1
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
2
|
Köhler L, Trunk F, Rohr V, Fischer T, Gärtner W, Wachtveitl J, Matysik J, Slavov C, Song C. Rotameric Heterogeneity of Conserved Tryptophan Is Responsible for Reduced Photochemical Quantum Yield in Cyanobacteriochrome Slr1393g3. Chemphyschem 2024:e202400453. [PMID: 39382835 DOI: 10.1002/cphc.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8 % for its forward photoconversion, significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496. Here we use solid-state NMR to explore all possible sidechain rotamers of this Trp residue and their local interactions at the atomic level. The indole nitrogen (Nϵ1) is used as an NMR probe, achieved by site-specific 15N-indole labeling of a quadruply Trp-deleted variant and trehalose vitrification technique. The data reveal a set of seven indole rotamers of W496 with four distinct environments for the Nϵ1-H group. Only a minority population of 20 % is found to retain the π-stacking and hydrogen-bonding interactions with the chromophore in the dark state that has been assigned to account for complete forward photoconversion. Our results demonstrate the direct role of W496 in modulating the forward quantum yield of slr1393g3 via rearrangement of its sidechain rotameric conformations.
Collapse
Affiliation(s)
- Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Florian Trunk
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Valentin Rohr
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Tobias Fischer
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Josef Wachtveitl
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Chavdar Slavov
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Chemistry, University of South Florida, 33620, Tampa, United States of America
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Takeda Y, Ohtsu I, Suzuki T, Nakasone Y, Fushimi K, Ikeuchi M, Terazima M, Dohra H, Narikawa R. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Arch Biochem Biophys 2023; 745:109715. [PMID: 37549803 DOI: 10.1016/j.abb.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Cyanobacteriochromes (CBCRs) derived from cyanobacteria are linear-tetrapyrrole-binding photoreceptors related to the canonical red/far-red reversible phytochrome photoreceptors. CBCRs contain chromophore-binding cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that are highly diverse in their primary sequences and are categorized into many subfamilies. Among this repertoire, the biliverdin (BV)-binding CBCR GAF domains receive considerable attention for their in vivo optogenetic and bioimaging applications because BV is a mammalian intrinsic chromophore and can absorb far-red light that penetrates deep into the mammalian body. The typical BV-binding CBCR GAF domain exhibits reversible photoconversion between far-red-absorbing dark-adapted and orange-absorbing photoproduct states. Herein, we applied various biochemical and spectral studies to identify the details of the conformational change during this photoconversion process. No oligomeric state change was observed, whereas the surface charge would change with a modification of the α-helix structures during the photoconversion process. Combinatorial analysis using partial protease digestion and mass spectrometry identified the region where the conformational change occurred. These results provide clues for the future development of optogenetic tools.
Collapse
Affiliation(s)
- Yuka Takeda
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Itsuki Ohtsu
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takahisa Suzuki
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 657-0013, Japan
| | - Masahiko Ikeuchi
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideo Dohra
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
5
|
Köhler L, Gärtner W, Salvan G, Matysik J, Wiebeler C, Song C. Photocycle of a cyanobacteriochrome: a charge defect on ring C impairs conjugation in chromophore. Chem Sci 2023; 14:6295-6308. [PMID: 37325146 PMCID: PMC10266455 DOI: 10.1039/d3sc00636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
A large number of novel phytochromes named cyanobacteriochromes (CBCRs) have been recently identified. CBCRs appear to be attractive for further in-depth studies as paradigms for phytochromes because of their related photochemistry, but simpler domain architecture. Elucidating the mechanisms of spectral tuning for the bilin chromophore down to the molecular/atomic level is a prerequisite to design fine-tuned photoswitches for optogenetics. Several explanations for the blue shift during photoproduct formation associated with the red/green CBCRs represented by Slr1393g3 have been developed. There are, however, only sparse mechanistic data concerning the factors controlling stepwise absorbance changes along the reaction pathways from the dark state to the photoproduct and vice versa in this subfamily. Conventional cryotrapping of photocycle intermediates of phytochromes has proven experimentally intractable for solid-state NMR spectroscopy within the probe. Here, we have developed a simple method to circumvent this hindrance by incorporating proteins into trehalose glasses which allows four photocycle intermediates of Slr1393g3 to be isolated for NMR use. In addition to identifying the chemical shifts and chemical shift anisotropy principal values of selective chromophore carbons in various photocycle states, we generated QM/MM models of the dark state and photoproduct as well as of the primary intermediate of the backward-reaction. We find the motion of all three methine bridges in both reaction directions but in different orders. These molecular events channel light excitation to drive distinguishable transformation processes. Our work also suggests that polaronic self-trapping of a conjugation defect by displacement of the counterion during the photocycle would play a role in tuning the spectral properties of both the dark state and photoproduct.
