1
|
Montoya A, Wisniewski M, Goodsell JL, Angerhofer A. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Molecules 2024; 29:4414. [PMID: 39339409 PMCID: PMC11433825 DOI: 10.3390/molecules29184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
Collapse
Affiliation(s)
| | | | | | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
McLeod MJ, Barwell SAE, Holyoak T, Thorne RE. A structural perspective on the temperature-dependent activity of enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609221. [PMID: 39229032 PMCID: PMC11370597 DOI: 10.1101/2024.08.23.609221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzymes are biomolecular catalysts whose activity varies with temperature. Unlike for small-molecule catalysts, the structural ensembles of enzymes can vary substantially with temperature, and it is in general unclear how this modulates the temperature dependence of activity. Here multi-temperature X-ray crystallography was used to record structural changes from -20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes underlying the kinetic constantk c a t . Both inhibitors, substrates and catalytically relevant loop motifs increasingly populate catalytically competent conformations as temperature increases. These changes occur even in temperature ranges where kinetic measurements show roughly linear Arrhenius/Eyring behavior where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy / enthalpy values vary with temperature, e.g., due to structural changes, and that the underlying thermodynamic parameters can be far from values derived from Arrhenius/Eyring model fits. Our results indicate a critical role for temperature-dependent atomic-resolution structural data in interpreting temperature-dependent kinetic data from enzymatic systems.
Collapse
Affiliation(s)
| | | | - Todd Holyoak
- University of Waterloo, Waterloo Ontario, Canada. Department of Biology
| | | |
Collapse
|
3
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
5
|
Rational Engineering of 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase for a Biomimetic Nicotinamide Mononucleotide Cofactor. Catalysts 2022. [DOI: 10.3390/catal12101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymes are powerful biological catalysts for natural substrates but they have low catalytic efficiency for non-natural substrates. Protein engineering can be used to optimize enzymes for catalysis and stability. 3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) catalyzes the oxidoreduction reaction of NAD+ with androsterone. Based on the structure and catalytic mechanism, we mutated the residues of T11, I13, D41, A70, and I112 and they interacted with different portions of NAD+ to switch cofactor specificity to biomimetic cofactor nicotinamide mononucleotide (NMN+). Compared to wild-type 3α-HSD/CR, the catalytic efficiency of these mutants for NAD+ decreased significantly except for the T11 mutants but changed slightly for NMN+ except for the A70K mutant. The A70K mutant increased the catalytic efficiency for NMN+ by 8.7-fold, concomitant with a significant decrease in NAD+ by 1.4 × 104-fold, resulting in 9.6 × 104-fold cofactor specificity switch toward NMN+ over NAD+. Meanwhile, the I112K variant increased the thermal stability and changed to a three-state transition from a two-state transition of thermal unfolding of wild-type 3α-HSD/CR by differential scanning fluorimetry. Molecular docking analysis indicated that mutations on these residues affect the position and conformation of the docked NAD+ and NMN+, thereby affecting their activity. A70K variant sterically blocks the binding with NAD+, restores the H-bonding interactions of catalytic residues of Y155 and K159 with NMN+, and enhances the catalytic efficiency for NMN+.
Collapse
|
6
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
7
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
8
|
Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana. Biochem J 2020; 476:2939-2952. [PMID: 31548269 DOI: 10.1042/bcj20190523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent phosphoenolpyruvate carboxykinases (PEPCKs, EC 4.1.1.49) from C4 and CAM plants have been widely studied due to their crucial role in photosynthetic CO2 fixation. However, our knowledge on the structural, kinetic and regulatory properties of the enzymes from C3 species is still limited. In this work, we report the recombinant production and biochemical characterization of two PEPCKs identified in Arabidopsis thaliana: AthPEPCK1 and AthPEPCK2. We found that both enzymes exhibited high affinity for oxaloacetate and ATP, reinforcing their role as decarboxylases. We employed a high-throughput screening for putative allosteric regulators using differential scanning fluorometry and confirmed their effect on enzyme activity by performing enzyme kinetics. AthPEPCK1 and AthPEPCK2 are allosterically modulated by key intermediates of plant metabolism, namely succinate, fumarate, citrate and α-ketoglutarate. Interestingly, malate activated and glucose 6-phosphate inhibited AthPEPCK1 but had no effect on AthPEPCK2. Overall, our results demonstrate that the enzymes involved in the critical metabolic node constituted by phosphoenolpyruvate are targets of fine allosteric regulation.
