1
|
Goring AK, Hale S, Dasika P, Chen Y, Clubb RT, Loo JA. The Exoproteome and Surfaceome of Toxigenic Corynebacterium diphtheriae 1737 and Its Response to Iron Restriction and Growth on Human Hemoglobin. J Proteome Res 2025; 24:77-93. [PMID: 39692319 DOI: 10.1021/acs.jproteome.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Toxin-producing Corynebacterium diphtheriae strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of C. diphtheriae strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics. In total, we identified 1414 of the predicted 2265 proteins (62%) encoded by its reference genome. For each protein, we quantified its degree of secretion and surface exposure, revealing that exoproteases and hydrolases predominate in the exoproteome, while the surfaceome is enriched with adhesins, particularly DIP2093. Our analysis provides insight into how components in the heme-acquisition system are positioned, showing pronounced surface exposure of the strain-specific ChtA/ChtC paralogues and high secretion of the species-conserved heme-binding HtaA protein, suggesting it functions as a hemophore. Profiling the response of the exoproteome and surfaceome after microbial exposure to human hemoglobin and iron limitation reveals potential virulence factors that may be expressed at sites of infection. Data are available via ProteomeXchange with identifier PXD051674.
Collapse
|
2
|
Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, Du G, Zhao X. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol 2024; 44:1422-1438. [PMID: 38228501 DOI: 10.1080/07388551.2023.2291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.
Collapse
Affiliation(s)
- Fei Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Ziwei Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Zihan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Chiura T, Mitchell AJ, Grote DL, Khojandi N, Teague RM, Mak PJ. Interactions of azole-based inhibitors with human heme oxygenase. J Inorg Biochem 2023; 244:112238. [PMID: 37119547 PMCID: PMC10189658 DOI: 10.1016/j.jinorgbio.2023.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Human heme oxygenase-1 (hHO-1) plays a crucial role in human physiology because of its ability to metabolize free heme. The heme degradation products, biliverdin and bilirubin, were shown to have protective antioxidant properties in cells. In the context of cancer, hHO-1 function grants cancer cells defense from standard chemotherapy treatments, leading to the development of azole-based inhibitors that target hHO-1 for potential anticancer therapy. This work reports experimental and theoretical characterization of interactions between three azole-based inhibitors and the active site of hHO-1. It was found that all three compounds have Kd values within the μM order. The electronic absorption and resonance Raman (rR) spectra indicated that they bind to the ferric heme and coordinate through a nitrogen atom. rR measurements revealed varying effects of inhibitors on the geometry of heme vinyl groups in the ferric form of hHO-1. Changes in peripheral group orientation are known to affect heme redox potential, and consequently can reflect the inhibitory properties of studied azoles. The subsequent docking studies showed that inhibitors with lower Kd values are located close to two vinyl groups, while the compound with higher Kd is situated near only one, consistent with the rR studies. Finally, the rR studies of the CO adducts showed that the inhibitors bind to the heme in a reversible manner. Altogether, the combination of ligand binding studies, UV-Vis and rR spectroscopies, as well as computational approach revealed an importance of the steric hindrance imposed by the inhibitor's side chain.
Collapse
Affiliation(s)
- Tapiwa Chiura
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Amanda J Mitchell
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Dakota L Grote
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Niloufar Khojandi
- Molecular Microbiology and Immunology Department, Saint Louis University, 1100 South Grand Blvd, St. Louis, MO 63104, United States of America
| | - Ryan M Teague
- Molecular Microbiology and Immunology Department, Saint Louis University, 1100 South Grand Blvd, St. Louis, MO 63104, United States of America.
| | - Piotr J Mak
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America.
| |
Collapse
|
4
|
Gout J, Meuris F, Desbois A, Dorlet P. In vitro coordination of Fe-protoheme with amyloid β is non-specific and exhibits multiple equilibria. J Inorg Biochem 2021; 227:111664. [PMID: 34955310 DOI: 10.1016/j.jinorgbio.2021.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In addition to copper and zinc, heme is thought to play a role in Alzheimer's disease and its metabolism is strongly affected during the course of this disease. Amyloid β, the peptide associated with Alzheimer's disease, was shown to bind heme in vitro with potential catalytic activity linked to oxidative stress. To date, there is no direct determination of the structure of this complex. In this work, we studied the binding mode of heme to amyloid β in different conditions of pH and redox state by using isotopically labelled peptide in combination with advanced magnetic and vibrational spectroscopic methods. Our results show that the interaction between heme and amyloid β leads to a variety of species in equilibrium. The formation of these species seems to depend on many factors suggesting that the binding site is neither very strong nor highly specific. In addition, our data do not support the currently accepted model where a water molecule is bound to the ferric heme as sixth ligand. They also exclude structural models mimicking a peroxidatic site in the amyloid β-Fe-protoheme complexes.