Collapse
Affiliation(s)
- Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Georgeta Salvan
- Institut für Physik, Technische Universität Chemnitz 09126 Chemnitz Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig 04103 Leipzig Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig 04103 Leipzig Germany
| |
Collapse
|
6
|
Wu XJ, Qu JY, Wang CT, Zhang YP, Li PP. Biliverdin incorporation into the cyanobacteriochrome SPI1085g3 from Spirulina. Front Microbiol 2022; 13:952678. [PMID: 35983329 PMCID: PMC9378818 DOI: 10.3389/fmicb.2022.952678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) bind linear tetrapyrrole chromophores, mostly phycocyanobilin (PCB), and exhibit considerable spectral diversity with a high potential for biotechnological applications. Particular attention has been given to the conversion into intrinsic biliverdin (BV) incorporation due to the absence of PCB in mammalian cells. Our recent study discovered that a red/green CBCR of Spirulina subsalsa, SPI1085g3, was covalently attached to PCB and exhibited strong red fluorescence with a unique red/dark switch. In this study, we found that SPI1085g3 could be modestly chromophorylated with BV and absorb somewhat shifted (10 nm) red light, while the single C448S mutant could efficiently bind BV and exhibit unidirectional photoconversion and moderate dark reversion. The fluorescence in its dark-adapted state was switched off by red light, followed by a moderate recovery in the dark, and these were properties similar to those of PCB-binding SPI1085g3. Furthermore, by introducing the CY motif into the conserved CH motif for chromophore attachment, we developed another variant, C448S_CY, which showed increased BV-binding efficiency. As expected, C448S_CY had a significant enhancement in fluorescence quantum yield, reaching that of PCB-binding SPI1085g3 (0.14). These BV-binding CBCRs offer an improved platform for the development of unique photoswitchable fluorescent proteins compared with PCB-binding CBCRs.
Collapse
Affiliation(s)
- Xian-Jun Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, China
- *Correspondence: Xian-Jun Wu,
| | - Jia-Ying Qu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chang-Tian Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ya-Ping Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ping-Ping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, China
| |
Collapse
|
7
|
Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Photochem Photobiol Sci 2022; 21:447-469. [PMID: 35394641 DOI: 10.1007/s43630-022-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly 13C- and 15N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states. We also identify a greater structural heterogeneity of the bilin chromophore in the photoproduct than in the dark state. In addition, the binding pocket is more hydrated in the photoproduct. Observation of interfacial 1H contacts of the photoproduct chromophore, together with quantum mechanics/molecular mechanics (QM/MM)-based structural models for this photoproduct, clearly suggests the presence of a biprotonated (cationic) imidazolium side-chain for a conserved histidine residue (322) at a distance of ~2.7 Å, generalizing the recent theoretical findings that explicitly link the structural heterogeneity of the dark-state chromophore to the protonation of this specific residue. Moreover, we examine pH effects on this in vitro assembled holoprotein, showing a substantially altered electronic structure and protonation of the photoproduct chromophore even with a small pH drop from 7.8 to 7.2. Our studies provide further information regarding the light- and pH-induced changes of the chromophore and the rearrangements of the hydrogen-bonding and electrostatic interaction network around it. Possible correlations between structural heterogeneity of the chromophore, protonation of the histidine residue nearby, and hydration of the pocket in both photostates are discussed.
