1
|
Gallwitz L, Bleibaum F, Voss M, Schweizer M, Spengler K, Winter D, Zöphel F, Müller S, Lichtenthaler S, Damme M, Saftig P. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis. Cell Mol Life Sci 2024; 81:227. [PMID: 38775843 PMCID: PMC11111660 DOI: 10.1007/s00018-024-05274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Collapse
Affiliation(s)
- Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), UKE, Falkenried 94, 20251, Hamburg, Germany
| | - Katharina Spengler
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederic Zöphel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
2
|
Qian XH, Ding GY, Chen SY, Liu XL, Zhang M, Tang HD. Blood Cathepsins on the Risk of Alzheimer's Disease and Related Pathological Biomarkers: Results from Observational Cohort and Mendelian Randomization Study. J Prev Alzheimers Dis 2024; 11:1834-1842. [PMID: 39559895 PMCID: PMC11573867 DOI: 10.14283/jpad.2024.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), the main type of dementia, involves in complex pathophysiological processes, including abnormal lysosomes function. Cathepsins are the predominant proteases responsible for the degradation of diverse substrates in the endo-lysosomal system. However, there was still a lack of systematic study on the causal association between cathepsins and AD. METHODS This study utilized Mendelian randomization (MR) to investigate the association between blood cathepsins and the risk of AD, as well as the level of amyloid-β (Aβ) and p-Tau in cerebrospinal fluid. Furthermore, an independent dataset was employed to corroborate the above result. Importantly, this study incorporated the Alzheimer's disease Immunization and Microbiota Initiative study Cohort to further validate the alteration of blood cathepsins expression level and examine its correlation with cognitive level and plasma AD-related pathological markers. RESULTS Using MR method, we observed that high level of cathepsin L (CTSL) was associated with a lower risk of AD in both training and validation data. In observational cohort, we found there was decreased blood CTSL expression level in Aβ+ cognitive impaired (CI) group, compared with Aβ- cognitive unimpaired (CU) group. Correlation analysis revealed that blood CTSL expression level was negatively correlated with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) score, plasma Aβ42 and Aβ42/40 level in Aβ+ CI group. Mediation analysis showed that plasma Aβ42/40 level was the key mediator in the association between blood CTSL and MMSE score in Aβ+ CI participants. CONCLUSION This study revealed that blood CTSL was an important factor affecting the risk of AD, and it affected the cognitive level of AD patients through plasma Aβ42/40 level.
Collapse
Affiliation(s)
- X.-H. Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G.-Y. Ding
- Department of Neurology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - S.-Y. Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai University of Medicine & Health Science Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Afram E, Lauritzen I, Bourgeois A, El Manaa W, Duplan E, Chami M, Valverde A, Charlotte B, Pardossi-Piquard R, Checler F. The η-secretase-derived APP fragment ηCTF is localized in Golgi, endosomes and extracellular vesicles and contributes to Aβ production. Cell Mol Life Sci 2023; 80:97. [PMID: 36930302 PMCID: PMC10023608 DOI: 10.1007/s00018-023-04737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
The processing of the amyloid precursor protein (APP) is one of the key events contributing to Alzheimer's disease (AD) etiology. Canonical cleavages by β- and γ-secretases lead to Aβ production which accumulate in amyloid plaques. Recently, the matrix metalloprotease MT5-MMP, referred to as η-secretase, has been identified as a novel APP cleaving enzyme producing a transmembrane fragment, ηCTF that undergoes subsequent cleavages by α- and β-secretases yielding the Aηα and Aηβ peptides, respectively. The functions and contributions of ηCTF and its related fragments to AD pathology are poorly understood. In this study, we designed a novel immunological probe referred to as ηCTF-NTer antibody that specifically interacts with the N-terminal part of ηCTF targeting ηCTF, Aηα, Aηβ but not C99, C83 and Aβ. We examined the fate and localization of ηCTF fragment in various cell models and in mice. We found that overexpressed ηCTF undergoes degradation in the proteasomal and autophagic pathways and accumulates mainly in the Golgi and in endosomes. Moreover, we observed the presence of ηCTF in small extracellular vesicles purified from neuroblastoma cells or from mouse brains expressing ηCTF. Importantly, the expression of ηCTF in fibroblasts devoid on APP leads to Aβ production demonstrating its contribution to the amyloidogenic pathway. Finally, we observed an ηCTF-like immunoreactivity around amyloid plaques and an age-dependent accumulation of ηCTF in the triple-transgenic mouse AD model. Thus, our study suggests that the ηCTF fragment likely contributes to AD pathology by its exosomal spreading and involvement in Aβ production.
Collapse
Affiliation(s)
- Elissa Afram
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Inger Lauritzen
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Alexandre Bourgeois
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Wejdane El Manaa
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Audrey Valverde
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
- Fonds de Dotation CLINATEC, 17 rue des Martyrs, Bat 43, 38054, Grenoble, France
| | - Bauer Charlotte
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| | - Frederic Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
5
|
Marchi PM, Marrone L, Brasseur L, Coens A, Webster CP, Bousset L, Destro M, Smith EF, Walther CG, Alfred V, Marroccella R, Graves EJ, Robinson D, Shaw AC, Wan LM, Grierson AJ, Ebbens SJ, De Vos KJ, Hautbergue GM, Ferraiuolo L, Melki R, Azzouz M. C9ORF72-derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Sci Alliance 2022; 5:5/9/e202101276. [PMID: 35568435 PMCID: PMC9108631 DOI: 10.26508/lsa.202101276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic β-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.
