1
|
Marcos Anghinoni J, Irum, Ur Rashid H, João Lenardão E, Santos Silva M. 31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds. CHEM REC 2024; 24:e202400132. [PMID: 39499103 DOI: 10.1002/tcr.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024]
Abstract
31P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, 31P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the 31P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of 31P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.
Collapse
Affiliation(s)
- João Marcos Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Irum
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Haroon Ur Rashid
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Márcio Santos Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Mo MY, Wang XJ, Shen RZ, Hu CY, Li XC, Li GW, Liu LT. Enantiospecific Analysis of Carboxylic Acids Using Cinchona Alkaloid Dimers as Chiral Solvating Agents. Anal Chem 2024; 96:7487-7496. [PMID: 38695134 DOI: 10.1021/acs.analchem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.
Collapse
Affiliation(s)
- Ming-Yang Mo
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Ren-Zeng Shen
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Chang-Yan Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xue-Chun Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Gao-Wei Li
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
3
|
Wang F, Cai W, Tan L, Li J, Wu D, Kong Y. A Liquid-Liquid Interfacial Strategy for Construction of Electroactive Chiral Covalent-Organic Frameworks with the Aim to Enlarge the Testing Scope of Chiral Electroanalysis. Anal Chem 2024. [PMID: 38335728 DOI: 10.1021/acs.analchem.3c05744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Although electroactive chiral covalent-organic frameworks (CCOFs) are considered an ideal platform for chiral electroanalysis, they are rarely reported due to the difficult selection of suitable precursors. Here, a facile strategy of liquid-liquid interfacial polymerization was carried out to synthesize the target electroactive CCOFs Ph-Py+-(S,S)-DPEA·PF6- and Ph-Py+-(R,R)-DPEA·PF6-. That is, a trivalent Zincke salt (4,4',4″-(benzene-1,3,5-triyl)tris(1-(2,4-dinitrophenyl)pyridin-1-ium)) trichloride (Ph-Py+-NO2) and enantiopure 1,2-diphenylethylenediamine (DPEA) were dissolved in water and chloroform, respectively. The Zincke reaction occurs at the interface, resulting in uniform porosity. As expected, the cyclic voltammetry and differential pulse voltammetry measurements showed that the tripyridinium units of the CCOFs afforded obvious electrochemical responses. When Ph-Py+-(S,S)-DPEA·PF6- was modified onto the surface of a glassy carbon electrode as a chiral sensor, the molecules, which included tryptophan, aspartic acid, serine, tyrosine, glutamic acid, mandelic acid, and malic acid, were enantioselectively recognized in the response of the peak current. Very importantly, the discriminative electrochemical signals were derived from Ph-Py+-(S,S)-DPEA·PF6-. The best peak current ratios between l- and d-enantiomers were in the range of 1.31-2.68. Besides, a good linear relationship between peak currents and enantiomeric excess (ee) values was established, which was successfully harnessed to determine the ee values for unknown samples. In a word, the current work provides new insight and potential of electroactive CCOFs for enantioselective sensing in a broad range.
Collapse
Affiliation(s)
- Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
5
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
6
|
Tian J, Jiang YX, Yu XQ, Yu SS. Rapid chiral assay of amino compounds using diethyl squarate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120871. [PMID: 35151169 DOI: 10.1016/j.saa.2022.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The versatility and importance of chiral compounds make it urgent to develop fast and efficient methods to detect the absolute configuration, enantiomeric excess(ee), and concentration of chiral compounds. In this study, we demonstrate that commercially available diethyl squarate can rapidly react with various types of chiral amino compounds and exhibit characteristic ultraviolet (UV) and circular dichroism (CD) signals. The UV and CD signals can determine the total concentration of the two enantiomers and ee value of the sample, respectively. The probe showed a broad substrate scope, applicable to 39 tested chiral amino compounds, including chiral amino acids, amino alcohols, and amines. Additionally, the probe accurately detected 10 samples of phenylalanine, phenylglycinol, and phenethylamine with the error range less than 8%, demonstrating the practicability of this method.
Collapse
Affiliation(s)
- Jun Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Yi-Xuan Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Shan-Shan Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| |
Collapse
|
7
|
Zhao Q, Cai W, Yang B, Yin ZZ, Wu D, Kong Y. Electrochemiluminescent chiral discrimination with chiral Ag 2S quantum dots/few-layer carbon nitride nanosheets. Analyst 2021; 146:6245-6251. [PMID: 34528650 DOI: 10.1039/d1an01437d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Well-dispersed chiral Ag2S quantum dots (Ag2S QDs) were facilely synthesized by using N-acetyl-L-cysteine (NALC) as the chiral ligand and loaded onto nanosheets of two-dimensional (2D) few-layer carbon nitride (C3N4). The resultant nanocomposite (Ag2S QDs/few-layer C3N4) shows enhanced electrochemiluminescence (ECL) while maintaining the chirality of Ag2S QDs, which can be used for the chiral discrimination of the enantiomers of tyrosine (Tyr). Due to the higher affinity of chiral Ag2S QDs toward L-Tyr than toward its enantiomer, the ECL intensity of Ag2S QDs/few-layer C3N4 is significantly decreased after its incubation with L-Tyr, and thus the Tyr enantiomers can be discriminated. The developed ECL chiral sensor exhibits high stability and reproducibility. The universality of the ECL chiral sensor for the discrimination of other chiral amino acids is also studied, and the results indicate that it can work only in the case of chiral aromatic amino acids.
Collapse
Affiliation(s)
- Qianqian Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China. .,Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
8
|
Wu S, Wang H, Wu D, Fan GC, Tao Y, Kong Y. Silver nanoparticle driven signal amplification for electrochemical chiral discrimination of amino acids. Analyst 2021; 146:1612-1619. [PMID: 33605973 DOI: 10.1039/d1an00119a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-Cyclodextrin (β-CD) modified silver nanoparticles (AgNPs), denoted as β-CD/AgNPs, were prepared by a simple one-pot method. Due to the inherent chirality of β-CD, the developed β-CD/AgNPs exhibited higher affinity toward l-tyrosine (l-Tyr) than d-tyrosine (d-Tyr), leading to serious aggregation of AgNPs in the presence of l-Tyr. Consequently, the l-Tyr induced aggregation of AgNPs can result in signal amplification in the differential pulse voltammograms (DPVs) of l-Tyr, which can be applied for the electrochemical chiral discrimination of the Tyr enantiomers. Other chiral amino acids including tryptophan and phenylalanine can also be successfully discriminated with the β-CD/AgNPs, suggesting high universality of the developed chiral sensor.
Collapse
Affiliation(s)
- Shanshan Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Hui Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|