1
|
Tian JR, Song JY, Wang Z. Covalently Coupling Carbon Quantum Dots for Photoluminescence Red Shift Response to pH. Inorg Chem 2025. [PMID: 39920098 DOI: 10.1021/acs.inorgchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Conventional fluorescent pH sensors, despite offering high sensitivity and rapid response, are limited by their reliance on fluorescence intensity changes, hindering applications requiring precise wavelength control. Here, we present a pH sensing strategy based on cross-linked carbon quantum dots (CCL-CQDs) displaying a remarkable pH-dependent red shift in the fluorescence emission wavelength. Amino- and carboxyl-functionalized CQDs were synthesized via a one-step hydrothermal method and further assembled into CCL-CQDs through the condensation reaction between amino groups and glutaraldehyde. The CCL-CQDs displayed excellent pH sensitivity, with their fluorescence emission wavelength exhibiting a linear red shift upon increasing pH (from 2.29 to 7.16). The results of mechanism exploration revealed that H+ induced the cleavage of C═N bonds in the CCL-CQD structure, leading to the formation of -COOH groups and increased surface-oxidized carbon content. This enhanced oxidation generated more surface defects, triggering a wavelength shift in surface-state-related fluorescence emission. This study demonstrates the successful synthesis of pH-sensitive CCL-CQDs with an excellent fluorescence detection performance.
Collapse
Affiliation(s)
- Jun-Ru Tian
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| | - Jie-Yao Song
- Modern Chemical Engineering Department, Shanxi Engineering Vocational College, Taiyuan, Shanxi 030009, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| |
Collapse
|
2
|
Kang X, Zhang L, Jia W, Yang L, Jiang C. Visual Detection of Methylglyoxal in Multiple Scenarios via NIR-Excitable Reversible Ratiometric Fluorescent Hydrogel Sensor. Anal Chem 2024. [PMID: 39698803 DOI: 10.1021/acs.analchem.4c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Methylglyoxal is considered a key indicator in evaluating wine flavor and quality, as well as an important marker for diabetic pathological syndromes. Rapid and accurate quantitative detection of methylglyoxal is essential in scenarios of wine production standards and human health monitoring. Herein, we report a visual method for detecting methylglyoxal via an NIR-excitable reversible ratiometric fluorescent hydrogel sensor, where NIR-excited upconversion nanoparticles serve as energy donors and eosin B acts as the energy acceptor, together forming an integrated ratiometric nanophotonic probe that ensures the accuracy of detection without being affected by various background fluorescence interference in different scenarios. The integrated optical probe is combined with a 3D network hydrogel to design a sensing patch that can be easily regenerated through simple treatment, exhibiting a distinct optical color response. Upon the addition of methylglyoxal, the G/R value of the sensing patch changes, enabling the real-time quantitative detection of methylglyoxal. Additionally, we combined the hydrogel sensing patch with a smartphone to create a portable sensing platform for the convenient visual detection of methylglyoxal. The probe and hydrogel sensing patch have detection limits for methylglyoxal as low as 59 and 75.4 nM, respectively. The portable sensing patch designed here provides an effective strategy for standardizing the wine production process and monitoring patient health.
Collapse
Affiliation(s)
- Xiaohui Kang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lanpeng Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Jia
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Zou GY, Bi F, Chen S, Liu MX, Yu YL. Ternary recognition fluorescent probe for lysosome acidification counter-ion studies via Cl -, K +, and pH. Chem Commun (Camb) 2024; 60:8087-8090. [PMID: 38990605 DOI: 10.1039/d4cc02800g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Lysosomal acidity relies on H+ inflow, which requires counter-ion flows (Cl- and K+) to balance charge. A lysosome targeting ternary recognition fluorescent probe for Cl-, K+, and pH was developed for lysosome acidification counter-ion research. The probe was used to study counter-ion changes when the Cl- channel was blocked and under oxidative pressure.