Collapse
Affiliation(s)
- Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Laurent Brasseur
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Audrey Coens
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Luc Bousset
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Marco Destro
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.,Centre for Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, UK
| | - Christa G Walther
- The Wolfson Light Microscopy Facility, University of Sheffield, Sheffield, UK
| | - Victor Alfred
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Raffaele Marroccella
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Emily J Graves
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Darren Robinson
- The Wolfson Light Microscopy Facility, University of Sheffield, Sheffield, UK
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Lai Mei Wan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.,Centre for Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Ronald Melki
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK .,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
6
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
7
|
Zhang S, Bai P, Lei D, Liang Y, Zhen S, Bakiasi G, Pang H, Choi SH, Wang C, Tanzi RE, Zhang C. Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer's disease-related neuropathology in cell models. J Biol Chem 2022; 298:101794. [PMID: 35248531 PMCID: PMC8958546 DOI: 10.1016/j.jbc.2022.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.
Collapse
Affiliation(s)
- Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Forensic Medicine, China Medical University, Shenyang, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Dan Lei
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hao Pang
- Department of Forensic Medicine, China Medical University, Shenyang, China
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
8
|
Liang Y, Raven F, Ward JF, Zhen S, Zhang S, Sun H, Miller SJ, Choi SH, Tanzi RE, Zhang C. Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. J Alzheimers Dis 2021; 76:1071-1082. [PMID: 32597805 DOI: 10.3233/jad-200128] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis of Alzheimer's disease (AD) posits that amyloid-β (Aβ) protein accumulation underlies the pathogenesis of the disease by leading to the formation of amyloid plaques, a pathologic hallmark of AD. Aβ is a proteolytic product of amyloid-β protein precursor (AβPP; APP), which is expressed in both neurons and astrocytes. Although considerable evidence shows that astrocytes may play critical roles in the pathogenesis of AD, the longitudinal changes of amyloid plaques in relationship to AβPP expression in astrocytes and cellular consequences are largely unknown. OBJECTIVE Here, we aimed to investigate astrocyte-related pathological changes of Aβ and AβPP using immunohistochemistry and biochemical studies in both animal and cell models. METHODS/RESULTS We utilized 5XFAD transgenic mice and found age-dependent upregulation of AβPP in astrocytes demonstrated with astrocytic reactive properties, which followed appearance of amyloid plaques in the brain. We also observed that AβPP proteins presented well-defined punctate immuno reactivity in young animals, whereas AβPP staining showed disrupted structures surrounding amyloid plaques in older mice. Moreover, we utilized astrocyte cell models and showed that pretreatment of Aβ42 resulted in downstream astrocyte autonomous changes, including up regulation in AβPP and BACE1 levels, as well as prolonged amyloidogenesis that could be reduced by pharmacological inhibition of BACE1. CONCLUSION Collectively, our results show that age-dependent AβPP up regulation in astrocytes is a key feature in AD, which will not only provide novel insights for understanding AD progression, but also may offer new therapeutic strategies for treating AD.
Collapse
Affiliation(s)
- Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Frank Raven
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joseph F Ward
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Wan Y, Liang Y, Liang F, Shen N, Shinozuka K, Yu JT, Ran C, Quan Q, Tanzi RE, Zhang C. A Curcumin Analog Reduces Levels of the Alzheimer's Disease-Associated Amyloid-β Protein by Modulating AβPP Processing and Autophagy. J Alzheimers Dis 2020; 72:761-771. [PMID: 31640096 DOI: 10.3233/jad-190562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with no cure currently available. A pathological hallmark of AD is accumulation and deposition of amyloid-β protein (Aβ), a ∼4 kDa peptide generated through serial cleavage of the amyloid-β protein precursor (AβPP) by β- and γ-secretases. Curcumin is a natural compound primarily found in the widely used culinary spice, turmeric, which displays therapeutic potential for AD. Recently, we reported the development of curcumin analogs and identified a lead compound, curcumin-like compound-R17 (CLC-R17), that significantly attenuates Aβ deposition in an AD transgenic mouse model. Here, we elucidated the mechanisms of this analog on Aβ levels and AβPP processing using cell models of AD. Using biochemical methods and our recently developed nanoplasmonic fiber tip probe technology, we showed that the lead compound potently lowers Aβ levels in conditioned media and reduces oligomeric amyloid levels in the cells. Furthermore, like curcumin, the lead compound attenuates the maturation of AβPP in the secretory pathway. Interestingly, it upregulated α-secretase processing of AβPP and inhibited β-secretase processing of AβPP by decreasing BACE1 protein levels. Collectively, our data reveal mechanisms of a promising curcumin analog in reducing Aβ levels, which strongly support its development as a potential therapeutic for AD.
