1
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation selection by ATP-competitive inhibitors and allosteric communication in ERK2. eLife 2024; 12:RP91507. [PMID: 38537148 PMCID: PMC10972564 DOI: 10.7554/elife.91507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
- Jake W Anderson
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David Vaisar
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David N Jones
- Department of Pharmacology, University of Colorado Anschutz Medical CenterBoulderUnited States
| | - Laurel M Pegram
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | | | - Huifen Chen
- Genentech, Inc.South San FranciscoUnited States
| | | | - Natalie G Ahn
- Department of Biochemistry, University of ColoradoBoulderUnited States
| |
Collapse
|
2
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation Selection by ATP-competitive Inhibitors and Allosteric Communication in ERK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557258. [PMID: 37745518 PMCID: PMC10515847 DOI: 10.1101/2023.09.12.557258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
| | - David Vaisar
- Department of Biochemistry, University of Colorado, Boulder, CO
| | - David N. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Laurel M. Pegram
- Department of Biochemistry, University of Colorado, Boulder, CO
- Present address: Loxo Oncology, Louisville, CO 80027
| | - Guy P. Vigers
- Array BioPharma, Inc., Boulder, CO
- Present address: Allium Consulting LLC, Boulder, CO 80304
| | - Huifen Chen
- Genentech, Inc. South San Francisco, CA, USA
| | | | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO
| |
Collapse
|
3
|
Agudo-Ibáñez L, Morante M, García-Gutiérrez L, Quintanilla A, Rodríguez J, Muñoz A, León J, Crespo P. ERK2 stimulates MYC transcription by anchoring CDK9 to the MYC promoter in a kinase activity-independent manner. Sci Signal 2023; 16:eadg4193. [PMID: 37463244 DOI: 10.1126/scisignal.adg4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| |
Collapse
|
4
|
Perry-Hauser NA, Hopkins JB, Zhuo Y, Zheng C, Perez I, Schultz KM, Vishnivetskiy SA, Kaya AI, Sharma P, Dalby KN, Chung KY, Klug CS, Gurevich VV, Iverson TM. The two non-visual arrestins engage ERK2 differently. J Mol Biol 2022; 434:167465. [PMID: 35077767 PMCID: PMC8977243 DOI: 10.1016/j.jmb.2022.167465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. β-arrestin1 and β-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States. https://twitter.com/EmilyBroadis
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Kevin N Dalby
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| |
Collapse
|
5
|
Tomasovic A, Brand T, Schanbacher C, Kramer S, Hümmert MW, Godoy P, Schmidt-Heck W, Nordbeck P, Ludwig J, Homann S, Wiegering A, Shaykhutdinov T, Kratz C, Knüchel R, Müller-Hermelink HK, Rosenwald A, Frey N, Eichler J, Dobrev D, El-Armouche A, Hengstler JG, Müller OJ, Hinrichs K, Cuello F, Zernecke A, Lorenz K. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nat Commun 2020; 11:1733. [PMID: 32265441 PMCID: PMC7138859 DOI: 10.1038/s41467-020-15505-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of extracellular signal-regulated kinases (ERK1/2) is linked to several diseases including heart failure, genetic syndromes and cancer. Inhibition of ERK1/2, however, can cause severe cardiac side-effects, precluding its wide therapeutic application. ERKT188-autophosphorylation was identified to cause pathological cardiac hypertrophy. Here we report that interference with ERK-dimerization, a prerequisite for ERKT188-phosphorylation, minimizes cardiac hypertrophy without inducing cardiac adverse effects: an ERK-dimerization inhibitory peptide (EDI) prevents ERKT188-phosphorylation, nuclear ERK1/2-signaling and cardiomyocyte hypertrophy, protecting from pressure-overload-induced heart failure in mice whilst preserving ERK1/2-activity and cytosolic survival signaling. We also examine this alternative ERK1/2-targeting strategy in cancer: indeed, ERKT188-phosphorylation is strongly upregulated in cancer and EDI efficiently suppresses cancer cell proliferation without causing cardiotoxicity. This powerful cardio-safe strategy of interfering with ERK-dimerization thus combats pathological ERK1/2-signaling in heart and cancer, and may potentially expand therapeutic options for ERK1/2-related diseases, such as heart failure and genetic syndromes. Drugs targeting dysregulated ERK1/2 signaling can cause severe cardiac side effects, precluding their wide therapeutic application. Here, a new and cardio-safe targeting strategy is presented that interferes with ERK dimerization to prevent pathological ERK1/2 signaling in the heart and cancer.
