitoylation) is a widespread reversible lipid modification, which plays critical roles in regulating protein localization, activity, stability, and complex formation. The deregulation of protein S-acylation contributes to many diseases such as cancer and neurodegenerative disorders. The past decade has witnessed substantial progress in proteomic analysis of protein S-acylation, which significantly advanced our understanding of S-acylation biology. In this review, we summarized the techniques for the enrichment of S-acylated proteins or peptides, critically reviewed proteomic studies of protein S-acylation at eight different levels, and proposed major challenges for the S-acylproteomics field. In summary, proteome-scale analysis of protein S-acylation comes of age and will play increasingly important roles in discovering new disease mechanisms, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Yang Wang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Ayewoh EN, Czuba LC, Nguyen TT, Swaan PW. S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183510. [PMID: 33189717 DOI: 10.1016/j.bbamem.2020.183510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is the rate-limiting step of intestinal bile acid absorption in the enterohepatic circulation system of bile acids. Therefore, the regulation and stability of hASBT is vital in maintaining bile acid and cholesterol homeostasis and may serve as a potential target for cholesterol-related disorders. We hypothesized that post-translational mechanisms that govern hASBT function and regulation will provide novel insight on intestinal bile acid transport and homeostasis. In this study, we confirm the S-acylation status of hASBT via acyl biotin exchange in COS-1 cells and its impact on hASBT expression, function, kinetics, and protein stability. Using the acylation inhibitor, 2-bromopalmitate, we show that S-acylation is an important modification which modulates the function, surface expression, and maximal transporter flux (Jmax) of hASBT. By means of proteasome inhibitors, S-acylated hASBT was found to be cleared via the proteasome whereas a reduction in the palmitoylation status of hASBT resulted in rapid proteolytic degradation compared to the unmodified transporter. Screening of cysteine mutants in and or near transmembrane domains, some of which are exposed to the cytosol, confirmed Cys314 to be the predominate S-acylated residue. Lastly, we show that S-acylation was reduced in a mutant form of hASBT devoid of cytosolic facing tyrosine residues, suggestive of crosstalk between acylation and phosphorylation post-translational modification mechanisms.
Collapse
Affiliation(s)
- Ebehiremen N Ayewoh
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Thao T Nguyen
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Zhou L, Zhou M, Gritsenko MA, Stacey G. Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis. ACTA ACUST UNITED AC 2020; 5:e20119. [PMID: 32976704 DOI: 10.1002/cppb.20119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein S-acylation, predominately in the form of palmitoylation, is a reversible lipid post-translational modification on cysteines that plays important roles in protein localization, trafficking, activity, and complex assembly. The functions and regulatory mechanisms of S-acylation have been extensively studied in mammals owing to remarkable development of high-resolution proteomics and the discovery of the S-acylation-related enzymes. However, the advancement of S-acylation studies in plants lags behind that in mammals, mainly due to the lack of knowledge about proteins responsible for this process, such as protein acyltransferases and their substrates. In this article, a set of systematic protocols to study global S-acylation in Arabidopsis seedlings is described. The procedures are presented in detail, including preparation of Arabidopsis seedlings, enrichment of plasma membrane (PM) proteins, ensuing enrichment of S-acylated proteins/peptides based on the acyl-biotin exchange method, and large-scale identification of S-acylated proteins/peptides via mass spectrometry. This approach enables researchers to study S-acylation of PM proteins in plants in a systematic and straightforward way. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of Arabidopsis seedling materials Basic Protocol 2: Isolation and enrichment of plasma membrane proteins Support Protocol 1: Determination of protein concentration using BCA assay Basic Protocol 3: Enrichment of S-acylated proteins by acyl-biotin exchange method Support Protocol 2: Protein precipitation by methanol/chloroform method Basic Protocol 4: Trypsin digestion and proteomic analysis Alternate Protocol: Pre-resin digestion and peptide-level enrichment.
Collapse
Affiliation(s)
- Lijuan Zhou
- Division of Plant Sciences, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Marina A Gritsenko
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Gary Stacey
- Division of Plant Sciences, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri.,Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
29
|
Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W, You S, Kim J. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer. Int J Biol Sci 2020; 16:2490-2505. [PMID: 32792852 PMCID: PMC7415425 DOI: 10.7150/ijbs.45640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Protein S-palmitoylation is a powerful post-translational modification that regulates protein trafficking, localization, turnover, and signal transduction. Palmitoylation controls several important cellular processes, and, if dysregulated, can lead to cancer, cardiovascular disease, and neurological disorders. The role of protein palmitoylation in mediating resistance to systemic cisplatin-based chemotherapies in cancer is currently unknown. This is of particular interest because cisplatin is currently the gold standard of treatment for bladder cancer (BC), and there are no feasible options after resistance is acquired. Using unbiased global proteomic profiling of purified S-palmitoylated peptides combined with intensive bioinformatics analyses, we identified 506 candidate palmitoylated proteins significantly enriched in cisplatin-resistant BC cells. One of these proteins included PD-L1, which is highly palmitoylated in resistant cells. Pharmacological inhibition of fatty acid synthase (FASN) suppressed PD-L1 palmitoylation and expression, which suggests the potential use of FASN-PD-L1-targeted therapeutic strategies in BC patients. Taken together, these results highlight the role of protein palmitoylation in mediating BC chemoresistance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Mariscal J, Vagner T, Kim M, Zhou B, Chin A, Zandian M, Freeman MR, You S, Zijlstra A, Yang W, Di Vizio D. Comprehensive palmitoyl-proteomic analysis identifies distinct protein signatures for large and small cancer-derived extracellular vesicles. J Extracell Vesicles 2020; 9:1764192. [PMID: 32944167 PMCID: PMC7448892 DOI: 10.1080/20013078.2020.1764192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers.
Collapse
Affiliation(s)
- Javier Mariscal
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tatyana Vagner
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Chin
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mandana Zandian
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R. Freeman
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Yang
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Tewari R, West SJ, Shayahati B, Akimzhanov AM. Detection of Protein S-Acylation using Acyl-Resin Assisted Capture. J Vis Exp 2020. [PMID: 32338654 DOI: 10.3791/61016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein S-acylation, also referred to as S-palmitoylation, is a reversible post-translational modification of cysteine residues with long-chain fatty acids via a labile thioester bond. S-acylation, which is emerging as a widespread regulatory mechanism, can modulate almost all aspects of the biological activity of proteins, from complex formation to protein trafficking and protein stability. The recent progress in understanding of the biological function of protein S-acylation was achieved largely due to the development of novel biochemical tools allowing robust and sensitive detection of protein S-acylation in a variety of biological samples. Here, we describe acyl resin-assisted capture (Acyl-RAC), a recently developed method based on selective capture of endogenously S-acylated proteins by thiol-reactive Sepharose beads. Compared to existing approaches, Acyl-RAC requires fewer steps and can yield more reliable results when coupled with mass spectrometry for identification of novel S-acylation targets. A major limitation in this technique is the lack of ability to discriminate between fatty acid species attached to cysteines via the same thioester bond.
Collapse
Affiliation(s)
- Ritika Tewari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UT Health
| | - Savannah J West
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UT Health; MD Anderson UT Health Graduate School
| | - Bieerkehazi Shayahati
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UT Health
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UT Health;
| |
Collapse
|