Collapse
Affiliation(s)
- Yu Wan
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Nolan Shen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kenneth Shinozuka
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Mosser S, Gerber H, Fraering PC. Identification of truncated C-terminal fragments of the Alzheimer's disease amyloid protein precursor derived from sequential proteolytic pathways. J Neurochem 2020; 156:943-956. [PMID: 32757390 DOI: 10.1111/jnc.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
Recent evidence supports the emerging hypothesis that the amyloid-β precursor protein C-terminal fragments (APP-CTFs) and dysregulations in both their qualitative and quantitative productions may actively and directly contribute to the neuronal toxicity in early phases of Alzheimer's disease (AD). These new findings revealed the urgent needs and gaps in better understanding the metabolism and full spectrum of APP-CTFs. In this study, we characterized by mass spectrometry the full patterns of APP-CTFs in different cell types and in the brain of an AD APPPS1 mouse model. In these systems, we first discovered a series of 71-80 amino acids long N-terminally truncated APP-CTFs of unknown functions. We next demonstrated that these N-terminally truncated APP-CTFs are sequentially produced by the proteolytic processing of APP-C80, by an as yet unidentified protease. Finally, these N-terminally truncated APP-CTFs are likely protein substrates recognized and processed by the γ-secretase complex, leading to the production of N-terminally truncated Aβ peptides. Together, our findings provide new insights into the metabolism of APP and offer potential new strategies to modulate the production of toxic Aβ peptides in AD.
Collapse
Affiliation(s)
- Sebastien Mosser
- Foundation Eclosion, Plan-les-Ouates, CH-1228, Switzerland.,Campus Biotech Innovation Park, Geneva, CH-1202, Switzerland
| | - Hermeto Gerber
- Foundation Eclosion, Plan-les-Ouates, CH-1228, Switzerland.,Campus Biotech Innovation Park, Geneva, CH-1202, Switzerland
| | - Patrick C Fraering
- Foundation Eclosion, Plan-les-Ouates, CH-1228, Switzerland.,Campus Biotech Innovation Park, Geneva, CH-1202, Switzerland
| |
Collapse
|
11
|
Medoro A, Bartollino S, Mignogna D, Marziliano N, Porcile C, Nizzari M, Florio T, Pagano A, Raimo G, Intrieri M, Russo C. Proteases Upregulation in Sporadic Alzheimer's Disease Brain. J Alzheimers Dis 2020; 68:931-938. [PMID: 30814362 DOI: 10.3233/jad-181284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain proteases are involved in Alzheimer's disease (AD) and their erroneous control may contribute to the pathology onset and progression. In this study we evaluated the cerebral expression of eight proteases, involved in both AβPP processing and extracellular matrix remodeling. Among these proteases, ADAM10, ADAMTS1, Cathepsin D, and Meprin β show a significantly higher mRNAs expression in sporadic AD subjects versus controls, while ADAMTS1, Cathepsin D, and Meprin β show an increment also at the protein level. These data indicate that transcriptional events affecting brain proteases are activated in AD patients, suggesting a link between proteolysis and AD.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Nicola Marziliano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Clinical Pathology Laboratory, ASL Taranto, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
12
|
Dar NJ, Glazner GW. Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα). Cell Mol Life Sci 2020; 77:2315-2330. [PMID: 31960113 PMCID: PMC11105086 DOI: 10.1007/s00018-019-03404-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
Amyloid precursor protein (APP) is a transmembrane protein expressed largely within the central nervous system. Upon cleavage, it does not produce the toxic amyloid peptide (Aβ) only, which is involved in neurodegenerative progressions but via a non-amyloidogenic pathway it is metabolized to produce a soluble fragment (sAPPα) through α-secretase. While a lot of studies are focusing on the role played by APP in the pathogenesis of Alzheimer's disease, sAPPα is reported to have numerous neuroprotective effects and it is being suggested as a candidate with possible therapeutic potential against Alzheimer's disease. However, the mechanisms through which sAPPα precisely works remain elusive. We have presented a comprehensive review of how sAPPα is regulating the neuroprotective effects in different biological models. Moreover, we have focused on the role of sAPPα during different developmental stages of the brain, neurogenic microenvironment in the brain and how this metabolite of APP is regulating the neurogenesis which is regarded as a compelling approach to ameliorate the impaired learning and memory deficits in dementia and diseases like Alzheimer's disease. sAPPα exerts beneficial physiological, biochemical and behavioral effects mitigating the detrimental effects of neurotoxic compounds. It has shown to increase the proliferation rate of numerous cell types and promised the synaptogenesis, neurite outgrowth, cell survival and cell adhesion. Taken together, we believe that further studies are warranted to investigate the exact mechanism of action so that sAPPα could be developed as a novel therapeutic target against neuronal deficits.