Collapse
Affiliation(s)
- Angela Tomasovic
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Sofia Kramer
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany
| | - Martin W Hümmert
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute-, 07745, Jena, Germany
| | - Peter Nordbeck
- Comprehensive Heart Failure Center, 97078, Würzburg, Germany
| | - Jonas Ludwig
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Susanne Homann
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany
| | - Armin Wiegering
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Timur Shaykhutdinov
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Christoph Kratz
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, 52074, Aachen, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97080, Würzburg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, 24105, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, 45147, Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, TU Dresden, 01307, Dresden, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, 24105, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Karsten Hinrichs
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, 97080, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany. .,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany. .,Comprehensive Heart Failure Center, 97078, Würzburg, Germany.
| |
Collapse
|
6
|
Leveraging implicit knowledge in neural networks for functional dissection and engineering of proteins. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0049-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Sabsay KR, Lee RT, Ravatt LM, Oza JP, McDonald AR. Computational Models for Activated Human MEK1: Identification of Key Active Site Residues and Interactions. J Chem Inf Model 2019; 59:2383-2393. [DOI: 10.1021/acs.jcim.8b00989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kimberly R. Sabsay
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Rebecca T. Lee
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Leandre M. Ravatt
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Ashley Ringer McDonald
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
8
|
The Transcription Factor ETV5 Mediates BRAFV600E-Induced Proliferation and TWIST1 Expression in Papillary Thyroid Cancer Cells. Neoplasia 2018; 20:1121-1134. [PMID: 30265861 PMCID: PMC6161370 DOI: 10.1016/j.neo.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022] Open
Abstract
The ETS family of transcription factors is involved in several normal remodeling events and pathological processes including tumor progression. ETS transcription factors are divided into subfamilies based on the sequence and location of the ETS domain. ETV5 (Ets variant gene 5; also known as ERM) is a member of the PEA3 subfamily. Our meta-analysis of normal, benign, and malignant thyroid samples demonstrated that ETV5 expression is upregulated in papillary thyroid cancer and was predominantly associated with BRAF V600E or RAS mutations. However, the precise role of ETV5 in these lesions is unknown. In this study, we used the KTC1 cell line as a model for human advanced papillary thyroid cancer (PTC) because the cells harbor the heterozygous BRAF (V600E) mutation together with the C250T TERT promoter mutation. The role of ETV5 in PTC proliferation was tested using RNAi followed by high-throughput screening. Signaling pathways driving ETV5 expression were identified using specific pharmacological inhibitors. To determine if ETV5 influences the expression of epithelial-to-mesenchymal (EMT) markers in these cells, an EMT PCR array was used, and data were confirmed by qPCR and ChIP-qPCR. We found that ETV5 is critical for PTC cell growth, is expressed downstream of the MAPK pathway, and directly upregulates the transcription factor TWIST1, a known marker of intravasation and metastasis. Increased ETV5 expression could therefore be considered as a marker for advanced PTCs and a possible future therapeutic target.
Collapse
|
9
|
Mutlak M, Schlesinger-Laufer M, Haas T, Shofti R, Ballan N, Lewis YE, Zuler M, Zohar Y, Caspi LH, Kehat I. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy. Int J Cardiol 2018; 270:204-213. [PMID: 29857938 DOI: 10.1016/j.ijcard.2018.05.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. METHODS We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. RESULTS The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. CONCLUSIONS The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload.