Collapse
Affiliation(s)
- Jérôme Gout
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Floriane Meuris
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Alain Desbois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Whole genome sequence of a non-toxigenic Corynebacterium diphtheriae strain from a hospital in southeastern China. BMC Genom Data 2021; 22:42. [PMID: 34656079 PMCID: PMC8520229 DOI: 10.1186/s12863-021-00998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Sporadic cases of infection with non-toxigenic Corynebacterium diphtheriae (C. diphtheriae) isolates have been reported in regions covered by the Diphtheria-Tetanus-Pertussis vaccine, but no information describing the whole genome of non-toxigenic strains collected in China is available. Therefore, in this work, the complete genome of a non-toxigenic strain of C. diphtheriae from a hospital located in southeastern China was performed. Results This non-toxigenic isolate belonged to the belfanti biotype and possessed a unique ST (assigned as ST799 in pubMLST). ErmX was present in the genome sequence and this isolate owned the resistance to erythromycin and clindamycin. Genes coding for virulence factors involved in adherence, iron-uptake and regulation of diphtheria toxin were also found. Two genes were involved in the interaction between pathogen and host. The phylogenetic analysis revealed that this newly isolated strain was similar to the strain NCTC10838, CMCNS703 and CHUV2995. Conclusion Non-toxigenic C. diphtheriae strain contained virulence factors, thus it is able to cause an infectious disease, aspect that could be clarified by performing the whole genome sequencing analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00998-9.
Collapse
|
6
|
Parise MTD, Parise D, Aburjaile FF, Pinto Gomide AC, Kato RB, Raden M, Backofen R, Azevedo VADC, Baumbach J. An Integrated Database of Small RNAs and Their Interplay With Transcriptional Gene Regulatory Networks in Corynebacteria. Front Microbiol 2021; 12:656435. [PMID: 34220744 PMCID: PMC8247434 DOI: 10.3389/fmicb.2021.656435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Small RNAs (sRNAs) are one of the key players in the post-transcriptional regulation of bacterial gene expression. These molecules, together with transcription factors, form regulatory networks and greatly influence the bacterial regulatory landscape. Little is known concerning sRNAs and their influence on the regulatory machinery in the genus Corynebacterium, despite its medical, veterinary and biotechnological importance. Here, we expand corynebacterial regulatory knowledge by integrating sRNAs and their regulatory interactions into the transcriptional regulatory networks of six corynebacterial species, covering four human and animal pathogens, and integrate this data into the CoryneRegNet database. To this end, we predicted sRNAs to regulate 754 genes, including 206 transcription factors, in corynebacterial gene regulatory networks. Amongst them, the sRNA Cd-NCTC13129-sRNA-2 is predicted to directly regulate ydfH, which indirectly regulates 66 genes, including the global regulator glxR in C. diphtheriae. All of the sRNA-enriched regulatory networks of the genus Corynebacterium have been made publicly available in the newest release of CoryneRegNet(www.exbio.wzw.tum.de/coryneregnet/) to aid in providing valuable insights and to guide future experiments.
