1
|
Bhattacharya S, Junghare V, Hazra M, Pandey NK, Mukherjee A, Dhankhar K, Das N, Roy P, Dubey RC, Hazra S. Characterization of a Class A β-Lactamase from Francisella tularensis (Ftu-1) Belonging to a Unique Subclass toward Understanding AMR. ACS BIO & MED CHEM AU 2023; 3:174-188. [PMID: 37101813 PMCID: PMC10125328 DOI: 10.1021/acsbiomedchemau.2c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 04/28/2023]
Abstract
β-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A β-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A β-lactamase expressed by the Francisella tularensis strain, a potent causative organism of tularemia. The chromosomally encoded class A β-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme-drug interaction and its profile toward various chemistries of β-lactam and β-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various β-lactam drugs. The dynamic property of Ftu-1 β-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A β-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Junghare
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Mousumi Hazra
- Department
of Botany and Microbiology, Gurukula Kangri
(Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Niteesh Kumar Pandey
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Abirlal Mukherjee
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Kunal Dhankhar
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Neeladrisingha Das
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Ramesh Chandra Dubey
- Department
of Botany and Microbiology, Gurukula Kangri
(Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Saugata Hazra
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
- Centre
of Nanotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, India
- ,
| |
Collapse
|
2
|
Junghare V, Alex R, Baidya A, Paul M, Alyethodi RR, Sengar GS, Kumar S, Singh U, Deb R, Hazra S. In silico modeling revealed new insights into the mechanism of action of enzyme 2'-5'-oligoadenylate synthetase in cattle. J Biomol Struct Dyn 2022; 40:14013-14026. [PMID: 34873989 DOI: 10.1080/07391102.2021.2001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The innate immune system has an important role in developing the initial resistance to virus infection, and the ability of oligoadenylate synthetase to overcome viral evasion and enhance innate immunity is already established in humans. In the present study, we have tried to explore the molecular and structural variations present in Sahiwal (indigenous) and crossbred (Frieswal) cattle to identify the molecular mechanism of action of OAS1 gene in activation of innate immune response. The significant changes in structural alignment in terms of orientation of loops, shortening of β-sheets and formation of 3-10 α-helix was noticed in Sahiwal and Frieswal cattle. Further, it has been observed that OAS1 from Sahiwal had better binding with APC and DTP ligand than Frieswal OAS1. A remarkable change was seen in orientation at the nucleoside base region of both the ligands, which are bound with OAS1 protein from Frieswal and Sahiwal cattle. The Molecular Dynamic study of apo and ligand complex structures was provided more insight towards the stability of OAS1 from both cattle. This analysis displayed that the Sahiwal cattle protein has more steady nature throughout the simulation and has better binding towards Frieswal in terms of APC and DTP binding. Thus, OAS1 protein is the potential target for explaining the innate immune response in Sahiwal than Frieswal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rani Alex
- ICAR-Central Institute for Research on Cattle, Meerut Cantt, India
| | - Apoorva Baidya
- Department of Chemistry, Indian Intitute of Technology Bombay, Mumbai, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | | | | | - Sushil Kumar
- ICAR-National Research Center on Pig, Guwahati, India
| | - Umesh Singh
- ICAR-National Research Center on Pig, Guwahati, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Guwahati, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India.,Center of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
3
|
Cole MS, Howe MD, Buonomo JA, Sharma S, Lamont EA, Brody SI, Mishra NK, Minato Y, Thiede JM, Baughn AD, Aldrich CC. Cephem-Pyrazinoic Acid Conjugates: Circumventing Resistance in Mycobacterium tuberculosis. Chemistry 2022; 28:e202200995. [PMID: 35697660 PMCID: PMC9474573 DOI: 10.1002/chem.202200995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/14/2023]
Abstract
Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. β-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of β-lactamases that destroy the electrophilic β-lactam warhead. We have developed novel β-lactam conjugates, which exploit this inherent β-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the β-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.