Collapse
Affiliation(s)
- Nawab John Dar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada
| | - Gordon W Glazner
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
13
|
Haytural H, Lundgren JL, Köse TB, Jordà-Siquier T, Kalcheva M, Seed Ahmed M, Winblad B, Sundström E, Barthet G, Tjernberg LO, Frykman S. Non-specific Detection of a Major Western Blotting Band in Human Brain Homogenates by a Multitude of Amyloid Precursor Protein Antibodies. Front Aging Neurosci 2019; 11:273. [PMID: 31649526 PMCID: PMC6794468 DOI: 10.3389/fnagi.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The use of human post-mortem brain material is of great value when investigating which pathological mechanisms occur in human brain, and to avoid translational problems which have for example been evident when translating animal research into Alzheimer disease (AD) clinical trials. The amyloid β (Aβ)-peptide, its amyloid precursor protein (APP) and the intermediate APP-c-terminal fragments (APP-CTFs) are all important players in AD pathogenesis. In order to elucidate which APP CTF that are the most common in brain tissue of different species and developmental stages, and whether there are any differences in these fragments between AD and control brain, we investigated the occurrence of these fragments using different APP c-terminal antibodies. We noticed that whereas the conventional APP-CTFα and CTFβ fragments were most prominent in rat and mouse brain tissue, the major western blotting band detected in human, macaque and guinea pig was of approximately 20 kDa in size, possibly corresponding to the newly discovered APP-CTFη. However, this band was also intensely stained with a total protein stain, as well as by several other antibodies. The staining intensity of the 20 kDa band by the APP antibodies varied considerably between samples and correlated with the staining intensity of this band by the total protein stain. This could potentially be due to non-specific binding of the antibodies to another protein of this size. In-gel digestion and mass spectrometry confirmed that small amounts of APP were present in this band, but many other proteins were identified as well. The major hit of the mass spectrometry analysis was myelin basic protein (MBP) and a myelin removal protocol removed proportionally more of the 20 kDa APP band than the full-length APP and APP-CTFα/β bands. However, the signal could not be immunodepleted with an MBP antibody. In summary, we report on a potentially non-specific western blotting band of approximately 20 kDa and call for precaution when analyzing proteins of this size in human brain tissue.
Collapse
Affiliation(s)
- Hazal Haytural
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Jolanta L Lundgren
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Tansu B Köse
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Tomàs Jordà-Siquier
- Interdisciplinary Institute of Neuroscience, Université de Bordeaux, Bordeaux, France
| | - Marinela Kalcheva
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Mohammed Seed Ahmed
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Gaël Barthet
- Interdisciplinary Institute of Neuroscience, Université de Bordeaux, Bordeaux, France
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Susanne Frykman
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 2019; 67:123-137. [DOI: 10.1016/j.jnutbio.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
|
15
|
Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials. Exp Gerontol 2018; 113:36-47. [DOI: 10.1016/j.exger.2018.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/04/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
|
16
|
Paschkowsky S, Recinto SJ, Young JC, Bondar AN, Munter LM. Membrane cholesterol as regulator of human rhomboid protease RHBDL4. J Biol Chem 2018; 293:15556-15568. [PMID: 30143535 DOI: 10.1074/jbc.ra118.002640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
In the last decade, intramembrane proteases have gained increasing attention because of their many links to various diseases. Nevertheless, our understanding as to how they function or how they are regulated is still limited, especially when it comes to human homologues. In this regard, here we sought to unravel mechanisms of regulation of the protease rhomboid-like protein-4 (RHBDL4), one of five active human serine intramembrane proteases. In view of our recent finding that human RHBDL4 efficiently cleaves the amyloid precursor protein (APP), a key protein in the pathology of Alzheimer's disease, we used established reagents to modulate the cellular cholesterol content and analyzed the effects of this modulation on RHBDL4-mediated processing of endogenous APP. We discovered that lowering membrane cholesterol levels increased the levels of RHBDL4-specific endogenous APP fragments, whereas high cholesterol levels had the opposite effect. Direct binding of cholesterol to APP did not mediate these modulating effects of cholesterol. Instead, using homology modeling, we identified two potential cholesterol-binding motifs in the transmembrane helices 3 and 6 of RHBDL4. Substitution of the essential tyrosine residues of the potential cholesterol-binding motifs to alanine increased the levels of endogenous APP C-terminal fragments, reflecting enhanced RHBDL4 activity. In summary, we provide evidence that the activity of RHBDL4 is regulated by cholesterol likely through a direct binding of cholesterol to the enzyme.