Collapse
Affiliation(s)
- Michael Mutlak
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Schlesinger-Laufer
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Tali Haas
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Rona Shofti
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Nimer Ballan
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Yair E Lewis
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Zuler
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Medical Center, Haifa 31096, Israel
| | - Lilac H Caspi
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Izhak Kehat
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cardiology and the Clinical Research Institute at Rambam, Rambam Medical Center, Haifa 31096, Israel.
| |
Collapse
|
10
|
Keyes JD, Parsonage D, Yammani RD, Rogers LC, Kesty C, Furdui CM, Nelson KJ, Poole LB. Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals. Free Radic Biol Med 2017; 112:534-543. [PMID: 28843779 PMCID: PMC5623068 DOI: 10.1016/j.freeradbiomed.2017.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 01/04/2023]
Abstract
ERK-dependent signaling is key to many pathways through which extracellular signals are transduced into cell-fate decisions. One conundrum is the way in which disparate signals induce specific responses through a common, ERK-dependent kinase cascade. While studies have revealed intricate ways of controlling ERK signaling through spatiotemporal localization and phosphorylation dynamics, additional modes of ERK regulation undoubtedly remain to be discovered. We hypothesized that fine-tuning of ERK signaling could occur by cysteine oxidation. We report that ERK is actively and directly oxidized by signal-generated H2O2 during proliferative signaling, and that ERK oxidation occurs downstream of a variety of receptor classes tested in four cell lines. Furthermore, within the tested cell lines and proliferative signals, we observed that both activation loop-phosphorylated and non-phosphorylated ERK undergo sulfenylation in cells and that dynamics of ERK sulfenylation is dependent on the cell growth conditions prior to stimulation. We also tested the effect of endogenous ERK oxidation on kinase activity and report that phosphotransfer reactions are reversibly inhibited by oxidation by as much as 80-90%, underscoring the importance of considering this additional modification when assessing ERK activation in response to extracellular signals.
Collapse
Affiliation(s)
- Jeremiah D Keyes
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Molecular Signaling, Wake Forest University, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA
| | - Rama D Yammani
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA
| | - LeAnn C Rogers
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Molecular Signaling, Wake Forest University, USA
| | - Chelsea Kesty
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Molecular Signaling, Wake Forest University, USA
| | - Cristina M Furdui
- Center for Molecular Signaling, Wake Forest University, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Molecular Signaling, Wake Forest University, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Molecular Signaling, Wake Forest University, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
11
|
Karra AS, Stippec S, Cobb MH. Assaying Protein Kinase Activity with Radiolabeled ATP. J Vis Exp 2017. [PMID: 28605363 DOI: 10.3791/55504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Protein kinases are able to govern large-scale cellular changes in response to complex arrays of stimuli, and much effort has been directed at uncovering allosteric details of their regulation. Kinases comprise signaling networks whose defects are often hallmarks of multiple forms of cancer and related diseases, making an assay platform amenable to manipulation of upstream regulatory factors and validation of reaction requirements critical in the search for improved therapeutics. Here, we describe a basic kinase assay that can be easily adapted to suit specific experimental questions including but not limited to testing the effects of biochemical and pharmacological agents, genetic manipulations such as mutation and deletion, as well as cell culture conditions and treatments to probe cell signaling mechanisms. This assay utilizes radiolabeled [γ-32P] ATP, which allows for quantitative comparisons and clear visualization of results, and can be modified for use with immunoprecipitated or recombinant kinase, specific or typified substrates, all over a wide range of reaction conditions.
Collapse
Affiliation(s)
- Aroon S Karra
- Department of Pharmacology, University of Texas Southwestern Medical Center
| | - Steve Stippec
- Department of Pharmacology, University of Texas Southwestern Medical Center
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center;
| |
Collapse
|
12
|
Brenan L, Andreev A, Cohen O, Pantel S, Kamburov A, Cacchiarelli D, Persky NS, Zhu C, Bagul M, Goetz EM, Burgin AB, Garraway LA, Getz G, Mikkelsen TS, Piccioni F, Root DE, Johannessen CM. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants. Cell Rep 2016; 17:1171-1183. [PMID: 27760319 PMCID: PMC5120861 DOI: 10.1016/j.celrep.2016.09.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84%) missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.
Collapse
Affiliation(s)
- Lisa Brenan
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ofir Cohen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha Pantel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Atanas Kamburov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Davide Cacchiarelli
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cong Zhu
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mukta Bagul
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eva M Goetz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alex B Burgin
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Levi A Garraway
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|