Collapse
Affiliation(s)
- Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Fan Bi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China
| | - Meng-Xian Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
4
|
Zhang Z, Chasteen JL, Smith BD. Cy5 Dye Cassettes Exhibit Through-Bond Energy Transfer and Enable Ratiometric Fluorescence Sensing. J Org Chem 2024; 89:3309-3318. [PMID: 38362875 PMCID: PMC10985492 DOI: 10.1021/acs.joc.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The chemosensor literature contains many reports of fluorescence sensing using polyaromatic hydrocarbon fluorophores such as pyrene, tetraphenylethylene, or polyaryl(ethynylene), where the fluorophore is excited with ultraviolet light (<400 nm) and emits in the visible region of 400-500 nm. There is a need for general methods that convert these "turn-on" hydrocarbon fluorescent sensors into ratiometric sensing paradigms. One simple strategy is to mix the responsive hydrocarbon sensor with a second non-responsive dye that is excited by ultraviolet light but emits at a distinctly longer wavelength and thus acts as a reference signal. Five new cyanine dye cassettes were created by covalently attaching a pyrene, tetraphenylethylene, or biphenyl(ethynylene) component as the ultraviolet-absorbing energy donor directly to the pentamethine chain of a deep-red cyanine (Cy5) energy acceptor. Fluorescence emission studies showed that these Cy5-cassettes exhibited large pseudo-Stokes shifts and high through-bond energy transfer efficiencies upon excitation with ultraviolet light. Practical potential was demonstrated with two examples of ratiometric fluorescence sensing using a single ultraviolet excitation wavelength. One example mixed a Cy5-cassette with a pyrene-based fluorescent indicator that responded to changes in Cu2+ concentration, and the other example mixed a Cy5-cassette with the fluorescent pH sensing dye, pyranine.
Collapse
Affiliation(s)
- Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L. Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Ghosh S, Lai JY. Recent advances in the design of intracellular pH sensing nanoprobes based on organic and inorganic materials. ENVIRONMENTAL RESEARCH 2023; 237:117089. [PMID: 37683789 DOI: 10.1016/j.envres.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In the biological system, the intracellular pH (pHi) plays an important role in regulating diverse physiological activities, including enzymatic action, ion transport, cell proliferation, metabolism, and programmed cell death. The monitoring of pH inside living cells is also crucial for studying cellular events such as phagocytosis, endocytosis, and receptor-ligand internalization. Furthermore, some organelles, viz., endosomes and lysosomes, have intracompartmental pH, which is critical for maintaining the stability of protein structure and function. The dysfunction and abnormal pH regulation can result in terminal diseases such as cancer, Alzheimer, and so forth. Therefore, the accuracy of intracellular pH measurement is always the top priority and demands cutting-edge research and analysis. Such techniques, such as Raman spectroscopy and fluorescence imaging, preferably use nanotechnology due to their remarkable advantages, such as a non-invasive approach and providing accuracy, repeatability, and reproducibility. In the past decades, there have been numerous attempts to design and construct non-invasive organic and inorganic materials-based nanoprobes for pHi sensing. For Raman-based techniques, metal nanostructures such as Au/Ag/Cu nanoparticles are utilized to enhance the signal intensity. As for the fluorescence-based studies, the organic-based small molecules, such as dyes, show higher sensitivity toward pH. However, they possess several drawbacks, including high photobleaching rate, and autofluorescence background signals. To this end, there are alternative nanomaterials proposed, including semiconductor quantum dots (QDs), carbon QDs, upconversion nanoparticles, and so forth. Moreover, the fluorescence technique allows for ratiometric measurement of pHi, which as a result, offers a reliable calibration curve. This timely review will critically examine the current progression in the existing nanoprobes. In addition, based on our knowledge and available research findings, we provide a brief future outlook that may advance the state-of-the-art methodologies for pHi sensing.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
6
|
Duan X, Tong Q, Fu C, Chen L. Lysosome-targeted fluorescent probes: Design mechanism and biological applications. Bioorg Chem 2023; 140:106832. [PMID: 37683542 DOI: 10.1016/j.bioorg.2023.106832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
As an integral organelle in the eukaryote, the lysosome is the degradation center and metabolic signal center in living cells, and partakes in significant physiological processes such as autophagy, cell death and cellular senescence. Fluorescent probe has become a favorite tool for studying organelles and their chemical microenvironments because of its high specificity and non-destructive merits. Over recent years, it has been reported that increasingly new lysosome-targeted probes play a major role in the diagnosis and monitor of diseases, in particular cancer and neurodegenerative diseases. In order to deepen the relevant research on lysosome, it is challenging and inevitability to design novel lysosomal targeting probes. This review first introduces the concepts of lysosome and its closely related biological activities, and then introduces the fluorescent probes for lysosome in detail according to different detection targets, including targeting mechanism, biological imaging, and application in diseases. Finally, we summarize the specific challenges and discuss the future development direction facing the current lysosome-targeted fluorescent probes. We hope that this review can help biologists grasp the application of fluorescent probes and broaden the research ideas of researchers targeting fluorescent probes so as to design more accurate and functional probes for application in diseases.