Collapse
Affiliation(s)
- Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Martin Raden
- Bioinformatics, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | | | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Hofbauer S, Helm J, Obinger C, Djinović-Carugo K, Furtmüller PG. Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase. FEBS J 2020; 287:2779-2796. [PMID: 31794133 PMCID: PMC7340540 DOI: 10.1111/febs.15164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023]
Abstract
Coproporphyrin ferrochelatases (CpfCs, EC 4.99.1.9) insert ferrous iron into coproporphyrin III yielding coproheme. CpfCs are utilized by prokaryotic, mainly monoderm (Gram-positive) bacteria within the recently detected coproporphyrin-dependent (CPD) heme biosynthesis pathway. Here, we present a comprehensive study on CpfC from Listeria monocytogenes (LmCpfC) including the first crystal structure of a coproheme-bound CpfC. Comparison of crystal structures of apo-LmCpfC and coproheme-LmCpfC allowed identification of structural rearrangements and of amino acids involved in tetrapyrrole macrocycle and Fe2+ binding. Differential scanning calorimetry of apo-, coproporphyrin III-, and coproheme-LmCpfC underline the pronounced noncovalent interaction of both coproporphyrin and coproheme with the protein (ΔTm = 11 °C compared to apo-LmCpfC), which includes the propionates (p2, p4, p6, p7) and the amino acids Arg29, Arg45, Tyr46, Ser53, and Tyr124. Furthermore, the thermodynamics and kinetics of coproporphyrin III and coproheme binding to apo-LmCpfC is presented as well as the kinetics of insertion of ferrous iron into coproporphyrin III-LmCpfC that immediately leads to formation of ferric coproheme-LmCpfC (kcat /KM = 4.7 × 105 m-1 ·s-1 ). We compare the crystal structure of coproheme-LmCpfC with available structures of CpfCs with artificial tetrapyrrole macrocycles and discuss our data on substrate binding, iron insertion and substrate release in the context of the CPD heme biosynthesis pathway. ENZYME: EC 4.99.1.9 DATABASE: pdb-codes of structural data in this work: 6RWV, 6SV3.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Helm
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Syllwasschy BF, Beck MS, Družeta I, Hopp MT, Ramoji A, Neugebauer U, Nozinovic S, Menche D, Willbold D, Ohlenschläger O, Kühl T, Imhof D. High-affinity binding and catalytic activity of His/Tyr-based sequences: Extending heme-regulatory motifs beyond CP. Biochim Biophys Acta Gen Subj 2020; 1864:129603. [PMID: 32234408 DOI: 10.1016/j.bbagen.2020.129603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & MOTIVATION Peptides and proteins can interact with heme through His, Tyr, or Cys in heme-regulatory motifs (HRMs). The Cys-Pro dipeptide is a well investigated HRM, but for His and Tyr such a distinct motif is currently unknown. In addition, many heme-peptide complexes, such as heme-amyloid β, can display a peroxidase-like activity, albeit there is little understanding of how the local primary and secondary coordination environment influences catalytic activity. We thus systematically evaluated a series of His- and Tyr-based peptides to identify sequence features for high-affinity heme binding and their impact on the catalytic activity of heme. METHODS We employed solid-phase peptide synthesis to produce 58 nonapeptides, which were investigated by UV/vis, resonance Raman, and 2D NMR spectroscopy. A chromogenic assay was used to determine the catalytic activity of the heme-peptide complexes. RESULTS Heme-binding affinity and binding mode were found to be dependent on the coordinating amino acid and spacer length between multiple potential coordination sites in a motif. In particular, HXH and HXXXH motifs showed strong heme binding. Analysis of the peroxidase-like activity revealed that some of these peptides and also HXXXY motifs enhance the catalytic activity of heme significantly. CONCLUSIONS We identify HXH, HXXXH, and HXXXY as potential new HRMs with functional properties. Several peptides displayed a strikingly high peroxidase-like activity. GENERAL SIGNIFICANCE The identification of HRMs allows to discover yet unknown heme-regulated proteins, and consequently, enhances our current understanding of pathologies involving labile heme.
Collapse
Affiliation(s)
- Benjamin Franz Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Anuradha Ramoji
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Senada Nozinovic
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dirk Menche
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dieter Willbold
- Jülich Research Centre, Institute of Complex Systems - Structural Biochemistry (ICS-6), 52425 Jülich, Germany; Institute of Physical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
9
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Naoe Y, Nakamura N, Rahman MM, Tosha T, Nagatoishi S, Tsumoto K, Shiro Y, Sugimoto H. Structural basis for binding and transfer of heme in bacterial heme-acquisition systems. Proteins 2017; 85:2217-2230. [PMID: 28913898 DOI: 10.1002/prot.25386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Periplasmic heme-binding proteins (PBPs) in Gram-negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP-binding cassette (ABC) heme importers located in the inner-membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS-1 (RhuT) in the heme-free and heme-bound forms. The conserved motif, in which a well-conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme-binding cleft of BhuT adopts an "open" state in the heme-free and 2-heme-bound forms, and a "closed" state in the one-heme-bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.