Collapse
Affiliation(s)
- Sandra Paschkowsky
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| | | | - Jason C Young
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Ana-Nicoleta Bondar
- the Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Lisa Marie Munter
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| |
Collapse
|
17
|
Wiseman FK, Pulford LJ, Barkus C, Liao F, Portelius E, Webb R, Chávez-Gutiérrez L, Cleverley K, Noy S, Sheppard O, Collins T, Powell C, Sarell CJ, Rickman M, Choong X, Tosh JL, Siganporia C, Whittaker HT, Stewart F, Szaruga M, Murphy MP, Blennow K, de Strooper B, Zetterberg H, Bannerman D, Holtzman DM, Tybulewicz VLJ, Fisher EMC. Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 2018; 141:2457-2474. [PMID: 29945247 PMCID: PMC6061702 DOI: 10.1093/brain/awy159] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
Down syndrome, caused by trisomy of chromosome 21, is the single most common risk factor for early-onset Alzheimer's disease. Worldwide approximately 6 million people have Down syndrome, and all these individuals will develop the hallmark amyloid plaques and neurofibrillary tangles of Alzheimer's disease by the age of 40 and the vast majority will go on to develop dementia. Triplication of APP, a gene on chromosome 21, is sufficient to cause early-onset Alzheimer's disease in the absence of Down syndrome. However, whether triplication of other chromosome 21 genes influences disease pathogenesis in the context of Down syndrome is unclear. Here we show, in a mouse model, that triplication of chromosome 21 genes other than APP increases amyloid-β aggregation, deposition of amyloid-β plaques and worsens associated cognitive deficits. This indicates that triplication of chromosome 21 genes other than APP is likely to have an important role to play in Alzheimer's disease pathogenesis in individuals who have Down syndrome. We go on to show that the effect of trisomy of chromosome 21 on amyloid-β aggregation correlates with an unexpected shift in soluble amyloid-β 40/42 ratio. This alteration in amyloid-β isoform ratio occurs independently of a change in the carboxypeptidase activity of the γ-secretase complex, which cleaves the peptide from APP, or the rate of extracellular clearance of amyloid-β. These new mechanistic insights into the role of triplication of genes on chromosome 21, other than APP, in the development of Alzheimer's disease in individuals who have Down syndrome may have implications for the treatment of this common cause of neurodegeneration.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK
| | - Fan Liao
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
| | - Robin Webb
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40507, USA
| | - Lucia Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
| | - Karen Cleverley
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Sue Noy
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Toby Collins
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Caroline Powell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W 7FF, UK
| | - Claire J Sarell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W 7FF, UK
| | - Matthew Rickman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Xun Choong
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Carlos Siganporia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Heather T Whittaker
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Floy Stewart
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
| | - London Down syndrome consortium
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| | - Michael P Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40507, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
| | - Bart de Strooper
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, London, WC2B 4AN, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, London, WC2B 4AN, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Victor L J Tybulewicz
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| |
Collapse
|
18
|
Endosomal-Lysosomal Cholesterol Sequestration by U18666A Differentially Regulates Amyloid Precursor Protein (APP) Metabolism in Normal and APP-Overexpressing Cells. Mol Cell Biol 2018. [PMID: 29530923 DOI: 10.1128/mcb.00529-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β (Aβ) peptide, derived from amyloid precursor protein (APP), plays a critical role in the development of Alzheimer's disease. Current evidence indicates that altered levels or subcellular distribution of cholesterol can regulate Aβ production and clearance, but it remains unclear how cholesterol sequestration within the endosomal-lysosomal (EL) system can influence APP metabolism. Thus, we evaluated the effects of U18666A, which triggers cholesterol redistribution within the EL system, on mouse N2a cells expressing different levels of APP in the presence or absence of extracellular cholesterol and lipids provided by fetal bovine serum (FBS). Our results reveal that U18666A and FBS differentially increase the levels of APP and its cleaved products, the α-, β-, and η-C-terminal fragments, in N2a cells expressing normal levels of mouse APP (N2awt), higher levels of human wild-type APP (APPwt), or "Swedish" mutant APP (APPsw). The cellular levels of Aβ1-40/Aβ1-42 were markedly increased in U18666A-treated APPwt and APPsw cells. Our studies further demonstrate that APP and its cleaved products are partly accumulated in the lysosomes, possibly due to decreased clearance. Finally, we show that autophagy inhibition plays a role in mediating U18666A effects. Collectively, these results suggest that altered levels and distribution of cholesterol and lipids can differentially regulate APP metabolism depending on the nature of APP expression.
Collapse
|
19
|
Lowry JR, Klegeris A. Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Res Bull 2018; 139:144-156. [DOI: 10.1016/j.brainresbull.2018.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
|
20
|
Giroud M, Dietzel U, Anselm L, Banner D, Kuglstatter A, Benz J, Blanc JB, Gaufreteau D, Liu H, Lin X, Stich A, Kuhn B, Schuler F, Kaiser M, Brun R, Schirmeister T, Kisker C, Diederich F, Haap W. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors. J Med Chem 2018; 61:3350-3369. [DOI: 10.1021/acs.jmedchem.7b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uwe Dietzel
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Lilli Anselm
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Baptiste Blanc
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Delphine Gaufreteau
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Haixia Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - Xianfeng Lin
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - August Stich
- Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97074 Würzburg, Germany
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
21
|
Inhibition of cathepsin L alleviates the microglia-mediated neuroinflammatory responses through caspase-8 and NF-κB pathways. Neurobiol Aging 2018; 62:159-167. [DOI: 10.1016/j.neurobiolaging.2017.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/01/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
|
22
|