Collapse
Affiliation(s)
- Malcolm S. Cole
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Michael D. Howe
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Joseph A. Buonomo
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Sachin Sharma
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Elise A. Lamont
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Scott I. Brody
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Neeraj K. Mishra
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
- Department of BiotechnologyGandhi Institute of Technology and Management (GITAM) School of ScienceDeemed to be UniversityGandhi nagarRushikonda, Visakhapatnam-530045Andhra PradeshIndia
| | - Yusuke Minato
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
- Department of MicrobiologyFujita Health University School of Medicine1-98 Dengakugakubo, Kutsukake-choToyoakeAichi 470-1192Japan
| | - Joshua M. Thiede
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Anthony D. Baughn
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Courtney C. Aldrich
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| |
Collapse
|
4
|
Hazra M, Dubey RC. Interdisciplinary in silico studies to understand in-depth molecular level mechanism of drug resistance involving NS3-4A protease of HCV. J Biomol Struct Dyn 2022:1-20. [PMID: 35993498 DOI: 10.1080/07391102.2022.2113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hepatitis C virus (HCV) causes hepatitis, a life-threatening disease responsible for liver cirrhosis. Urgent measures have been taken to develop therapeutics against this deadly pathogen. NS3/4A protease is an extremely important target. A series of inhibitors have been developed against this viral protease including Faldaprevir. Unfortunately, the error-prone viral RNA polymerase causes the emergence of resistance, thereby causing reduced effectiveness of those peptidomimetic inhibitors. Among the drug resistant variants, three single amino acid residues (R155, A156 and D168) are notable for their presence in clinical isolates and also their effectivity against most of the known inhibitors in clinical development. Therefore, it is crucial to understand the mechanistic role of those drug resistant variants while designing potent novel inhibitors. In this communication, we have deeply analyzed through using in silico studies to understand the molecular mechanism of alteration of inhibitor binding between wild type and its R155K, A156V and D168V variants. Principal component analysis was carried to identify the backbone fluctuations of important residues in HCV NS3/4A responsible for the inhibitor binding and maintaining drug resistance. Free energy landscape as a function of the principal components has been used to identify the stability and conformation of the key residues that regulate inhibitor binding and their impact in developing drug resistance. Our findings are consistent with the trend of experimental results. The observations are also true in case of other Faldaprevir-like peptidomimetic inhibitors. Understanding this binding mechanism would be significant for the development of novel inhibitors with less susceptibility towards drug resistance.
Collapse
Affiliation(s)
- Mousumi Hazra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| |
Collapse
|
5
|
Bhattacharya S, Junghare V, Pandey NK, Baidya S, Agarwal H, Das N, Banerjee A, Ghosh D, Roy P, Patra HK, Hazra S. Variations in the SDN Loop of Class A Beta-Lactamases: A Study of the Molecular Mechanism of BlaC ( Mycobacterium tuberculosis) to Alter the Stability and Catalytic Activity Towards Antibiotic Resistance of MBIs. Front Microbiol 2021; 12:710291. [PMID: 34690953 PMCID: PMC8531524 DOI: 10.3389/fmicb.2021.710291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC TM 60°C, S130A TM 50°C, and S130G TM 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vivek Junghare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Niteesh Kumar Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Subhecchha Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsha Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ayan Banerjee
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Debashish Ghosh
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Evaluating the covalent binding of carbapenems on BlaC using noncovalent interactions. J Mol Model 2021; 27:161. [PMID: 33966119 DOI: 10.1007/s00894-021-04760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Carbapenems, as irreversible covalent binders and slow substrates to the class A β-lactamase (BlaC) of Mycobacterium tuberculosis, can inhibit BlaC to hydrolyze the β-lactam drugs which are used to control tuberculosis. Their binding on BlaC involves covalent bonding and noncovalent interaction. We introduce a hypothesis that the noncovalent interactions dominate the difference of binding free energies for covalent ligands based on the assumption that their covalent bonding energies are the same. MM/GBSA binding free energies calculated from the noncovalent interactions provided a threshold with respect to the experimental kinetic data, to select slow carbapenem substrates which were either constructed using the structural units of experimentally identified carbapenems or obtained from the similarity search over the ZINC15 database. Combining molecular docking with consensus scoring and molecular dynamics simulation with MM/GBSA binding free energy calculations, a computational protocol was developed from which several new tight-binding carbapenems were theoretically identified.