Collapse
Affiliation(s)
- Xiangning Duan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Qin Tong
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengxiao Fu
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Luo F, Zhu M, Liu Y, Sun J, Gao F. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122574. [PMID: 36905737 DOI: 10.1016/j.saa.2023.122574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Developing nanohybrid composition based fluorescent carbon dots (CDs) for ratiometric detection of copper ions is highly appealing. Herein, a ratiometric sensing platform (GCDs@RSPN) for copper ions detection has been developed by loaded green fluorescence carbon dots (GCDs) on the surface of red emission semiconducting polymer nanoparticles (RSPN) through electrostatic adsorption. The GCDs, featuring abundant amino groups, can selectively bind copper ions to induce the photoinduced electron transfer, leading to fluorescence quenching. A good linearity within the range of 0-100 μM is obtained, and the limit of detection (LOD) is 0.577 μM by using obtained GCDs@RSPN as ratiometric probe to detect copper ion. Moreover, the paper-based sensor derived from GCDs@RSPN was successfully applied for the visual detection of Cu2+.
Collapse
Affiliation(s)
- Fabao Luo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Mengjun Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yizhang Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; Department of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239001, China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
8
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
9
|
Cao T, Liu Y, Jia Q, Wang X, Zhang S, Yu K, Zhou J. Rare earth fluorescent nanoprobes with minimal side effects enable tumor microenvironment activation for chemotherapy. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jia Y, Shen Y, Zhu Y, Wang J. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121002. [PMID: 35168035 DOI: 10.1016/j.saa.2022.121002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Lysosomes are the acidic organelles in the cells that play an important role in intracellular degradation and other various cellular functions. The pH disturbance of lysosomes will result in the lysosomal dysfunction and many lysosomal related diseases. In this work, we reported a methoxy-based covalent organic framework (TAPB-DMTP-COF) that a novel pH-responsive fluorescent probe for lysosomal pH imaging in cells. The prepared TAPB-DMTP-COF presented regular crystal structure, low toxicity and good pH responsive property. The rich imine structure in the material enabled pH-responsive properties of the TAPB-DMTP-COF and made it exhibited pH-dependent fluorescence response. Good detection linearity for pH measurements in aqueous solution was achieved by this probe. Moreover, the TAPB-DMTP-COF can be used for the selective lysosomal pH imaging. Confocal fluorescence imaging results demonstrated that the pH fluctuations (from 4.0 to 7.4) and the pH changes in lysosomes can be effectively monitored in situ by the developed probe. This study may provide a new avenue for the intracellular pH sensing, deep study and understanding about the mechanism of diseases related to abnormal lysosomal pH.
Collapse
Affiliation(s)
- Yutao Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, People's Republic of China
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Yanyan Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
11
|
Chai Y, Zhou X, Chen X, Wen C, Ke J, Feng W, Li F. Influence on the Apparent Luminescent Lifetime of Rare-Earth Upconversion Nanoparticles by Quenching the Sensitizer's Excited State for Hypochlorous Acid Detection and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14004-14011. [PMID: 35297600 DOI: 10.1021/acsami.1c21838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-ion-doped upconversion materials have been widely used in biological detection, bioimaging, displays, and anticounterfeiting due to their abilities of real-time readings, high spatial resolution, and deep tissue penetration. The typically long fluorescence lifetimes of rare-earth nanoparticles, in the microsecond to millisecond range, make them useful in interference-free lifetime detection imaging. Most detection systems are accompanied by fluorescence resonance energy transfer (FRET), in which the lifetime of the luminescence center can be used as a signal to reveal the degree of FRET. Due to the complex energy level structure and complex energy transfer processes, the apparent lifetimes of upconversion nanoparticles (UCNPs) do not simply equal the decay time of the corresponding energy level, inducing an insignificant lifetime change in the upconversion detection system. In this study, the relationship between the apparent luminescence lifetime of upconversion and the decay rate of each energy level was studied by numerical simulations. It was proved that the apparent lifetime of the emission at 540 nm was mainly affected by the decay rate of Yb3+. We then constructed a nanocomposite with Rh1000 fluorophores loaded onto the surface of UCNPs to quench the sensitizer Yb3+. We found that the lifetime of the emission at 540 nm from Er3+ was affected to a large extent by the number of attached Rh1000 molecules, proving the greater influence on the apparent luminescent lifetime of Er3+ at 540 nm caused by quenching the Yb3+ excited state. The qualitative detection of hypochlorous acid (HClO) in vivo was also achieved using the luminescent lifetime as the signal.