Collapse
|
9
|
Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants. Biochim Biophys Acta Gen Subj 2020; 1864:129517. [DOI: 10.1016/j.bbagen.2020.129517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
|
10
|
Hwang CC, Chang PR, Hsieh CL, Chou YH, Wang TP. Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Chem Biol Interact 2019; 302:183-189. [PMID: 30794798 DOI: 10.1016/j.cbi.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
The binding energy of enzyme and substrate is used to lower the activation energy for the catalytic reaction. 3α-HSD/CR uses remote binding interactions to accelerate the reaction of androsterone with NAD+. Here, we examine the enthalpic and entropic components of the remote binding energy in the 3α-HSD/CR-catalyzed reaction of NAD+ with androsterone versus the substrate analogs, 2-decalol and cyclohexanol, by analyzing the temperature-dependent kinetic parameters through steady-state kinetics. The effects of temperature on kcat/Km for 3α-HSD/CR acting on androsterone, 2-decalol, and cyclohexanol show the reactions are entropically favorable but enthalpically unfavorable. Thermodynamic analysis from the temperature-dependent values of Km and kcat shows the binding of the E-NAD+ complex with either 2-decalol or cyclohexanol to form the ternary complex is endothermic and entropy-driven, and the subsequent conversion to the transition state is both enthalpically and entropically unfavorable. Hence, solvation entropy may play an important role in the binding process through both the desolvation of the solute molecules and the release of bound water molecules from the active site into bulk solvent. As compared to the thermodynamic parameters of 3α-HSD/CR acting on cyclohexanol, the hydrophobic interaction of the B-ring of steroids with the active site of 3α-HSD/CR contributes to catalysis by increasing exclusively the entropy of activation (ΔTΔS‡ = 1.8 kcal/mol), while the BCD-ring of androsterone significantly lowers ΔΔH‡ by 10.4 kcal/mol with a slight entropic penalty of -1.9 kcal/mol. Therefore, the remote non-reacting sites of androsterone may induce a conformational change of the substrate binding loop with an entropic cost for better interaction with the transition state to decrease the enthalpy of activation, significantly increasing catalytic efficiency.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Pei-Ru Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Lin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yun-Hao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
11
|
Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, López-Buesa P, Carrodeguas JA, Denu JM. Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 2018; 71:718-732.e9. [PMID: 30193097 PMCID: PMC6188669 DOI: 10.1016/j.molcel.2018.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3β-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Eric A Armstrong
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Lindsay E Wu
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Genetics, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
12
|
Genistein: is the multifarious botanical a natural anthelmintic too? J Parasit Dis 2018; 42:151-161. [PMID: 29844617 DOI: 10.1007/s12639-018-0984-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/26/2018] [Indexed: 01/03/2023] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is naturally present in plants of the soy family and is known to have various pharmacological activities, such as anti-cancer, anti-diabetic, anti-oxidant, etc. The phytoestrogen is one of the major isoflavones found in some medicinal plants having anthelmintic properties. This review describes the putative role of genistein as an anthelmintic, which has been tested on some helminth parasites in vitro. Genistein has been shown to cause paralysis and alterations in the tegument and tegumental enzymes (acid phosphatase, alkaline phosphatase, adenosine triphosphatase, and 5'-nucleotidase) of helminth parasites. Alterations in the activities of several enzymes associated with the coordination system (specifically non-specific esterases, acetylcholine esterase, and nitric oxide synthase), and changes in the concentration of nitric oxide, cGMP, free amino acid pool, and tissue ammonia are observed in helminth parasites treated with genistein. The phytoestrogen also affects the carbohydrate metabolism by altering the activities of key enzymes involved in glycogen- and glucose-metabolism of a cestode parasite. Considering the significance of phosphoenolpyruvate carboxykinase (PEPCK) in glycolysis of the cestode parasite, Ki of the phytoestrogen for PEPCK in the parasite has been determined, and molecular docking of genistein into the active site of the enzyme has also been described. The potential beneficial role of genistein as a natural alternative in management of helminth parasites needs to be further explored, particularly considering its in vivo efficacy and pharmacokinetics.