Collapse
|
8
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Köhler L, Gärtner W, Matysik J, Song C. Long‐Term Preservation of Short‐Lived Photoproducts of Phytochromes at Room Temperature. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Köhler
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Jörg Matysik
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Chen Song
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| |
Collapse
|
10
|
Li T, Yang Y. Nuclear magnetic resonance spectrum aided diagnosis based on DNN neural network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nuclear magnetic resonance spectrum contains a variety of effective information, and most of the current clinical medicine uses nuclear magnetic resonance images as a diagnostic basis, but the spectral information is still not effectively explored. In order to improve the diagnostic results of nuclear magnetic resonance spectrum, this study uses DNN neural network as a technical support to extract effective information of nuclear magnetic resonance spectrum. Simultaneously, in order to improve the ability to describe the local features of the image, the traditional Crow algorithm is improved, and a similar target localization algorithm based on F-CroW is proposed. In addition, starting from the animal model of nasopharyngeal carcinoma and the serum and urine samples of patients with clinical nasopharyngeal carcinoma, this study designed a comparative study to study the performance of the proposed algorithm. According to the research and analysis, the DNN neural network proposed in this study has certain effects in the nuclear magnetic resonance spectrum analysis, which can be applied to clinical practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yongqing Yang
- Department of Radiology, Jinan Central Hospital, Jinan, China
| |
Collapse
|
11
|
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Proc Natl Acad Sci U S A 2021; 118:2024583118. [PMID: 33972439 DOI: 10.1073/pnas.2024583118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pK a, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
Collapse
|
12
|
Rao AG, Wiebeler C, Sen S, Cerutti DS, Schapiro I. Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2. Phys Chem Chem Phys 2021; 23:7359-7367. [PMID: 33876095 DOI: 10.1039/d0cp05314g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that bind a linear tetrapyrrole as a chromophore. They show photochromicity by having two stable states that can be interconverted by the photoisomerization of the chromophore. These photochemical properties make them an attractive target for biotechnological applications. However, their application is impeded by structural heterogeneity that reduces the yield of the photoconversion. The heterogeneity can originate either from the chromophore structure or the protein environment. Here, we study the origin of the heterogeneity in AnPixJg2, a representative member of the red/green cyanobacteriochrome family, that has a red absorbing parental state and a green absorbing photoproduct state. Using molecular dynamics simulations and umbrella sampling we have identified the protonation state of a conserved histidine residue as a trigger for structural heterogeneity. When the histidine is in a neutral form, the chromophore structure is homogenous, while in a positively charged form, the chromophore is heterogeneous with two different conformations. We have identified a correlation between the protonation of the histidine and the structural heterogeneity of the chromophore by detailed characterization of the interactions in the protein binding site. Our findings reconcile seemingly contradicting spectroscopic studies that attribute the heterogeneity to different sources. Furthermore, we predict that circular dichroism can be used as a diagnostic tool to distinguish different substates.
Collapse
Affiliation(s)
- Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
13
|
Kirpich JS, Chang CW, Franse J, Yu Q, Escobar FV, Jenkins AJ, Martin SS, Narikawa R, Ames JB, Lagarias JC, Larsen DS. Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry 2021; 60:274-288. [PMID: 33439010 DOI: 10.1021/acs.biochem.0c00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr → 15EPg) and reverse (15EPg → 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
Collapse
Affiliation(s)
- Julia S Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Jasper Franse
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Sciences, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka-Shi, Shizuoka-Ken 422-8529, Japan
| | - James B Ames
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
14
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
15
|
Fushimi K, Hoshino H, Shinozaki-Narikawa N, Kuwasaki Y, Miyake K, Nakajima T, Sato M, Kano F, Narikawa R. The Cruciality of Single Amino Acid Replacement for the Spectral Tuning of Biliverdin-Binding Cyanobacteriochromes. Int J Mol Sci 2020; 21:ijms21176278. [PMID: 32872628 PMCID: PMC7504144 DOI: 10.3390/ijms21176278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023] Open
Abstract
Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.
Collapse
Affiliation(s)
- Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Hiroki Hoshino
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Yuto Kuwasaki
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Moritoshi Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
- Correspondence: ; Tel.: +81-54-238-4783
| |
Collapse
|
16
|
Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc Natl Acad Sci U S A 2020; 117:15573-15580. [PMID: 32571944 DOI: 10.1073/pnas.2004273117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Collapse
|
17
|
Abstract
The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z dark-adapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to-Pg conversion as resulting from an out-of-plane rotation of the chromophore's peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantum-chemical calculations in the framework of multiscale modeling to rationalize the absorption maxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.
Collapse
|
18
|
Fushimi K, Narikawa R. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 2019; 57:39-46. [DOI: 10.1016/j.sbi.2019.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
19
|
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Int J Mol Sci 2019; 20:ijms20153656. [PMID: 31357417 PMCID: PMC6696110 DOI: 10.3390/ijms20153656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.