Collapse
Affiliation(s)
- Yingjie Chai
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Xinyu Chen
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Chenqing Wen
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Jiaming Ke
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
12
|
Wang X, Teng X, Sun X, Pan W, Wang J. Carbon dots with aggregation induced quenching effect and solvatochromism for the detection of H 2O in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120547. [PMID: 34742149 DOI: 10.1016/j.saa.2021.120547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/14/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
In this work, a type of carbon dots (CDs) which can be well dispersed in organic solvents but precipitated in neutral aqueous solution was synthesized by using one-step hydrothermal heating treatment of o-phenylenediamine in H2SO4 solution. Although the emissions of the CDs in different organic solvents are excitation independent, solvatochromism is observed for the CDs since the emission wavelength is red shifted with an increase in the polarity of solvents. The optical properties suggest that the emission of the CDs is controlled by molecular state. According to aggregation induced quenching effect and solvatochromism caused by an increase in the solvent polarity with the content of H2O increasing, detection methods of H2O in the organic solvents were developed by using the CDs as a probe. The spiked H2O in acetone and methanol could be recovered in the range of 98.2% to 101.7%, which indicates that the as-proposed method has a high potential for the determination of H2O in organic solvents.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiuming Teng
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiaobo Sun
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Pan
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jinping Wang
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
13
|
Singh AK, Nair AV, Singh NDP. Small Two-Photon Organic Fluorogenic Probes: Sensing and Bioimaging of Cancer Relevant Biomarkers. Anal Chem 2021; 94:177-192. [PMID: 34793114 DOI: 10.1021/acs.analchem.1c04306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - Asha V Nair
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| |
Collapse
|
14
|
Cao J, Xie M, Gao X, Zhang Z, Wang J, Zhou W, Guan W, Lu C. Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Anal Chem 2021; 93:15159-15166. [PMID: 34736318 DOI: 10.1021/acs.analchem.1c03629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular pH homeostasis is essential for the survival and function of biological cells. Negatively charged molecular probes, such as pyranine (HPTS), tend to exhibit poor salt tolerance and unsatisfactory cell permeability, limiting their widespread use in intracellular assays. Herein, we explored a charge neutralization strategy using multicharged cationic nanocarriers for an efficient and stable assembly with the pH-sensitive HPTS. Through immobilization and neutralization with poly(allylamine hydrochloride)-stabilized red-emitting gold nanoclusters (PAH-AuNCs), the resulting nanoprobes (HPTS-PAH-AuNCs) offered improved salt tolerance, satisfactory cell permeability, and dual-emission properties. The fluorescence ratio exhibited a linear response over the pH range of 3.0-9.0. Moreover, the proposed HPTS-PAH-AuNCs were successfully applied to determine and visualize lysosomal pH variations in living cells, which indicated great potential for biosensing and bioimaging applications in living systems. Benefiting from the charge neutralization strategy, various types of probes can be expected to achieve broader analytical applications.
Collapse
Affiliation(s)
- Jiating Cao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Meiting Xie
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhuoyong Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Zhang Y, Zhao Y, Zhou A, Qu Q, Zhang X, Song B, Liu K, Xiong R, Huang C. "Turn-on" ratiometric fluorescent probe: Naked-eye detection of acidic pH and citric acid (CA) by using fluorescence spectrum and its application in real food samples and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120014. [PMID: 34091361 DOI: 10.1016/j.saa.2021.120014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Rapid, accurate and efficient detection of acidic pH and citric acid (CA) changes is of great significance for predicting environmental and food safety problems by fluorescence analysis technique. Herein, a small molecule ratiometric fluorescent probe (BICL) based on benzoindole derivatives is successfully synthesized and characterized and used for quantitatively and qualitatively "turn-on" detection acid pH and CA changes in solution and environment by ultraviolet spectrum and fluorescence emission spectrum. On the one hand, the probe has a good linear relation to acidic pH in the pH range 3.1-4.5 (I604/I550 = 13.088-2.3878pH, R2 = 0.9986). On the other hand, the probe has a good linear relationship in the range of CA concentration of 14.0-23.0 μM (I604/I550 = 0.5324 [CA]-5.2628, R2 = 0.9993) and a low detection limit of 2.967 μM. BICL has a good recovery rate in the range of 114.6 ~ 101.0% and a low relative standard deviation (RSD) (0.0011 ~ 0.0092) in the determination of CA in real samples (water, drinks and fruits), which holds great potential for application in determination of CA in real samples. Importantly, the probe has good blood compatibility, and it has been successfully applied to detect exogenously induced changes in acidic pH and CA in zebrafish with great time-stability by using fluorescence imaging technology, respectively.