Yang H, Wang Y, Kar S. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia 2017; 65:1728-1743. [PMID: 28722194 DOI: 10.1002/glia.23191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play an important role in the degeneration of neurons and development of Alzheimer's disease (AD). Current evidence indicates that high levels of cholesterol-which increase the risk of developing AD-can influence Aβ production in neurons. However, it remains unclear how altered level/subcellular distribution of cholesterol in astrocytes can influence APP metabolism. In this study, we evaluated the effects of cholesterol transport inhibitor U18666A-a class II amphiphile that triggers redistribution of cholesterol within the endosomal-lysosomal (EL) system-on APP levels and metabolism in rat primary cultured astrocytes. Our results revealed that U18666A increased the levels of the APP holoprotein and its cleaved products (α-/β-/η-CTFs) in cultured astrocytes, without altering the total levels of cholesterol or cell viability. The cellular levels of Aβ1-40 were also found to be markedly increased, while secretory levels of Aβ1-40 were decreased in U18666A-treated astrocytes. We further report a corresponding increase in the activity of the enzymes regulating APP processing, such as α-secretase, β-secretase, and γ-secretase as a consequence of U18666A treatment. Additionally, APP-cleaved products are partly accumulated in the lysosomes following cholesterol sequestration within EL system possibly due to decreased clearance. Interestingly, serum delipidation attenuated enhanced levels of APP and its cleaved products following U18666A treatment. Collectively, these results suggest that cholesterol sequestration within the EL system in astrocytes can influence APP metabolism and the accumulation of APP-cleaved products including Aβ peptides, which can contribute to the development of AD pathology.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanlin Wang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Medicine, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
23
|
Fu GX, Chen AF, Xu QM, Han BB, Huang GZ, Zhong Y. Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation. Free Radic Res 2017; 51:932-942. [PMID: 29041825 DOI: 10.1080/10715762.2017.1393665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent evidence suggests a link between cathepsin L (CTSL) and vascular diseases. However, its contribution to reactive oxygen species (ROS) homeostasis in the vasculature remains unknown. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals. In this study, we explored the relationship between CTSL and oxidative damage in vasculature and whether the oxidative damage is mediated by p66shc.Carotid arteries from aged mice (24 months old) showed a reduction in CTSL expression compared with young wild-type mice (4 months old). Local knockdown of CTSL in carotid arteries of young mice by adenoviral vector encoding the short hairpin RNA targeting CTSL leading to premature vascular aging, as shown by mitochondrial disruption, increased β-galactosidase-positive cells, reduced telomerase activity, and up-regulation of p66shc. Knockdown of CTSL decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III, and IV, leading to increased mitochondrial ROS and hyperpolarization of the mitochondrial membrane in vitro. Furthermore, knockdown of CTSL also stimulated ROS production and senescence in vascular cells, accompanied by the up-regulation of p66shc.However, p66shc knockdown blunted the alteration in ROS production, and senescence in CTSL knockdown vascular cells. This study suggests that CTSL knockdown partially induces vascular cells damage via increased ROS production and up-regulation of p66shc.
Collapse
Affiliation(s)
- Guo-Xiang Fu
- a Department of Gerontology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No. 600 , Shanghai , P R China
| | - Alex F Chen
- b Department of Surgery , University of Pittsburgh School of Medicine, Pittsburgh, PA, and Vascular Surgery Research, Veterans Affairs Pittsburgh Healthcare System , Pittsburgh , PA , USA
| | - Qiu-Mei Xu
- c Department of Gerontology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China, P R China
| | - Bei-Bei Han
- d Department of Cardiology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No. 600 , Shanghai , P R China
| | - Gao-Zhong Huang
- e Department of Priority Ward , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No. 600 , Shanghai , P R China
| | - Yuan Zhong
- a Department of Gerontology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No. 600 , Shanghai , P R China
| |
Collapse
|
24
|
Maulik M, Vergote D, Phukan G, Chung J, Thinakaran G, Kar S. The Effects of Extracellular Serum Concentration on APP Processing in Npc1-Deficient APP-Overexpressing N2a Cells. Mol Neurobiol 2017; 55:5757-5766. [DOI: 10.1007/s12035-017-0799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022]
|
25
|
Raven F, Ward JF, Zoltowska KM, Wan Y, Bylykbashi E, Miller SJ, Shen X, Choi SH, Rynearson KD, Berezovska O, Wagner SL, Tanzi RE, Zhang C. Soluble Gamma-secretase Modulators Attenuate Alzheimer's β-amyloid Pathology and Induce Conformational Changes in Presenilin 1. EBioMedicine 2017; 24:93-101. [PMID: 28919280 PMCID: PMC5652037 DOI: 10.1016/j.ebiom.2017.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
A central pathogenic event of Alzheimer's disease (AD) is the accumulation of the Aβ42 peptide, which is generated from amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. We have developed a class of soluble 2-aminothiazole γ-secretase modulators (SGSMs) that preferentially decreases Aβ42 levels. However, the effects of SGSMs in AD animals and cells expressing familial AD mutations, as well as the mechanism of γ-secretase modulation remain largely unknown. Here, a representative of this SGSM scaffold, SGSM-36, was investigated using animals and cells expressing FAD mutations. SGSM-36 preferentially reduced Aβ42 levels without affecting either α- and β-secretase processing of APP nor Notch processing. Furthermore, an allosteric site was identified within the γ-secretase complex that allowed access of SGSM-36 using cell-based, fluorescence lifetime imaging microscopy analysis. Collectively, these studies provide mechanistic insights regarding SGSMs of this class and reinforce their therapeutic potential in AD. A novel class soluble 2-aminothiazole γ-secretase modulators (SGSMs) are characterized as potential therapeutics for AD. A representative compound, SGSM-36, preferentially decreases Aβ42 levels using animal and cell models of AD. An allosteric site was identified within γ-secretase to be accessible by SGSM-36.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and there is currently no treatment to slow or halt disease progression. Considerable evidence shows that the primary pathological event leading to AD is the production and accumulation of Aβ42 peptide. We have developed a class of soluble 2-aminothiazole γ-secretase modulators (SGSMs) that preferentially decreases Aβ42 levels. The presented studies have primarily elucidated the mechanisms by which our SGSMs decrease Aβ42 levels and attenuate β-amyloid pathology. The results of these experiments will be useful toward the ongoing efforts toward the development of an effective therapy for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Frank Raven
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Joseph F Ward
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Katarzyna M Zoltowska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Yu Wan
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Xunuo Shen
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093-0624, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093-0624, USA; Research Biologist, VA San Diego Healthcare System, La Jolla, CA, 92161, United States.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA.