Collapse
Affiliation(s)
- Youichi Naoe
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Nozomi Nakamura
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Md Mahfuzur Rahman
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Takehiko Tosha
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.,Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshitsugu Shiro
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Hiroshi Sugimoto
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| |
Collapse
|
11
|
Geeraerts Z, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Active Sites of O 2-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations. Biochemistry 2017; 56:4509-4524. [PMID: 28758386 DOI: 10.1021/acs.biochem.7b00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O2-evolving chlorite dismutases (Clds) fall into two subfamilies, which efficiently convert ClO2- to O2 and Cl-. The Cld from Dechloromonas aromatica (DaCld) represents the chlorite-decomposing homopentameric enzymes found in perchlorate- and chlorate-respiring bacteria. The Cld from the Gram-negative human pathogen Klebsiella pneumoniae (KpCld) is representative of the second subfamily, comprising homodimeric enzymes having truncated N-termini. Here steric and nonbonding properties of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their fluorides, chlorides, and hydroxides. Cooperative binding of Cl- to KpCld drives formation of a hexacoordinate, high-spin aqua heme, whereas DaCld remains pentacoordinate and high-spin under analogous conditions. Fluoride coordinates to the heme iron in KpCld and DaCld, exhibiting ν(FeIII-F) bands at 385 and 390 cm-1, respectively. Correlation of these frequencies with their CT1 energies reveals strong H-bond donation to the F- ligand, indicating that atoms directly coordinated to heme iron are accessible to distal H-bond donation. New vibrational frequency correlations between either ν(FeIII-F) or ν(FeIII-OH) and ν(FeII-His) of Clds and other heme proteins are reported. These correlations orthogonalize proximal and distal effects on the bonding between iron and exogenous π-donor ligands. The axial Fe-X vibrations and the relationships between them illuminate both similarities and differences in the H-bonding and electrostatic properties of the distal and proximal heme environments in pentameric and dimeric Clds. Moreover, they provide general insight into the structural basis of reactivity toward substrates in heme-dependent enzymes and their mechanistic intermediates, especially those containing the ferryl moiety.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| |
Collapse
|
12
|
Kielb P, Utesch T, Kozuch J, Jeoung JH, Dobbek H, Mroginski MA, Hildebrandt P, Weidinger I. Switchable Redox Chemistry of the Hexameric Tyrosine-Coordinated Heme Protein. J Phys Chem B 2017; 121:3955-3964. [DOI: 10.1021/acs.jpcb.7b01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrycja Kielb
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Tillmann Utesch
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Jae-Hun Jeoung
- Institute
of Biology, Humboldt Universität Berlin, Philippstrasse
13, D-10115 Berlin, Germany
| | - Holger Dobbek
- Institute
of Biology, Humboldt Universität Berlin, Philippstrasse
13, D-10115 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Inez Weidinger
- Department
of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, D-01069 Dresden, Germany
| |
Collapse
|
13
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
14
|
Uluisik RC, Akbas N, Lukat-Rodgers GS, Adrian SA, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Characterization of the second conserved domain in the heme uptake protein HtaA from Corynebacterium diphtheriae. J Inorg Biochem 2017; 167:124-133. [PMID: 27974280 PMCID: PMC5199035 DOI: 10.1016/j.jinorgbio.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
Abstract
HtaA is a heme-binding protein that is part of the heme uptake system in Corynebacterium diphtheriae. HtaA contains two conserved regions (CR1 and CR2). It has been previously reported that both domains can bind heme; the CR2 domain binds hemoglobin more strongly than the CR1 domain. In this study, we report the biophysical characteristics of HtaA-CR2. UV-visible spectroscopy and resonance Raman experiments are consistent with this domain containing a single heme that is bound to the protein through an axial tyrosine ligand. Mutants of conserved tyrosine and histidine residues (Y361, H412, and Y490) have been studied. These mutants are isolated with very little heme (≤5%) in comparison to the wild-type protein (~20%). Reconstitution after removal of the heme with butanone gave an alternative form of the protein. The HtaA-CR2 fold is very stable; it was necessary to perform thermal denaturation experiments in the presence of guanidinium hydrochloride. HtaA-CR2 unfolds extremely slowly; even in 6.8M GdnHCl at 37°C, the half-life was 5h. In contrast, the apo forms of WT HtaA-CR2 and the aforementioned mutants unfolded at much lower concentrations of GdnHCl, indicating the role of heme in stabilizing the structure and implying that heme transfer is effected only to a partner protein in vivo.