Collapse
|
13
|
Ouedraogo D, Ball J, Iyer A, Reis RAG, Vodovoz M, Gadda G. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa. Arch Biochem Biophys 2017. [PMID: 28625766 DOI: 10.1016/j.abb.2017.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity.
Collapse
Affiliation(s)
- Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Jacob Ball
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Maria Vodovoz
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States; Department of Biology, Georgia State University, Atlanta, GA 30302, United States; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
14
|
Biological significance of phosphoenolpyruvate carboxykinase in a cestode parasite, Raillietina echinobothrida and effect of phytoestrogens on the enzyme from the parasite and its host, Gallus domesticus. Parasitology 2017; 144:1264-1274. [PMID: 28485262 DOI: 10.1017/s0031182017000518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is involved in glycolysis in the cestode parasite, Raillietina echinobothrida; whereas, it executes a gluconeogenic role in its host, Gallus domesticus. Because of its differing primary function in the cestode parasite and its host, this enzyme is regarded as a plausible anthelmintic target. Hence, the biological significance of PEPCK in the parasite was analysed using siRNA against PEPCK from R. echinobothrida (RePEPCK). In order to find out the functional differences between RePEPCK and GdPEPCK (PEPCK from its host, G. domesticus), PEPCK genes from both sources were cloned, over-expressed, characterized, and some properties of the purified enzymes were compared. RePEPCK and GdPEPCK showed a standard Michaelis-Menten kinetics with K mapp of 46.9 and 22.9 µ m, respectively, for phosphoenolpyruvate and K mapp of 15.4 µ m for oxaloacetate in GdPEPCK decarboxylation reaction. Here, we report antagonist behaviours of recombinant PEPCKs derived from the parasite and its host. In search of possible modulators for PEPCK, few phytoestrogens were examined on the purified enzymes and their inhibitory constants were determined and discussed. This study stresses the potential of these findings to validate PEPCK as the anthelmintic drug target for parasitism management.
Collapse
|
15
|
Ouedraogo D, Souffrant M, Vasquez S, Hamelberg D, Gadda G. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase. Biochemistry 2017; 56:2477-2487. [DOI: 10.1021/acs.biochem.7b00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Ouedraogo
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Souffrant
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Sheena Vasquez
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
16
|
Thom SR, Bhopale VM, Hu J, Yang M. Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome. Free Radic Biol Med 2017; 106:406-416. [PMID: 28288918 DOI: 10.1016/j.freeradbiomed.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
We hypothesized that elevations of carbon dioxide (CO2) commonly found in modern buildings will stimulate leukocytes to produce microparticles (MPs) and activate the nucleotide-binding domain-like receptor 3 (NLRP3) inflammasome due to mitochondrial oxidative stress. Human and murine neutrophils generate MPs with high interleukin-1β (IL-1β) content when incubated ex vivo in buffer equilibrated with 0.1-0.4% additional CO2. Enhanced MPs production requires mitochondrial reactive oxygen species production, which is mediated by activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Subsequent events leading to MPs generation include perturbation of inositol 1,3,5-triphosphate receptors, a transient elevation of intracellular calcium, activation of protein kinase C and NADPH oxidase (Nox). Concomitant activation of type-2 nitric oxide synthase yields secondary oxidants resulting in actin S-nitrosylation and enhanced filamentous actin turnover. Numerous proteins are linked to short filamentous actin including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, and the critical inflammasome protein ASC (Apoptosis-associated Speck protein with CARD domain). Elevations of CO2 cause oligomerization of the inflammasome components ASC, NLRP3, caspase 1, thioredoxin interacting protein, and calreticulin - a protein from endoplasmic reticulum, leading to IL-1β synthesis. An increased production rate of MPs containing elevated amounts of IL-1β persists for hours after short-term exposures to elevated CO2.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - JingPing Hu
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
17
|
