1
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
2
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
3
|
Bartels P, Salveson I, Coleman AM, Anderson DE, Jeng G, Estrada-Tobar ZM, Man KNM, Yu Q, Kuzmenkina E, Nieves-Cintron M, Navedo MF, Horne MC, Hell JW, Ames JB. Half-calcified calmodulin promotes basal activity and inactivation of the L-type calcium channel Ca V1.2. J Biol Chem 2022; 298:102701. [PMID: 36395884 PMCID: PMC9764201 DOI: 10.1016/j.jbc.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.
Collapse
Affiliation(s)
- Peter Bartels
- Department of Pharmacology, University of California, Davis, California, USA
| | - Ian Salveson
- Department of Chemistry, University of California, Davis, California, USA
| | - Andrea M Coleman
- Department of Pharmacology, University of California, Davis, California, USA; Department of Chemistry, University of California, Davis, California, USA
| | - David E Anderson
- Department of Chemistry, University of California, Davis, California, USA
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, California, USA
| | | | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, California, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, California, USA
| | - Elza Kuzmenkina
- Center for Pharmacology, University of Cologne, Cologne, Germany
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, California, USA.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA.
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA.
| |
Collapse
|
4
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
5
|
Del Villar SG, Voelker TL, Westhoff M, Reddy GR, Spooner HC, Navedo MF, Dickson EJ, Dixon RE. β-Adrenergic control of sarcolemmal Ca V1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci U S A 2021. [PMID: 33558236 DOI: 10.1073/pnas.2017937118/-/dcsupplemental] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. β-Adrenergic receptor (βAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. βAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, βAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented βAR-activated Ca2+ current augmentation. Moreover, βAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that βAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for βAR-regulation of cardiac CaV1.2.
Collapse
Affiliation(s)
- Silvia G Del Villar
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Gopireddy R Reddy
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616;
| |
Collapse
|
6
|
Del Villar SG, Voelker TL, Westhoff M, Reddy GR, Spooner HC, Navedo MF, Dickson EJ, Dixon RE. β-Adrenergic control of sarcolemmal Ca V1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci U S A 2021; 118:e2017937118. [PMID: 33558236 PMCID: PMC7896340 DOI: 10.1073/pnas.2017937118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. β-Adrenergic receptor (βAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. βAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, βAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented βAR-activated Ca2+ current augmentation. Moreover, βAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that βAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for βAR-regulation of cardiac CaV1.2.
Collapse
Affiliation(s)
- Silvia G Del Villar
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Gopireddy R Reddy
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616;
| |
Collapse
|
7
|
Man KNM, Bartels P, Horne MC, Hell JW. Tissue-specific adrenergic regulation of the L-type Ca 2+ channel Ca V1.2. Sci Signal 2020; 13:13/663/eabc6438. [PMID: 33443233 DOI: 10.1126/scisignal.abc6438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ca2+ influx through the L-type Ca2+ channel Cav1.2 triggers each heartbeat. The fight-or-flight response induces the release of the stress response hormone norepinephrine to stimulate β-adrenergic receptors, cAMP production, and protein kinase A activity to augment Ca2+ influx through Cav1.2 and, consequently, cardiomyocyte contractility. Emerging evidence shows that Cav1.2 is regulated by different mechanisms in cardiomyocytes compared to neurons and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Peter Bartels
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Sbai O, Soussi R, Bole A, Khrestchatisky M, Esclapez M, Ferhat L. The actin binding protein α-actinin-2 expression is associated with dendritic spine plasticity and migrating granule cells in the rat dentate gyrus following pilocarpine-induced seizures. Exp Neurol 2020; 335:113512. [PMID: 33098872 DOI: 10.1016/j.expneurol.2020.113512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.
Collapse
Affiliation(s)
- Oualid Sbai
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Rabia Soussi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Angélique Bole
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Monique Esclapez
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
9
|
Meyer JO, Dahimene S, Page KM, Ferron L, Kadurin I, Ellaway JIJ, Zhao P, Patel T, Rothwell SW, Lin P, Pratt WS, Dolphin AC. Disruption of the Key Ca 2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking. Cell Rep 2020; 29:22-33.e5. [PMID: 31577951 PMCID: PMC6899504 DOI: 10.1016/j.celrep.2019.08.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2019] [Accepted: 08/22/2019] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by β subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution. Selectivity filter mutations in CaV2 channels block inward Ba2+ currents Surprisingly, these mutations severely reduce trafficking of the CaV2 channels Pore mutant N-type channels show reduced expression in presynaptic terminals Pore mutant channels still require β and α2δ and thus are not grossly misfolded
Collapse
Affiliation(s)
- James O Meyer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Ivan Kadurin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Joseph I J Ellaway
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Pengxiang Zhao
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Tarun Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Simon W Rothwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Peipeng Lin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Turner M, Anderson DE, Bartels P, Nieves-Cintron M, Coleman AM, Henderson PB, Man KNM, Tseng PY, Yarov-Yarovoy V, Bers DM, Navedo MF, Horne MC, Ames JB, Hell JW. α-Actinin-1 promotes activity of the L-type Ca 2+ channel Ca v 1.2. EMBO J 2020; 39:e102622. [PMID: 31985069 DOI: 10.15252/embj.2019102622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023] Open
Abstract
The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.