Collapse
|
20
|
Wiebeler C, Rao AG, Gärtner W, Schapiro I. Die effektive Konjugationslänge ist für die spektrale Verschiebung im rot/grün schaltenden Cyanobakteriochrom Slr1393g3 verantwortlich. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics Research; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - Aditya G. Rao
- Fritz Haber Center for Molecular Dynamics Research; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - Wolfgang Gärtner
- Institut für Analytische Chemie; Fakultät für Chemie und Mineralogie; Universität Leipzig; 04103 Leipzig Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
21
|
Wiebeler C, Rao AG, Gärtner W, Schapiro I. The Effective Conjugation Length Is Responsible for the Red/Green Spectral Tuning in the Cyanobacteriochrome Slr1393g3. Angew Chem Int Ed Engl 2019; 58:1934-1938. [PMID: 30508317 DOI: 10.1002/anie.201810266] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 01/19/2023]
Abstract
The origin of the spectral shift from a red- to a green-absorbing form in a cyanobacteriochrome, Slr1393g3, was identified by combined quantum mechanics/molecular mechanics simulations. This protein, related to classical phytochromes, carries the open-chain tetrapyrrole chromophore phycocyanobilin. Our calculations reveal that the effective conjugation length in the chromophore becomes shorter upon conversion from the red to the green form. This is related to the planarity of the entire chromophore. A large distortion was found for the terminal pyrrole rings A and D; however, the D ring contributes more strongly to the photoproduct tuning, despite a larger change in the twist of the A ring. Our findings implicate that the D ring twist can be exploited to regulate the absorption of the photoproduct. Hence, mutations that affect the D ring twist can lead to rational tuning of the photoproduct absorption, allowing the tailoring of cyanobacteriochromes for biotechnological applications such as optogenetics and bioimaging.
Collapse
Affiliation(s)
- Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, 04103, Leipzig, Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
22
|
Oliinyk OS, Shemetov AA, Pletnev S, Shcherbakova DM, Verkhusha VV. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat Commun 2019; 10:279. [PMID: 30655515 PMCID: PMC6336887 DOI: 10.1038/s41467-018-08050-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023] Open
Abstract
From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sergei Pletnev
- Basic Science Program, Macromolecular Crystallography Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Fushimi K, Ikeuchi M, Narikawa R. The Expanded Red/Green Cyanobacteriochrome Lineage: An Evolutionary Hot Spot. Photochem Photobiol 2018; 93:903-906. [PMID: 28500709 DOI: 10.1111/php.12764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023]
Abstract
This article highlights the paper by Rockwell et al. in the current issue of Photochemistry and Photobiology. Rockwell et al. describe the discovery of novel two-Cys photocycles within the "expanded red/green" (XRG) cyanobacteriochrome (CBCR) lineage. Comprehensive phylogenetic analysis revealed that several XRG CBCRs possess a second Cys residue in the DXCF (Asp-Xaa-Cys-Phe) motif conserved among the DXCF CBCR lineage. Spectral studies identified that these CBCRs showed green/blue or ultraviolet/blue reversible photoconversion abilities. The green/blue reversible photocycle had not been reported previously among the XRG CBCR lineage. Based on these findings, Rockwell et al. replaced three amino acid residues in a red/green reversible CBCR, NpR6012g4, and succeeded in constructing a violet/green reversible photocycle. These findings, together with previous studies, provide a good explanation for the evolutionary flexibility of the XRG CBCRs.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
24
|
Wu XJ, Yang H, Sheng Y, Zhu YL, Li PP. Fluorescence Properties of a Novel Cyanobacteriochrome GAF Domain from Spirulina that Exhibits Moderate Dark Reversion. Int J Mol Sci 2018; 19:ijms19082253. [PMID: 30071622 PMCID: PMC6121604 DOI: 10.3390/ijms19082253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are biliproteins for photoreception that are present in cyanobacteria. These proteins possess one or more unique cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that can covalently bind the linear tetrapyrrole (bilin). Light absorption triggers the photoisomerization of bilin between the 15Z and 15E photostates. The 15E photoproduct of some CBCR GAF domains can revert to the stable 15Z state in the absence of light. In some cases, this property makes these domains function as sensors of light intensity or as red/dark optogenetic switches. However, there have been few reports regarding the applicability of these fluorescent properties. Here, we report a red/green cyanobacteriochrome GAF domain from Spirulina subsalsa, designated SPI1085g3, which exhibited photoconversion from the red-absorbing dark state (Pr, λmax = 642 nm) to the orange-absorbing photoproduct state (Po, λmax = 590 nm), and exhibited moderate dark reversion (t1/2 = 3.3 min) from the Po state to the Pr state. The SPI1085g3 Pr state exhibited intense red fluorescence (λmax = 662 nm), with a quantum yield of 0.14. The fluorescence was switched off by red light irradiation and increased in the dark. Replacement of Cys448 of SPI1085g3 with Ser resulted in a slightly improved fluorescence quantum yield and nearly 13-fold faster dark reversion (t1/2 = 15.2 s) than that of the wild type. This novel red/dark-switchable fluorescent biliprotein expands the present repertoire and diversity of photoswitchable fluorescent protein candidates.
