1
|
Gibson W, Mulvey JT, Das S, Selmani S, Merham JG, Rakowski AM, Schwartz E, Hochbaum AI, Guan Z, Green JR, Patterson JP. Observing the Dynamics of an Electrochemically Driven Active Material with Liquid Electron Microscopy. ACS NANO 2024; 18:11898-11909. [PMID: 38648551 DOI: 10.1021/acsnano.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrochemical liquid electron microscopy has revolutionized our understanding of nanomaterial dynamics by allowing for direct observation of their electrochemical production. This technique, primarily applied to inorganic materials, is now being used to explore the self-assembly dynamics of active molecular materials. Our study examines these dynamics across various scales, from the nanoscale behavior of individual fibers to the micrometer-scale hierarchical evolution of fiber clusters. To isolate the influences of the electron beam and electrical potential on material behavior, we conducted thorough beam-sample interaction analyses. Our findings reveal that the dynamics of these active materials at the nanoscale are shaped by their proximity to the electrode and the applied electrical current. By integrating electron microscopy observations with reaction-diffusion simulations, we uncover that local structures and their formation history play a crucial role in determining assembly rates. This suggests that the emergence of nonequilibrium structures can locally accelerate further structural development, offering insights into the behavior of active materials under electrochemical conditions.
Collapse
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Swetamber Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Serxho Selmani
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Jovany G Merham
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexander M Rakowski
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Hurst PJ, Mulvey JT, Bone RA, Selmani S, Hudson RF, Guan Z, Green JR, Patterson JP. CryoEM reveals the complex self-assembly of a chemically driven disulfide hydrogel. Chem Sci 2024; 15:1106-1116. [PMID: 38239701 PMCID: PMC10793653 DOI: 10.1039/d3sc05790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Inspired by the adaptability of biological materials, a variety of synthetic, chemically driven self-assembly processes have been developed that result in the transient formation of supramolecular structures. These structures form through two simultaneous reactions, forward and backward, which generate and consume a molecule that undergoes self-assembly. The dynamics of these assembly processes have been shown to differ from conventional thermodynamically stable molecular assemblies. However, the evolution of nanoscale morphologies in chemically driven self-assembly and how they compare to conventional assemblies has not been resolved. Here, we use a chemically driven redox system to separately carry out the forward and backward reactions. We analyze the forward and backward reactions both sequentially and synchronously with time-resolved cryogenic transmission electron microscopy (cryoEM). Quantitative image analysis shows that the synchronous process is more complex and heterogeneous than the sequential process. Our key finding is that a thermodynamically unstable stacked nanorod phase, briefly observed in the backward reaction, is sustained for ∼6 hours in the synchronous process. Kinetic Monte Carlo modeling show that the synchronous process is driven by multiple cycles of assembly and disassembly. The collective data suggest that chemically driven self-assembly can create sustained morphologies not seen in thermodynamically stable assemblies by kinetically stabilizing transient intermediates. This finding provides plausible design principles to develop and optimize supramolecular materials with novel properties.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
| | - Rebecca A Bone
- Department of Chemistry, University of Massachusetts Boston Boston Massachusetts 02125 USA
| | - Serxho Selmani
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
| | - Redford F Hudson
- Department of Computer Science, University of California, Irvine Irvine California 92697 USA
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine California 92697 USA
- Department of Biomedical Engineering, University of California, Irvine Irvine California 92697 USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston Boston Massachusetts 02125 USA
- Department of Physics, University of Massachusetts Boston Boston Massachusetts 02125 USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
3
|
Sun M, Cheng Z, Chen W, Jones M. Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors. ACS NANO 2021; 15:15953-15961. [PMID: 34554725 DOI: 10.1021/acsnano.1c04056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vast majority of single crystalline metal nanoparticles adopt shapes in the Oh point group as a consequence of the symmetry of the underlying face-centered cubic (FCC) crystal lattice. Tetrahedra are a notable exception to this rule, and although they have been observed in several syntheses, their growth mechanism, and the symmetry-reduction process that necessarily characterizes it, is poorly understood. Here, a symmetry breaking mechanism is revealed by in situ liquid flow cell transmission electron microscopy (TEM) observation of seeded growth in which tetrahedra nanoparticles are formed from higher symmetry seeds. Real-time observation of the growth demonstrates a kinetically driven pathway during which rhombic dodecahedra nanoparticles transition to tetrahedra through tristetrahedra intermediates, with an accompanying surface facet evolution from {110} to {111} via {hhl} (where h > l), respectively. On the basis of these data, we propose a mechanism that relies on a rapid loss of inversion symmetry in the initial stages of the reaction, followed by differential reactivity of tips vs faces under conditions of relatively high supersaturation and moderate ligand concentration. The application of these insights to ex situ synthesis conditions allowed for an improved yield of tetrahedra nanoparticles. This work sheds an important mechanistic light on the crystallographic underpinnings of nanoparticle shape and symmetry transformations and highlights the importance of single-particle characterization tools for monitoring nanoscale phenomena.
Collapse
|
4
|
Jamali V, Hargus C, Ben-Moshe A, Aghazadeh A, Ha HD, Mandadapu KK, Alivisatos AP. Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. Proc Natl Acad Sci U S A 2021; 118:e2017616118. [PMID: 33658362 PMCID: PMC7958372 DOI: 10.1073/pnas.2017616118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial LC in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural-network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous-time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.
Collapse
Affiliation(s)
- Vida Jamali
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Cory Hargus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Assaf Ben-Moshe
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Amirali Aghazadeh
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
| | - Hyun Dong Ha
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Kavli Energy NanoScience Institute, Berkeley, CA 94720
| |
Collapse
|
5
|
Hurst PJ, Rakowski AM, Patterson JP. Ring-opening polymerization-induced crystallization-driven self-assembly of poly-L-lactide-block-polyethylene glycol block copolymers (ROPI-CDSA). Nat Commun 2020; 11:4690. [PMID: 32943622 PMCID: PMC7499262 DOI: 10.1038/s41467-020-18460-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The self-assembly of block copolymers into 1D, 2D and 3D nano- and microstructures is of great interest for a wide range of applications. A key challenge in this field is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here we report on the ring opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA) of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures. A key feature of ROPI-CDSA is that the polymerization time is much shorter than the self-assembly relaxation time, resulting in a non-equilibrium self-assembly process. The self-assembly mechanism is analyzed by cryo-transmission electron microscopy, wide-angle x-ray scattering, Fourier transform infrared spectroscopy, and turbidity studies. The analysis revealed that the self-assembly mechanism is dependent on both the polymer molecular structure and concentration. Knowledge of the self-assembly mechanism enabled the kinetic trapping of multiple hierarchical structures from a single block copolymer.
Collapse
Affiliation(s)
- Paul J Hurst
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Alexander M Rakowski
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
6
|
Krause S, Feringa BL. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|