Collapse
Affiliation(s)
- Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, China
| | - Aying Zhou
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Bo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
16
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
17
|
Bai Y, Zhao J, Wang S, Lin T, Ye F, Zhao S. Carbon Dots with Absorption Red-Shifting for Two-Photon Fluorescence Imaging of Tumor Tissue pH and Synergistic Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35365-35375. [PMID: 34286953 DOI: 10.1021/acsami.1c08076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phototherapy exhibits significant potential as a novel tumor treatment method, and the development of highly active photosensitizers and photothermal agents has drawn considerable attention. In this work, S and N atom co-doped carbon dots (S,N-CDs) with an absorption redshift effect were prepared by hydrothermal synthesis with lysine, o-phenylenediamine, and sulfuric acid as raw materials. The near-infrared (NIR) absorption features of the S,N-CDs resulted in two-photon (TP) emission, which has been used in TP fluorescence imaging of lysosomes and tumor tissue pH and real-time monitoring of apoptosis during tumor phototherapy, respectively. The obtained heteroatom co-doped CDs can be used not only as an NIR imaging probe but also as an effective photodynamic therapy/photothermal therapy (PDT/PTT) therapeutic agent. The efficiencies of different heteroatom-doped CDs in tumor treatment were compared. It was found that the S,N-CDs showed higher therapeutic efficiency than N-doped CDs, the efficiency of producing 1O2 was 27%, and the photothermal conversion efficiency reached 34.4%. The study provides new insight into the synthesis of carbon-based nanodrugs for synergistic phototherapy and accurate diagnosis of tumors.
Collapse
Affiliation(s)
- Yulong Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| | - Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
18
|
Zhang Q, Hu X, Dai X, Sun J, Gao F. A photostable reaction-based A-A-A type two-photon fluorescent probe for rapid detection and imaging of sulfur dioxide. J Mater Chem B 2021; 9:3554-3562. [PMID: 33909752 DOI: 10.1039/d1tb00433f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel reaction-based A-A-A (acceptor-acceptor-acceptor) type two-photon fluorescent probe, BTC, is prepared using the benzothiadiazole (BTD) scaffold as the two-photon fluorophore and electron-accepting centre. Two β-chlorovinyl aldehyde moieties are symmetrically connected to both ends of the BTD scaffold and act as reaction groups to recognize SO2 and quenching groups to make the dis-activated probe stay at off-state due to their weak electron-withdrawing effect. In the presence of SO2 derivatives, the aldehyde groups are consumed through aldehyde addition, resulting in the activation of intramolecular charge transfer (ICT) processes and therefore recovering the fluorescence of the probe. The designed probe shows excellent two-photon properties including large two-photon absorption cross-sections (TPA) of 91 GM and photostability. Beyond these, the BTC probe exhibits a fast response to SO2 within 30 s, high specificity without foreign interference and a broad detection range from 500 nM to 120 μM with a detection limit of 190 nM. The designed fluorescent probe is further applied to the two-photon imaging of exogenous and endogenous SO2 derivatives under different physiological processes in HeLa cells and zebrafish with satisfactory results. We believe that the proposed design strategy can be extended to fabricate versatile BTD-based two-photon fluorescent probes through molecular engineering for further applications in bioassays and two-photon imaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
19
|
Yu W, Huang J, Lin M, Wei G, Yang F, Tang Z, Zeng F, Wu S. Fluorophore-Dapagliflozin Dyad for Detecting Diabetic Liver/Kidney Damages via Fluorescent Imaging and Treating Diabetes via Inhibiting SGLT2. Anal Chem 2021; 93:4647-4656. [PMID: 33660982 DOI: 10.1021/acs.analchem.