Collapse
|
7
|
Bhattacharya S, Nautiyal AK, Bhattacharjee R, Padhi AK, Junghare V, Bhambri M, Dasgupta D, Zhang KYJ, Ghosh D, Hazra S. A comprehensive characterization of novel CYP-BM3 homolog (CYP-BA) from Bacillus aryabhattai. Enzyme Microb Technol 2021; 148:109806. [PMID: 34116765 DOI: 10.1016/j.enzmictec.2021.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/07/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Functionalizing C-H bond poses one of the most significant challenges for chemists providing them with very few substrate-specific synthetic routes. Despite being incredibly plastic in their enzymatic ability, they are confined with deficient enzymatic action and limited explicitness of the substrates. In this study, we have endeavored to characterize novel cytochrome P450 from Bacillus aryabhattai (CYP-BA), a homolog of CYP P450-BM3, by taking interdisciplinary approaches. We conducted structure and sequence comparison to understand the conservation pattern for active site residues, conserved fold, evolutionary relationships among others. Molecular dynamics simulations were performed to understand the dynamic nature and interaction with the substrates. CYP-BA was successfully cloned, purified, and characterized. The enzyme's stability toward various physicochemical parameters was evaluated by UV-vis spectroscopy and Circular Dichroism (CD) spectroscopy. Various saturated fatty acids being the natural cytochrome P450 substrates were evaluated as catalytic efficiency of substrate oxidation by CYP-BA. The binding affinity of these natural substrates was monitored against CYP-BA by isothermal titration calorimetry (ITC). The catalytic performance of CYP-BA was satisfactory enough to proceed to the next step, that is, engineering to expand the substrate range to include polycyclic aromatic hydrocarbons (PAH). This is the first evidence of cloning, purifying and characterizing a novel homolog of CYP-BM3 to enable a better understanding of this novel biocatalyst and to provide a platform toward expanding its catalytic process through enzyme engineering.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Abhilek K Nautiyal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Rajanya Bhattacharjee
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Muskaan Bhambri
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Diptarka Dasgupta
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Debasish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India; Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
8
|
An insight into the complete biophysical and biochemical characterization of novel class A beta-lactamase (Bla1) from Bacillus anthracis. Int J Biol Macromol 2020; 145:510-526. [DOI: 10.1016/j.ijbiomac.2019.12.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 11/22/2022]
|
9
|
Moural TW, White DSD, Choy CJ, Kang C, Berkman CE. Crystal Structure of Phosphoserine BlaC from Mycobacterium tuberculosis Inactivated by Bis(Benzoyl) Phosphate. Int J Mol Sci 2019; 20:E3247. [PMID: 31269656 PMCID: PMC6650796 DOI: 10.3390/ijms20133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine β-lactamase BlaC confers Mycobacterium tuberculosis resistance to conventional β-lactam antibiotics. As the primary mechanism of bacterial resistance to β-lactam antibiotics, the expression of a β-lactamase by Mycobacterium tuberculosis results in hydrolysis of the β-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine β-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Cindy J Choy
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chulhee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
10
|
Tassoni R, Blok A, Pannu NS, Ubbink M. New Conformations of Acylation Adducts of Inhibitors of β-Lactamase from Mycobacterium tuberculosis. Biochemistry 2019; 58:997-1009. [PMID: 30632739 PMCID: PMC6383187 DOI: 10.1021/acs.biochem.8b01085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Mycobacterium tuberculosis (Mtb), the main causative
agent of tuberculosis (TB), is naturally resistant to β-lactam
antibiotics due to the production of the extended spectrum β-lactamase
BlaC. β-Lactam/β-lactamase inhibitor combination therapies
can circumvent the BlaC-mediated resistance of Mtb and are promising
treatment options against TB. However, still little is known of the
exact mechanism of BlaC inhibition by the β-lactamase inhibitors
currently approved for clinical use, clavulanic acid, sulbactam, tazobactam,
and avibactam. Here, we present the X-ray diffraction crystal structures
of the acyl-enzyme adducts of wild-type BlaC with the four inhibitors.