Collapse
Affiliation(s)
- Rizvan C Uluisik
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Courtni E Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States.
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States.
| |
Collapse
|
15
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
16
|
Draganova EB, Adrian SA, Lukat-Rodgers GS, Keutcha CS, Schmitt MP, Rodgers KR, Dixon DW. Corynebacterium diphtheriae HmuT: dissecting the roles of conserved residues in heme pocket stabilization. J Biol Inorg Chem 2016; 21:875-86. [PMID: 27561288 DOI: 10.1007/s00775-016-1386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The heme-binding protein HmuT is part of the Corynebacterium diphtheriae heme uptake pathway and is responsible for the delivery of heme to the HmuUV ABC transporter. HmuT binds heme with a conserved His/Tyr heme axial ligation motif. Sequence alignment revealed additional conserved residues of potential importance for heme binding: R237, Y272 and M292. In this study, site-directed mutations at these three positions provided insight into the nature of axial heme binding to the protein and its effect on the thermal stability of the heme-loaded protein fold. UV-visible absorbance, resonance Raman (rR) and thermal unfolding experiments, along with collision-induced dissociation electrospray ionization mass spectrometry, were used to probe the contributions of each mutated residue to the stability of ϖ HmuT. Thermal unfolding and rR experiments revealed that R237 and M292 are important residues for heme binding. Arginine 237 is a hydrogen-bond donor to the phenol side chain of Y235, which serves as an axial heme ligand. Methionine 292 serves a supporting structural role, favoring the R237 hydrogen-bond donation, which elicits a, heretofore, unobserved modulating influence on π donation by the axial tyrosine ligand in the heme carbonyl complex, HmuT-CO.
Collapse
Affiliation(s)
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Cyrianne S Keutcha
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
17
|
Brewitz HH, Goradia N, Schubert E, Galler K, Kühl T, Syllwasschy B, Popp J, Neugebauer U, Hagelueken G, Schiemann O, Ohlenschläger O, Imhof D. Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochim Biophys Acta Gen Subj 2016; 1860:1343-53. [PMID: 27015758 DOI: 10.1016/j.bbagen.2016.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The occurrence of free organismal heme can either contribute to serious diseases or beneficially regulate important physiological processes. Research on transient binding to heme-regulatory motifs (HRMs) in proteins resulted in the discovery of numerous Cys-based, especially Cys-Pro (CP)-based motifs. However, the number of His- and Tyr-based protein representatives is comparatively low so far, which is in part caused by a lack of information regarding recognition and binding requirements. METHODS To understand transient heme association with such motifs on the molecular level, we analyzed a set of 44 His- and Tyr-based peptides using UV-vis, resonance Raman, cw-EPR and 2D NMR spectroscopy. RESULTS We observed similarities with Cys-based sequences with respect to their spectral behavior and complex geometries. However, significant differences regarding heme-binding affinities and sequence requirements were also found. Compared to Cys-based peptides and proteins all sequences investigated structurally display increased flexibility already in the free-state, which is also maintained upon heme association. The acquired knowledge allowed for identification and prediction of a His-based HRM in chloramphenicol acetyltransferase from Escherichia coli as potential heme-regulated protein. The enzyme's heme-interacting capability was studied, and revealed an inhibitory effect of heme on the protein activity with an IC50 value of 57.69±4.37 μM. CONCLUSIONS It was found that heme inhibits a bacterial protein carrying a potential His-based HRM. This finding brings microbial proteins more into focus of regulation by free heme. GENERAL SIGNIFICANCE Understanding transient binding and regulatory action of heme with bacterial proteins, being crucial for survival, might promote new strategies for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hans Henning Brewitz
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany
| | - Nishit Goradia
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Erik Schubert
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Toni Kühl
- Centre National de la Recherche Scientifique (CNRS), Bioénergetique et Ingenierie des Protéines, UMR 7281, 13009 Marseille, France
| | - Benjamin Syllwasschy
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany
| | - Jürgen Popp
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | | | - Diana Imhof
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, 53119 Bonn, Germany.
| |
Collapse
|