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type II diabetes is a prevalent disease; if left untreated, it could cause serious complications including liver and kidney damages. Hence, early diagnosis for these damages and effective treatment of diabetes are of high importance. Herein, a fluorophore-dapagliflozin dyad (DX-B-DA) has been developed as a theranostic system that can be triggered by intrahepatic/intrarenal reactive oxygen species (ROS) to concomitantly release a near-infrared (NIR) fluorescent dye (DX) and a SGLT2 inhibitor dapagliflozin (DA). In this dyad (DX-B-DA), the NIR fluorophore (DX) and the drug DA were covalently linked through a boronate ester bond which serves as the fluorescence quencher as well as the ROS-responsive moiety that can be cleaved by pathological levels of ROS in diabetics. The in vitro experiments indicate that, in the absence of hydrogen peroxide, the dyad is weakly emissive and keeps its drug moiety in an inactive state, while upon responding to hydrogen peroxide, the dyad simultaneously releases the NIR dye and the drug DA, suggesting that it can serve as an activatable probe for detecting and imaging diabetic liver/kidney damages as well as a prodrug for diabetes treatment upon being triggered by ROS. The dyad was then injected in mouse model of type II diabetes, and it is found that the dyad can not only offer visualized diagnosis for diabetes-induced liver/kidney damages but also exhibit high efficacy in treating type II diabetes and consequently ameliorating diabetic liver/kidney damages.
Collapse
Affiliation(s)
- Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jing Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingang Lin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guimei Wei
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Zhang Y, Zhao Y, Wu Y, Zhao B, Wang L, Song B, Huang C. Benzoindole-based bifunctional ratiometric turn-on sensor with an ICT effect for trapping of H + and Al 3+ in dual-channel cell imaging and samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119123. [PMID: 33160132 DOI: 10.1016/j.saa.2020.119123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Abnormal changes in H+ and Al3+ concentrations in living cells can alter neurological diseases. A small-molecule sensor combined with a fluorescence imaging technique holds great promise for monitoring changes in proton and metal-ion concentration. In this work, a bifunctional ratiometric naked-eye fluorescence sensor (BIBC) was developed for turn-on detection of H+ and Al3+ in H2O/EtOH (v/v = 1:1) mixtures. BIBC exhibits a pKa value of 4.58 within a linear pH variation from 4.1 to 4.7 (R2 = 0.9939). Moreover, the fluorescence intensity ratio (I566 nm/I524 nm) shows a good linear relationship (R2 = 0.9965) within an Al3+ concentration range of 7.0-10.0 μM. The detection limit (DL) for the sensor was calculated to be 1.58 μM. The practical application of BIBC for Al3+ detection in real samples was further discussed, and satisfactory results were obtained. Furthermore, the sensor was applied to real-time visualization of changes in H+ and Al3+ concentration in living cells, with great photostability and low cytotoxicity observed. Fluorescence images of H+ and Al3+ were collected by using a fluorescence microscope in a dual-channel configuration, wherein they were labeled green and yellow, respectively.
Collapse
Affiliation(s)
- Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Bo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| |
Collapse
|
21
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
22
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Juvekar V, Lim CS, Lee DJ, Song DH, Noh CK, Kang H, Shin SJ, Kim HM. Near-Infrared Ratiometric Two-Photon Probe for pH Measurement in Human Stomach Cancer Tissue. ACS APPLIED BIO MATERIALS 2021; 4:2135-2141. [DOI: 10.1021/acsabm.0c01546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, South Korea
| | | | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, South Korea
| | | |
Collapse
|
24
|
Shi L, Bao Y, Zhang Y, Zhang C, Zhang G, Dong C, Shuang S. Orange emissive carbon nanodots for fluorescent and colorimetric bimodal discrimination of Cu2+ and pH. Analyst 2021; 146:1907-1914. [DOI: 10.1039/d0an02243h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have facilely synthesized orange emissive carbon nanodots (O-CDs) via a hydrothermal method using citric acid and 5-aminosalicylic acid.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yuejing Bao
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Guomei Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
25
|
|
26
|
Lanthanide-semiconductor probes for precise imaging-guided phototherapy and immunotherapy. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Green and high-yield synthesis of carbon dots for ratiometric fluorescent determination of pH and enzyme reactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111264. [DOI: 10.1016/j.msec.2020.111264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/20/2022]
|