The +70 Da adduct derived from clavulanate and the trans-enamine acylation adducts of sulbactam and tazobactam are reported.
BlaC in complex with avibactam revealed two inhibitor conformations.
Preacylation binding could not be observed because inhibitor binding
was not detected in BlaC variants carrying a substitution of the active
site serine 70 to either alanine or cysteine, by crystallography,
ITC or NMR. These results suggest that the catalytic serine 70 is
necessary not only for enzyme acylation but also for increasing BlaC
affinity for inhibitors in the preacylation state. The structure of
BlaC with the serine to cysteine mutation showed a covalent linkage
of the cysteine 70 Sγ atom to the nearby amino group of lysine
73. The differences of adduct conformations between BlaC and other
β-lactamases are discussed.
Collapse
Affiliation(s)
- Raffaella Tassoni
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Anneloes Blok
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , Leiden 2333CC , The Netherlands
| |
Collapse
|
11
|
Paul M, Kumar Panda M, Thatoi H. Developing Hispolon-based novel anticancer therapeutics against human (NF-κβ) using in silico approach of modelling, docking and protein dynamics. J Biomol Struct Dyn 2018; 37:3947-3967. [PMID: 30295165 DOI: 10.1080/07391102.2018.1532321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hispolon is a polyphenolic compound derived from black hoof mushroom (Phellinus linteus) or shaggy bracket mushroom (Inonotus hispidus) which induces the inhibition of cancer-promoting nuclear factor-kappa beta (NF-κβ) complex. To develop more potent lead molecules with enhanced anticancer efficiency, the mechanism of hispolon-mediated nuclear factor-κβ inhibition has been investigated by molecular modelling and docking. Ten derivatives of hispolon (DRG1-10) have been developed by pharmacophore-based design with a view to enhance the anticancer efficacy. Hispolon and its derivatives were further screened for different pharmacological parameters like binding free energy, drug likeliness, absorption-digestion-metabolism-excretion (ADME), permeability, mutagenicity, toxicity and inhibitory concentration 50 (IC50) to find a potent lead molecule. Based on pharmacological validation, comparative molecular dynamics (MD) simulations have been performed for three lead molecules: Hispolon, DRG2 and DRG7 complexed with human NF-κβ up to 50 ns. By analysing different factors like root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) and principal component analysis (PCA), Gibb's free energy plots DRG2 have more binding efficiency compared to hispolon and DRG7. In RMSD plot, hispolon-bound NF-κβ has the most deviation within a range between 0.125 and 0.45 nm, and DRG2-bound complex showed the range between 0.125 and 0.25 nm. The residues of NF-κβ responsible for hydrophobic interactions with ligand, e.g. Met469, Leu522 and Cys533, have the lowest fluctuation values in DRG2-bound complex. The average Rg fluctuation for DRG2-bound NF-κβ has been recorded under 2.025 nm for most of the simulation time which is much less compared to hispolon and DRG7. Gibb's free energy plots also define the highest stability of DRG2-bound NF-κβ. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Paul
- a Department of Biotechnology, North Orissa University , Baripada , Odisha , India
| | | | - Hrudayanath Thatoi
- a Department of Biotechnology, North Orissa University , Baripada , Odisha , India
| |
Collapse
|
12
|
Pal M, Bhattacharya S, Kalyan G, Hazra S. Cadherin profiling for therapeutic interventions in Epithelial Mesenchymal Transition (EMT) and tumorigenesis. Exp Cell Res 2018; 368:137-146. [DOI: 10.1016/j.yexcr.2018.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
|
13
|
Elings W, Tassoni R, van der Schoot SA, Luu W, Kynast JP, Dai L, Blok AJ, Timmer M, Florea BI, Pannu NS, Ubbink M. Phosphate Promotes the Recovery of Mycobacterium tuberculosis β-Lactamase from Clavulanic Acid Inhibition. Biochemistry 2017; 56:6257-6267. [PMID: 29087696 PMCID: PMC5707625 DOI: 10.1021/acs.biochem.7b00556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The rise of multi-
and even totally antibiotic resistant forms
of Mycobacterium tuberculosis underlines the need
for new antibiotics. The pathogen is resistant to β-lactam compounds
due to its native serine β-lactamase, BlaC. This resistance
can be circumvented by administration of a β-lactamase inhibitor.