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA.
| |
Collapse
|
26
|
García-Ayllón MS, Lopez-Font I, Boix CP, Fortea J, Sánchez-Valle R, Lleó A, Molinuevo JL, Zetterberg H, Blennow K, Sáez-Valero J. C-terminal fragments of the amyloid precursor protein in cerebrospinal fluid as potential biomarkers for Alzheimer disease. Sci Rep 2017; 7:2477. [PMID: 28559572 PMCID: PMC5449401 DOI: 10.1038/s41598-017-02841-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022] Open
Abstract
This study assesses whether C-terminal fragments (CTF) of the amyloid precursor protein (APP) are present in cerebrospinal fluid (CSF) and their potential as biomarkers for Alzheimer’s disease (AD). Immunoprecipitation and simultaneous assay by Western blotting using multiplex fluorescence imaging with specific antibodies against particular domains served to characterize CTFs of APP in human CSF. We demonstrate that APP-CTFs are detectable in human CSF, being the most abundant a 25-kDa fragment, probably resulting from proteolytic processing by η-secretase. The level of the 25-kDa APP-CTF was evaluated in three independent CSF sample sets of patients and controls. The CSF level of this 25-kDa CTF is higher in subjects with autosomal dominant AD linked to PSEN1 mutations, in demented Down syndrome individuals and in sporadic AD subjects compared to age-matched controls. Our data suggest that APP-CTF could be a potential diagnostic biomarker for AD.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España
| | - Juan Fortea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036, Barcelona, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José-Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, España. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, 03550, Alicante, España.
| |
Collapse
|
27
|
Ward J, Wang H, Saunders AJ, Tanzi RE, Zhang C. Mechanisms that synergistically regulate η-secretase processing of APP and Aη-α protein levels: relevance to pathogenesis and treatment of Alzheimer's disease. DISCOVERY MEDICINE 2017; 23:121-128. [PMID: 28371615 PMCID: PMC5524192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pathophysiology of Alzheimer's disease (AD) is characterized by the formation of cerebral β-amyloid plaque from a small peptide amyloid-β (Aβ). Aβ is generated from the canonical amyloid-β precursor protein (APP) proteolysis pathway through β- and γ-secretases. Decreasing Aβ levels through targeting APP processing is a very promising direction in clinical trials for AD. A novel APP processing pathway was recently identified, in which η-secretase processing of APP occurs and results in the generation of the carboxy-terminal fragment-η (CTF-η or η-CTF) (Wang et al., 2015) and Aη-α peptide (Willem et al., 2015). η-Secretase processing of APP may be up-regulated by at least two mechanisms: either through inhibition of lysosomal-cathepsin degradation pathway (Wang et al., 2015) or through inhibition of BACE1 that competes with η-secretase cleavage of APP (Willem et al., 2015). A thorough characterization of η-processing of APP is critical for a better understanding of AD pathogenesis and insights into results of clinical trials of AD. Here we further investigated η-secretase processing of APP using well-characterized cell models of AD. We found that these two mechanisms act synergistically toward increasing η-secretase processing of APP and Aη-α levels. Furthermore, we evaluated the effects of several other known secretase modulators on η-processing of APP. The results of our study should advance the understanding of pathophysiology of AD, as well as enhance the knowledge in developing effective AD treatments or interventions related to η-secretase processing of APP.
Collapse
Affiliation(s)
- Joseph Ward
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Haizhi Wang
- Department of Biology, College of Art and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Aleister J. Saunders
- Department of Biology, College of Art and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
28
|
Paschkowsky S, Hamzé M, Oestereich F, Munter LM. Alternative Processing of the Amyloid Precursor Protein Family by Rhomboid Protease RHBDL4. J Biol Chem 2016; 291:21903-21912. [PMID: 27563067 DOI: 10.1074/jbc.m116.753582] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is an ubiquitously expressed cell surface protein and a key molecule in the etiology of Alzheimer disease. Amyloidogenic processing of APP through secretases leads to the generation of toxic amyloid β (Aβ) peptides, which are regarded as the molecular cause of the disease. We report here an alternative processing pathway of APP through the mammalian intramembrane rhomboid protease RHBDL4. RHBDL4 efficiently cleaves APP inside the cell, thus bypassing APP from amyloidogenic processing, leading to reduced Aβ levels. RHBDL4 cleaves APP multiple times in the ectodomain, resulting in several N- and C-terminal fragments that are not further degraded by classical APP secretases. Knockdown of endogenous RHBDL4 results in decreased levels of C-terminal fragments derived from endogenous APP. Similarly, we found the APP family members APLP1 and APLP2 to be substrates of RHBDL4. We conclude that RHBDL4-mediated APP processing provides insight into APP and rhomboid physiology and qualifies for further investigations to elaborate its impact on Alzheimer disease pathology.