Collapse
Affiliation(s)
- Xian-Jun Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| | - Hong Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yi Sheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yong-Li Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| | - Ping-Ping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Kirpich JS, Chang CW, Madsen D, Gottlieb SM, Martin SS, Rockwell NC, Lagarias JC, Larsen DS. Noncanonical Photodynamics of the Orange/Green Cyanobacteriochrome Power Sensor NpF2164g7 from the PtxD Phototaxis Regulator of Nostoc punctiforme. Biochemistry 2018; 57:2636-2648. [PMID: 29633829 DOI: 10.1021/acs.biochem.7b01252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forward and reverse primary (<10 ns) and secondary (>10 ns) photodynamics of cyanobacteriochrome (CBCR) NpF2164g7 were characterized by global analysis of ultrafast broadband transient absorption measurements. NpF2164g7 is the most C-terminal bilin-binding GAF domain in the Nostoc punctiforme phototaxis sensor PtxD (locus Npun_F2164). Although a member of the canonical red/green CBCR subfamily phylogenetically, NpF2164g7 exhibits an orange-absorbing 15ZPo dark-adapted state instead of the typical red-absorbing 15ZPr dark-adapted state characteristic of this subfamily. The green-absorbing 15EPg photoproduct of NpF2164g7 is unstable, allowing this CBCR domain to function as a power sensor. Photoexcitation of the 15ZPo state triggers inhomogeneous excited-state dynamics with three spectrally and temporally distinguishable pathways to generate the light-adapted 15EPg state in high yield (estimated at 25-30%). Although observed in other CBCR domains, the inhomogeneity in NpF2164g7 extends far into secondary relaxation dynamics (10 ns -1 ms) through to formation of 15EPg. In the reverse direction, the primary dynamics after photoexcitation of 15EPg are qualitatively similar to those of other red/green CBCRs, but secondary dynamics involve a "pre-equilibrium" step before regenerating 15ZPo. The anomalous photodynamics of NpF2164g7 may reflect an evolutionary adaptation of CBCR sensors that function as broadband light intensity sensors.
Collapse
|
26
|
Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proc Natl Acad Sci U S A 2018; 115:4387-4392. [PMID: 29632180 DOI: 10.1073/pnas.1720682115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
Collapse
|
27
|
Oliinyk OS, Chernov KG, Verkhusha VV. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes. Int J Mol Sci 2017; 18:E1691. [PMID: 28771184 PMCID: PMC5578081 DOI: 10.3390/ijms18081691] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Konstantin G Chernov
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
28
|
Rockwell NC, Martin SS, Lagarias JC. There and Back Again: Loss and Reacquisition of Two‐Cys Photocycles in Cyanobacteriochromes. Photochem Photobiol 2017; 93:741-754. [DOI: 10.1111/php.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology University of California Davis CA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology University of California Davis CA
| | - John Clark Lagarias
- Department of Molecular and Cellular Biology University of California Davis CA
| |
Collapse
|
29
|
Rockwell NC, Martin SS, Li FW, Mathews S, Lagarias JC. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. THE NEW PHYTOLOGIST 2017; 214:1145-1157. [PMID: 28106912 PMCID: PMC5388591 DOI: 10.1111/nph.14422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/04/2016] [Indexed: 05/11/2023]
Abstract
Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA. The pathway for PCB biosynthesis in streptophyte algae is unknown. We used phylogenetic analysis and heterologous reconstitution of bilin biosynthesis to investigate bilin biosynthesis in streptophyte algae. Phylogenetic results suggest that PcyA is present in chlorophytes and prasinophytes but absent in streptophytes. A system reconstituting bilin biosynthesis in Escherichia coli was modified to utilize HY2 from the streptophyte alga Klebsormidium flaccidum (KflaHY2). The resulting bilin was incorporated into model cyanobacterial photoreceptors and into phytochrome from the early-diverging streptophyte alga Mesostigma viride (MvirPHY1). All photoreceptors tested incorporate PCB rather than PΦB, indicating that KflaHY2 is sufficient for PCB synthesis without any other algal protein. MvirPHY1 exhibits a red-far-red photocycle similar to those seen in other streptophyte algal phytochromes. These results demonstrate that streptophyte algae use HY2 to synthesize PCB, consistent with the hypothesis that PΦB synthesis arose late in HY2 evolution.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
30
|