We studied the interaction between BlaC and the inhibitor clavulanic
acid. Our data show hydrolysis of clavulanic acid and recovery of
BlaC activity upon prolonged incubation. The rate of clavulanic acid
hydrolysis is much higher in the presence of phosphate ions. A specific
binding site for phosphate is identified in the active site pocket,
both in the crystalline state and in solution. NMR spectroscopy experiments
show that phosphate binds to this site with a dissociation constant
of 30 mM in the free enzyme. We conclude that inhibition of BlaC by
clavulanic acid is reversible and that phosphate ions can promote
the hydrolysis of the inhibitor.
Collapse
Affiliation(s)
- Wouter Elings
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Raffaella Tassoni
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | | | - Wendy Luu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Josef P Kynast
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Lin Dai
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Anneloes J Blok
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| |
Collapse
|
14
|
Kupitz C, Olmos JL, Holl M, Tremblay L, Pande K, Pandey S, Oberthür D, Hunter M, Liang M, Aquila A, Tenboer J, Calvey G, Katz A, Chen Y, Wiedorn MO, Knoska J, Meents A, Majriani V, Norwood T, Poudyal I, Grant T, Miller MD, Xu W, Tolstikova A, Morgan A, Metz M, Martin-Garcia JM, Zook JD, Roy-Chowdhury S, Coe J, Nagaratnam N, Meza D, Fromme R, Basu S, Frank M, White T, Barty A, Bajt S, Yefanov O, Chapman HN, Zatsepin N, Nelson G, Weierstall U, Spence J, Schwander P, Pollack L, Fromme P, Ourmazd A, Phillips GN, Schmidt M. Structural enzymology using X-ray free electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044003. [PMID: 28083542 PMCID: PMC5178802 DOI: 10.1063/1.4972069] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
Collapse
Affiliation(s)
- Christopher Kupitz
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Jose L Olmos
- Department of BioSciences, Rice University , 6100 Main Street, Houston, Texas 77005, USA
| | - Mark Holl
- Department of Physics, Arizona State University , Tempe, Arizona 85287, USA
| | - Lee Tremblay
- Marbles Inc. , 1900 Belvedere Pl, Westfield, Indiana 46074, USA
| | | | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | | | - Mark Hunter
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andrew Aquila
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jason Tenboer
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - George Calvey
- Department of Applied and Engineering Physics, Cornell University , 254 Clark Hall, Ithaca, New York 14853, USA
| | - Andrea Katz
- Department of Applied and Engineering Physics, Cornell University , 254 Clark Hall, Ithaca, New York 14853, USA
| | - Yujie Chen
- Department of Applied and Engineering Physics, Cornell University , 254 Clark Hall, Ithaca, New York 14853, USA
| | - Max O Wiedorn
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Tyler Norwood
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Thomas Grant
- Hauptman-Woodward Institute, State University of New York at Buffalo , 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Mitchell D Miller
- Department of BioSciences, Rice University , 6100 Main Street, Houston, Texas 77005, USA
| | - Weijun Xu
- Department of BioSciences, Rice University , 6100 Main Street, Houston, Texas 77005, USA
| | - Aleksandra Tolstikova
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Morgan
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Markus Metz
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Jose M Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - James D Zook
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Jesse Coe
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Nirupa Nagaratnam
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Domingo Meza
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Raimund Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Shibom Basu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory , Livermore, California 94550, USA
| | - Thomas White
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Sasa Bajt
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Nadia Zatsepin
- Department of Physics, Arizona State University , Tempe, Arizona 85287, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University , Tempe, Arizona 85287, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University , Tempe, Arizona 85287, USA
