1
|
Cui Y, Riley M, Moreno MV, Cepeda MM, Perez IA, Wen Y, Lim LX, Andre E, Nguyen A, Liu C, Lerno L, Nichols PK, Schmitz H, Tagkopoulos I, Kennedy JA, Oberholster A, Siegel JB. Discovery of Potent Glycosidases Enables Quantification of Smoke-Derived Phenolic Glycosides through Enzymatic Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11617-11628. [PMID: 38728580 PMCID: PMC11117406 DOI: 10.1021/acs.jafc.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.
Collapse
Affiliation(s)
- Youtian Cui
- Genome
Center, University of California, Davis, California 95616, United States
- VinZymes,
LLC, Davis, California 95616, United States
| | - Mary Riley
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
| | - Marcus V. Moreno
- Genome
Center, University of California, Davis, California 95616, United States
| | - Mateo M. Cepeda
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ignacio Arias Perez
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Yan Wen
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Lik Xian Lim
- Department
of Food Science & Technology, University
of California, Davis, California 95616, United States
- UC Davis
Coffee Center, University of California, Davis, California 95616, United States
| | - Eric Andre
- Genome
Center, University of California, Davis, California 95616, United States
| | - An Nguyen
- Genome
Center, University of California, Davis, California 95616, United States
| | - Cody Liu
- Genome
Center, University of California, Davis, California 95616, United States
| | - Larry Lerno
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
- Food
Safety and Measurement Facility, University
of California, Davis, California 95616, United States
| | | | - Harold Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate School of Management, University
of California, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- Genome
Center, University of California, Davis, California 95616, United States
- Department of Computer Science, USDA/NSF
AI Institute for Next Generation
Food Systems (AIFS), University of California, Davis, California 95616, United States
- PIPA, LLC, Davis, California 95616, United States
| | | | - Anita Oberholster
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Justin B. Siegel
- Genome
Center, University of California, Davis, California 95616, United States
- Microbiology
Graduate Group, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Department of Biochemistry and Molecular
Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
2
|
Nithimethachoke T, Boonmak C, Morikawa M. A novel alkane monooxygenase evolved from a broken piece of ribonucleotide reductase in Geobacillus kaustophilus HTA426 isolated from Mariana Trench. Extremophiles 2024; 28:18. [PMID: 38353731 PMCID: PMC10867098 DOI: 10.1007/s00792-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024]
Abstract
We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.
Collapse
Affiliation(s)
- Tanasap Nithimethachoke
- Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
| | - Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810, Japan.
| |
Collapse
|
3
|
Zheng Z, Xiong J, Bu J, Ren D, Lee YH, Yeh YC, Lin CI, Parry R, Guo Y, Liu HW. Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety. Angew Chem Int Ed Engl 2024; 63:e202315844. [PMID: 37963815 PMCID: PMC10843709 DOI: 10.1002/anie.202315844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting μ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Junling Bu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Chia-I Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Ronald Parry
- Department of Chemistry, Rice University, Houston, TX-77005, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| |
Collapse
|
4
|
Shi J, Zang X, Zhao Z, Shen Z, Li W, Zhao G, Zhou J, Du YL. Conserved Enzymatic Cascade for Bacterial Azoxy Biosynthesis. J Am Chem Soc 2023; 145:27131-27139. [PMID: 38018127 DOI: 10.1021/jacs.3c12018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.
Collapse
Affiliation(s)
- Jingkun Shi
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijie Zhao
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuanglin Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Li
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guiyun Zhao
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiahai Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi-Ling Du
- Department of Microbiology, and Department of Pharmacy of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
5
|
Hayashi Y, Arai M. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb Cell Fact 2022; 21:256. [PMID: 36503511 PMCID: PMC9743570 DOI: 10.1186/s12934-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.
Collapse
Affiliation(s)
- Yuuki Hayashi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XEnvironmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 Japan
| | - Munehito Arai
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| |
Collapse
|
6
|
Computational enzyme redesign: large jumps in function. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Diamanti R, Srinivas V, Johansson A, Nordström A, Griese JJ, Lebrette H, Högbom M. Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase. FEBS Lett 2022; 596:1600-1610. [PMID: 35175627 PMCID: PMC9314684 DOI: 10.1002/1873-3468.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
R2‐like ligand‐binding oxidase (R2lox) is a ferritin‐like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross‐link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry‐based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.
Collapse
Affiliation(s)
- Riccardo Diamanti
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
8
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Feehan R, Montezano D, Slusky JSG. Machine learning for enzyme engineering, selection and design. Protein Eng Des Sel 2021; 34:gzab019. [PMID: 34296736 PMCID: PMC8299298 DOI: 10.1093/protein/gzab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Machine learning is a useful computational tool for large and complex tasks such as those in the field of enzyme engineering, selection and design. In this review, we examine enzyme-related applications of machine learning. We start by comparing tools that can identify the function of an enzyme and the site responsible for that function. Then we detail methods for optimizing important experimental properties, such as the enzyme environment and enzyme reactants. We describe recent advances in enzyme systems design and enzyme design itself. Throughout we compare and contrast the data and algorithms used for these tasks to illustrate how the algorithms and data can be best used by future designers.
Collapse
Affiliation(s)
- Ryan Feehan
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
| | - Daniel Montezano
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
| | - Joanna S G Slusky
- Center for Computational Biology, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047-1620, USA
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave. Lawrence, KS 66045-7600, USA
| |
Collapse
|