Collapse
Affiliation(s)
- Matthew Turner
- Department of Chemistry, University of California, Davis, CA, USA
| | - David E Anderson
- Department of Chemistry, University of California, Davis, CA, USA
| | - Peter Bartels
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Andrea M Coleman
- Department of Chemistry, University of California, Davis, CA, USA.,Department of Pharmacology, University of California, Davis, CA, USA
| | - Peter B Henderson
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Pang-Yen Tseng
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Prondzynski M, Lemoine MD, Zech AT, Horváth A, Di Mauro V, Koivumäki JT, Kresin N, Busch J, Krause T, Krämer E, Schlossarek S, Spohn M, Friedrich FW, Münch J, Laufer SD, Redwood C, Volk AE, Hansen A, Mearini G, Catalucci D, Meyer C, Christ T, Patten M, Eschenhagen T, Carrier L. Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol Med 2019; 11:e11115. [PMID: 31680489 PMCID: PMC6895603 DOI: 10.15252/emmm.201911115] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Antonia Tl Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Vittoria Di Mauro
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jussi T Koivumäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nico Kresin
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Josefine Busch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tobias Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Michael Spohn
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Münch
- Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Daniele Catalucci
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Meyer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
13
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
14
|
Ito DW, Hannigan KI, Ghosh D, Xu B, Del Villar SG, Xiang YK, Dickson EJ, Navedo MF, Dixon RE. β-adrenergic-mediated dynamic augmentation of sarcolemmal Ca V 1.2 clustering and co-operativity in ventricular myocytes. J Physiol 2019; 597:2139-2162. [PMID: 30714156 PMCID: PMC6462464 DOI: 10.1113/jp277283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/03/2019] [Indexed: 01/25/2023] Open
Abstract
Key points Prevailing dogma holds that activation of the β‐adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L‐type CaV1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV1.2 channel clusters decorate T‐tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by physical interactions between adjacent channel C‐terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A‐dependent augmentation of CaV1.2 channel abundance along cardiomyocyte T‐tubules, resulting in the appearance of channel ‘super‐clusters’, and enhanced channel co‐operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub‐sarcolemmal pool of pre‐synthesized CaV1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation–contraction coupling.
Abstract Voltage‐dependent L‐type CaV1.2 channels play an indispensable role in cardiac excitation–contraction coupling. Activation of the β‐adrenergic receptor (βAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV1.2 channels exhibit a clustered distribution along the T‐tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C‐terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether βAR signalling could alter CaV1.2 channel clustering to facilitate co‐operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the βAR agonist, isoproterenol (ISO), promotes enhanced CaV1.2–CaV1.2 physical interactions. Super‐resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV1.2 ‘super‐clusters’ along the z‐lines of ISO‐stimulated cardiomyocytes. The mechanism that leads to super‐cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co‐operative gating behaviour of CaV1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of βAR‐mediated regulation of CaV1.2 channels in the heart and support the novel concept that a pre‐synthesized pool of sub‐sarcolemmal CaV1.2 channel‐containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation–contraction coupling to meet metabolic and/or haemodynamic demands. Prevailing dogma holds that activation of the β‐adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L‐type CaV1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV1.2 channel clusters decorate T‐tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+‐dependent co‐operative gating behaviour mediated by physical interactions between adjacent channel C‐terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A‐dependent augmentation of CaV1.2 channel abundance along cardiomyocyte T‐tubules, resulting in the appearance of channel ‘super‐clusters’, and enhanced channel co‐operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub‐sarcolemmal pool of pre‐synthesized CaV1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation–contraction coupling.
Collapse
Affiliation(s)
- Danica W Ito
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Karen I Hannigan
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Silvia G Del Villar
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Eamonn J Dickson
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
15
|
Niu J, Yang W, Yue DT, Inoue T, Ben-Johny M. Duplex signaling by CaM and Stac3 enhances Ca V1.1 function and provides insights into congenital myopathy. J Gen Physiol 2018; 150:1145-1161. [PMID: 29950399 PMCID: PMC6080896 DOI: 10.1085/jgp.201812005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
CaV1.1 is essential for skeletal muscle excitation-contraction coupling. Its functional expression is tuned by numerous regulatory proteins, yet underlying modulatory mechanisms remain ambiguous as CaV1.1 fails to function in heterologous systems. In this study, by dissecting channel trafficking versus gating, we evaluated the requirements for functional CaV1.1 in heterologous systems. Although coexpression of the auxiliary β subunit is sufficient for surface-membrane localization, this baseline trafficking is weak, and channels elicit a diminished open probability. The regulatory proteins calmodulin and stac3 independently enhance channel trafficking and gating via their interaction with the CaV1.1 carboxy terminus. Myopathic stac3 mutations weaken channel binding and diminish trafficking. Our findings demonstrate that multiple regulatory proteins orchestrate CaV1.1 function via duplex mechanisms. Our work also furnishes insights into the pathophysiology of stac3-associated congenital myopathy and reveals novel avenues for pharmacological intervention.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Wanjun Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | | | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY
| |
Collapse
|
16
|
Ghosh D, Nieves-Cintrón M, Tajada S, Brust-Mascher I, Horne MC, Hell JW, Dixon RE, Santana LF, Navedo MF. Dynamic L-type Ca V1.2 channel trafficking facilitates Ca V1.2 clustering and cooperative gating. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1341-1355. [PMID: 29959960 PMCID: PMC6407617 DOI: 10.1016/j.bbamcr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.
Collapse
Affiliation(s)
- Debapriya Ghosh
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Sendoa Tajada
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Ingrid Brust-Mascher
- Advanced Imaging Facility, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Mary C Horne
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Luis F Santana
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 09/29/2023] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|