Collapse
Affiliation(s)
| | - Mehdi Hamzé
- From the Department of Pharmacology and Therapeutics and
| | - Felix Oestereich
- From the Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | |
Collapse
|
29
|
The Toxic Effect of ALLN on Primary Rat Retinal Neurons. Neurotox Res 2016; 30:392-406. [DOI: 10.1007/s12640-016-9624-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
|
30
|
Giroud M, Harder M, Kuhn B, Haap W, Trapp N, Schweizer WB, Schirmeister T, Diederich F. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds. ChemMedChem 2016; 11:1042-7. [DOI: 10.1002/cmdc.201600132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/23/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Michael Harder
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Bernd Kuhn
- Small Molecule Research; Roche Innovation Center Basel; F. Hoffmann-La Roche AG; Grenzacherstrasse 124, Building 92 4070 Basel Switzerland
| | - Wolfgang Haap
- Small Molecule Research; Roche Innovation Center Basel; F. Hoffmann-La Roche AG; Grenzacherstrasse 124, Building 92 4070 Basel Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - W. Bernd Schweizer
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Germany
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| |
Collapse
|
31
|
Hu C, Zeng L, Li T, Meyer MA, Cui MZ, Xu X. Nicastrin is required for amyloid precursor protein (APP) but not Notch processing, while anterior pharynx-defective 1 is dispensable for processing of both APP and Notch. J Neurochem 2016; 136:1246-1258. [PMID: 26717550 DOI: 10.1111/jnc.13518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
The γ-secretase complex is composed of at least four components: presenilin 1 or presenilin-2, nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2. In this study, using knockout cell lines, our data demonstrated that knockout of NCT, as well as knockout of presenilin enhancer 2, completely blocked γ-secretase-catalyzed processing of C-terminal fragment (CTF)α and CTFβ, the C-terminal fragments of β-amyloid precursor protein (APP) produced by α-secretase and β-secretase cleavages, respectively. Interestingly, in Aph-1-knockout cells, CTFα and CTFβ were still processed by γ-secretase, indicating Aph-1 is dispensable for APP processing. Furthermore, our results indicate that Aph-1 as well as NCT is not absolutely required for Notch processing, suggesting that NCT is differentially required for APP and Notch processing. In addition, our data revealed that components of the γ-secretase complex are also important for proteasome- and lysosome-dependent degradation of APP and that endogenous APP is mostly degraded by lysosome while exogenous APP is mainly degraded by proteasome. There are unanswered questions regarding the roles of each component of the γ-secretase complex in amyloid precursor protein (APP) and Notch processing. The most relevant, novel finding of this study is that nicastrin (NCT) is required for APP but not Notch processing, while Aph-1 is not essential for processing of both APP and Notch, suggesting NCT as a therapeutic target to restrict Aβ formation without impairing Notch signaling.
Collapse
Affiliation(s)
- Chen Hu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Linlin Zeng
- School of Life Sciences, Jilin University, Changchun, China
| | - Ting Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | | | - Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Xuemin Xu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
32
|
Baranger K, Marchalant Y, Bonnet AE, Crouzin N, Carrete A, Paumier JM, Py NA, Bernard A, Bauer C, Charrat E, Moschke K, Seiki M, Vignes M, Lichtenthaler SF, Checler F, Khrestchatisky M, Rivera S. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. Cell Mol Life Sci 2016; 73:217-36. [PMID: 26202697 PMCID: PMC4700096 DOI: 10.1007/s00018-015-1992-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/22/2023]
Abstract
Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Kévin Baranger
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Yannick Marchalant
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
- Psychology Department, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Amandine E Bonnet
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Nadine Crouzin
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Alex Carrete
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | | | - Nathalie A Py
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Charlotte Bauer
- Labex DistAlz, IPMC UMR 7275 CNRS-UNS, 06560, Valbonne, France
| | - Eliane Charrat
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
| | - Mothoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Michel Vignes
- UMR5247 IBMM CNRS University of Montpellier 1 and University of Montpellier 2, 34095, Montepellier, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | | | | | - Santiago Rivera
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France.
| |
Collapse
|
33
|
Tyan SH, Koo EH. New tricks from an old dog: Another synaptotoxic fragment from APP. Cell Res 2015; 25:1185-6. [PMID: 26503171 DOI: 10.1038/cr.2015.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In a surprising twist, a hitherto unrecognized cleavage of the amyloid precursor protein (APP) by η-secretase, followed by α- or β-secretase cleavage releases a novel APP proteolytic fragment, Aη, which causes synaptic injury.
Collapse
Affiliation(s)
- Sheue-Houy Tyan
- Department of Medicine, National University of Singapore, Singapore
| | - Edward H Koo
- Department of Medicine, National University of Singapore, Singapore.,Department of Neurosciences, University of California San Diego, La Jolla, USA
| |
Collapse
|