Cui DS, Broom A, Mcleod MJ, Meiering EM, Holyoak T. Asymmetric Anchoring Is Required for Efficient Ω-Loop Opening and Closing in Cytosolic Phosphoenolpyruvate Carboxykinase. Biochemistry 2017; 56:2106-2115. [PMID: 28345895 DOI: 10.1021/acs.biochem.7b00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mobile Ω-loops play essential roles in the function of many enzymes. Here we investigated the importance of a residue lying outside of the mobile Ω-loop element in the catalytic function of an H477R variant of cytosolic phosphoenolpyruvate carboxykinase using crystallographic, kinetic, and computational analysis. The crystallographic data suggest that the efficient transition of the Ω-loop to the closed conformation requires stabilization of the N-terminus of the loop through contacts between R461 and E588. In contrast, the C-terminal end of the Ω-loop undergoes changing interactions with the enzyme body through contacts between H477 at the C-terminus of the loop and E591 located on the enzyme body. Potential of mean force calculations demonstrated that altering the anchoring of the C-terminus of the Ω-loop via the H477R substitution results in the destabilization of the closed state of the Ω-loop by 3.4 kcal mol-1. The kinetic parameters for the enzyme were altered in an asymmetric fashion with the predominant effect being observed in the direction of oxaloacetate synthesis. This is exemplified by a reduction in kcat for the H477R mutant by an order of magnitude in the direction of OAA synthesis, while in the direction of PEP synthesis, it decreased by a factor of only 2. The data are consistent with a mechanism for loop conformational exchange between open and closed states in which a balance between fixed anchoring of the N-terminus of the Ω-loop and a flexible, unattached C-terminus drives the transition between a disordered (open) state and an ordered (closed) state.
Collapse
Affiliation(s)
- Danica S Cui
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Aron Broom
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Matthew J Mcleod
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Elizabeth M Meiering
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Todd Holyoak
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
18
|
Hwang CC, Chang PR, Wang TP. Contribution of remote substrate binding energy to the enzymatic rate acceleration for 3α-hydroxysteroid dehydrogenase/carbonyl reductase. Chem Biol Interact 2017; 276:133-140. [PMID: 28137513 DOI: 10.1016/j.cbi.2017.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) catalyzes the oxidation of androsterone with NAD+ to form androstanedione and NADH with the rate limiting step being the release of NADH. In this study, we elucidate the role of remote substrate binding interactions contributing to the rate enhancement by 3α-HSD/CR through steady-state kinetic studies with the truncated substrate analogs. No enzyme activity was detected for methanol, ethanol, and 2-propanol, which lack the steroid scaffold of androsterone, implying that the steroid scaffold plays an important role in enzyme catalytic specificity. As compared to cyclohexanol, the activity for 2-decalol, androstenol, and androsterone increases by 0.9-, 90-, and 200-fold in kcat, and 37-, 1.9 × 106-, and 1.8 × 106-fold in kcat/KB, respectively. The rate limiting step is hydride transfer for 3α-HSD/CR catalyzing the reaction of cyclohexanol with NAD+ based on the observed rapid equilibrium ordered mechanism and equal deuterium isotope effects of 3.9 on V and V/K for cyclohexanol. The kcat/KB value results in ΔG‡ of 14.7, 12.6, 6.2, and 6.2 kcal/mol for the 3α-HSD/CR catalyzed reaction of cyclohexanol, 2-decalol, androstenol, and androsterone, respectively. Thus, the uniform binding energy from the B-ring of steroids with the active site of 3α-HSD/CR equally contributes 2.1 kcal/mol to stabilize both the transition state and ground state of the ternary complex, leading to the similarity in kcat for 2-decalol and cyclohexanol. Differential binding interactions of the remote BCD-ring and CD-ring of androsterone with the active site of 3α-HSD/CR contribute 8.5 and 6.4 kcal/mol to the stabilization of the transition state, respectively. The removal of the carbonyl group at C17 of androsterone has small effects on catalysis. Both uniform and differential binding energies from the remote sites of androsterone compared to cyclohexanol contribute to the 3α-HSD/CR catalysis, resulting in the increases in kcat and kcat/KB.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Pei-Ru Chang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|