Fushimi K, Rockwell NC, Enomoto G, Ni-Ni-Win, Martin SS, Gan F, Bryant DA, Ikeuchi M, Lagarias JC, Narikawa R. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry 2016; 55:6981-6995. [PMID: 27935696 DOI: 10.1021/acs.biochem.6b00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C31 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin. In the well-characterized DXCF subfamily, the second Cys is part of a conserved Asp-Xaa-Cys-Phe motif. We here report novel CBCRs lacking the first Cys but retaining the DXCF Cys as part of a conserved Asp-Xaa-Cys-Ile-Pro (DXCIP) motif. Phylogenetic analysis demonstrates that DXCIP CBCRs are a sister to a lineage of DXCF CBCR domains from phototaxis sensors. Three such DXCIP CBCR domains (cce_4193g1, Cyan8802_2776g1, and JSC1_24240) were characterized after recombinant expression in Escherichia coli engineered to produce phycocyanobilin. All three covalently bound bilin and showed unidirectional photoconversion in response to green light. Spectra of acid-denatured proteins in the dark-adapted state do not correspond to those of known bilins. One DXCIP CBCR, cce_4193g1, exhibited very rapid dark reversion consistent with a function as a power sensor. However, Cyan8802_2776g1 exhibited slower dark reversion and would not have such a function. The full-length cce_4193 protein also possesses a DXCF CBCR GAF domain (cce_4193g2) with a covalently bound phycoviolobilin chromophore and a blue/green photocycle. Our studies indicate that CBCRs need not contain the canonical Cys residue to function as photochromic light sensors and that phototaxis proteins containing DXCIP CBCRs may potentially perceive both light quality and light intensity.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ni-Ni-Win
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States.,Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717 United States
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
31
|
Rockwell NC, Martin SS, Lagarias JC. Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry 2016; 55:3907-19. [DOI: 10.1021/acs.biochem.6b00299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
32
|
Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, Sato M, Narikawa R. Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin. Front Microbiol 2016; 7:588. [PMID: 27242674 PMCID: PMC4876366 DOI: 10.3389/fmicb.2016.00588] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB) and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV). The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2) from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Yuki Aono
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Tatsuro Yamamoto
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Masahiko Ikeuchi
- Graduate School of Arts and Sciences, University of TokyoTokyo, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| |
Collapse
|
33
|
Yu Q, Lim S, Rockwell NC, Martin SS, Clark Lagarias J, Ames JB. 1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:139-142. [PMID: 26482922 PMCID: PMC4789077 DOI: 10.1007/s12104-015-9653-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no. 26582).
Collapse
Affiliation(s)
- Qinhong Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Lim S, Yu Q, Rockwell NC, Martin SS, Lagarias JC, Ames JB. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:157-161. [PMID: 26537963 PMCID: PMC6422171 DOI: 10.1007/s12104-015-9657-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
35
|
Cho SM, Jeoung SC, Song JY, Kupriyanova EV, Pronina NA, Lee BW, Jo SW, Park BS, Choi SB, Song JJ, Park YI. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. J Biol Chem 2015; 290:28502-28514. [PMID: 26405033 DOI: 10.1074/jbc.m115.669150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.
Collapse
Affiliation(s)
- Sung Mi Cho
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Sae Chae Jeoung
- Center for Advanced Measurement and Instrumentation, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | | | | | - Beom-Seok Park
- The Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Korea.
| | - Sang-Bong Choi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| |
Collapse
|
36
|
Song C, Velazquez Escobar F, Xu XL, Narikawa R, Ikeuchi M, Siebert F, Gärtner W, Matysik J, Hildebrandt P. A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore’s Protonation State. Biochemistry 2015; 54:5839-48. [DOI: 10.1021/acs.biochem.5b00735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, 2300 RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Xiu-Ling Xu
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Rei Narikawa
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Meguro, Tokyo 153-8902, Japan
| | - Masahiko Ikeuchi
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Japan
Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Meguro, Tokyo 153-8902, Japan
| | - Friedrich Siebert
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|