| | - John Spence
- Department of Physics, Arizona State University , Tempe, Arizona 85287, USA
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Lois Pollack
- Department of Applied and Engineering Physics, Cornell University , 254 Clark Hall, Ithaca, New York 14853, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University , Tempe, Arizona 85287-1604, USA
| | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - George N Phillips
- Department of BioSciences, Rice University , 6100 Main Street, Houston, Texas 77005, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
15
|
Bharatiy S, Hazra M, Paul M, Mohapatra S, Samantaray D, Dubey R, Sanyal S, Datta S, Hazra S. In Silico Designing of an Industrially Sustainable Carbonic Anhydrase Using Molecular Dynamics Simulation. ACS OMEGA 2016; 1:1081-1103. [PMID: 30023502 PMCID: PMC6044688 DOI: 10.1021/acsomega.6b00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/15/2016] [Indexed: 06/08/2023]
Abstract
Carbonic anhydrase (CA) is a family of metalloenzymes that has the potential to sequestrate carbon dioxide (CO2) from the environment and reduce pollution. The goal of this study is to apply protein engineering to develop a modified CA enzyme that has both higher stability and activity and hence could be used for industrial purposes. In the current study, we have developed an in silico method to understand the molecular basis behind the stability of CA. We have performed comparative molecular dynamics simulation of two homologous α-CA, one of thermophilic origin (Sulfurihydrogenibium sp.) and its mesophilic counterpart (Neisseria gonorrhoeae), for 100 ns each at 300, 350, 400, and 500 K. Comparing the trajectories of two proteins using different stability-determining factors, we have designed a highly thermostable version of mesophilic α-CA by introducing three mutations (S44R, S139E, and K168R). The designed mutant α-CA maintains conformational stability at high temperatures. This study shows the potential to develop industrially stable variants of enzymes while maintaining high activity.
Collapse
Affiliation(s)
- Sachin
Kumar Bharatiy
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mousumi Hazra
- Department
of Botany and Microbiology, Gurukula Kangri
University, Haridwar 249404, Uttarakhand, India
| | - Manish Paul
- Department
of Microbiology, Orissa University of Agriculture
and Technology, Bhubaneswar 751003, Odisha, India
| | - Swati Mohapatra
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deviprasad Samantaray
- Department
of Microbiology, Orissa University of Agriculture
and Technology, Bhubaneswar 751003, Odisha, India
| | - Ramesh
Chandra Dubey
- Department
of Botany and Microbiology, Gurukula Kangri
University, Haridwar 249404, Uttarakhand, India
| | - Shourjya Sanyal
- Complex
and Adaptive System Laboratory, School of Physics, University College Dublin, Dublin 4, Ireland
| | - Saurav Datta
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
16
|
Betts JW, Phee LM, Abdul Momin MHF, Umland KD, Brem J, Schofield CJ, Wareham DW. In vitro and in vivo activity of ML302F: a thioenolate inhibitor of VIM-subfamily metallo β-lactamases. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00380f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thioenol ML302F, recently identified as an inhibitor of class B metallo-β-lactamases (MBLs), restores antibiotic susceptibility to meropenem resistant strains in cells and the Galleria mellonella invertebrate model.
Collapse
Affiliation(s)
- Jonathan W. Betts
- Antimicrobial Research Group
- Barts & The London School of Medicine and Dentistry
- Queen Mary University of London
- London
- UK
| | - Lynette M. Phee
- Antimicrobial Research Group
- Barts & The London School of Medicine and Dentistry
- Queen Mary University of London
- London
- UK
| | - Muhd H. F. Abdul Momin
- Antimicrobial Research Group
- Barts & The London School of Medicine and Dentistry
- Queen Mary University of London
- London
- UK
| | | | - Jurgen Brem
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | | | - David W. Wareham
- Antimicrobial Research Group
- Barts & The London School of Medicine and Dentistry
- Queen Mary University of London
- London
- UK
| |
Collapse
|