1
|
Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Forster P, Khurram N, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Intranasal soluble ACE2 improves survival and prevents brain SARS-CoV-2 infection. Life Sci Alliance 2023; 6:e202301969. [PMID: 37041017 PMCID: PMC10098141 DOI: 10.26508/lsa.202301969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Forster
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Tavakoli S, Firoozpour L, Davoodi J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochem Biophys Res Commun 2023; 655:138-144. [PMID: 36934589 DOI: 10.1016/j.bbrc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.
Collapse
Affiliation(s)
- Somayeh Tavakoli
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran.
| |
Collapse
|
3
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
4
|
Hassler L, Wysocki J, Gelarden I, Sharma I, Tomatsidou A, Ye M, Gula H, Nicoleascu V, Randall G, Pshenychnyi S, Khurram N, Kanwar Y, Missiakas D, Henkin J, Yeldandi A, Batlle D. A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. J Am Soc Nephrol 2022; 33:1293-1307. [PMID: 35236774 PMCID: PMC9257820 DOI: 10.1681/asn.2021091209] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Isha Sharma
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Anastasia Tomatsidou
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Haley Gula
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Vlad Nicoleascu
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Sergii Pshenychnyi
- Recombinant Protein Production Core, Northwestern University, Evanston, Illinois
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yashpal Kanwar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Dominique Missiakas
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
5
|
Yao S, Moyer A, Zheng Y, Shen Y, Meng X, Yuan C, Zhao Y, Yao H, Baker D, Wu C. De novo design and directed folding of disulfide-bridged peptide heterodimers. Nat Commun 2022; 13:1539. [PMID: 35318337 PMCID: PMC8941120 DOI: 10.1038/s41467-022-29210-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Peptide heterodimers are prevalent in nature, which are not only functional macromolecules but molecular tools for chemical and synthetic biology. Computational methods have also been developed to design heterodimers of advanced functions. However, these peptide heterodimers are usually formed through noncovalent interactions, which are prone to dissociate and subject to concentration-dependent nonspecific aggregation. Heterodimers crosslinked with interchain disulfide bonds are more stable, but it represents a formidable challenge for both the computational design of heterodimers and the manipulation of disulfide pairing for heterodimer synthesis and applications. Here, we report the design, synthesis and application of interchain disulfide-bridged peptide heterodimers with mutual orthogonality by combining computational de novo designs with a directed disulfide pairing strategy. These heterodimers can be used as not only scaffolds for generating functional molecules but chemical tools or building blocks for protein labeling and construction of crosslinking hybrids. This study thus opens the door for using this unexplored dimeric structure space for many biological applications.
Collapse
Affiliation(s)
- Sicong Yao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China
| | - Adam Moyer
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Yiwu Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China
| | - Yang Shen
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China
| | - Chong Yuan
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P.R. China.
| |
Collapse
|
6
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
7
|
Hassler L, Wysocki J, Gelarden I, Tomatsidou A, Gula H, Nicoleascu V, Randall G, Henkin J, Yeldandi A, Batlle D. A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33758841 DOI: 10.1101/2021.03.12.435191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2), which is membrane bound, as its initial cell contact receptor preceding viral entry. Here we report a human soluble ACE2 variant fused with a 5kD albumin binding domain (ABD) and bridged via a dimerization motif hinge-like 4-cysteine dodecapeptide, which we term ACE2 1-618-DDC-ABD. This protein is enzymatically active, has increased duration of action in vivo conferred by the ABD-tag, and displays 20-30-fold higher binding affinity to the SARS-CoV-2 receptor binding domain than its des-DDC monomeric form (ACE2 1-618-ABD) due to DDC-linked dimerization. ACE2 1-618-DDC-ABD was administered for 3 consecutive days to transgenic k18-hACE2 mice, a model that develops lethal SARS-CoV-2 infection, to evaluate the preclinical preventative/ therapeutic value for COVID-19. Mice treated with ACE2 1-618-DDC-ABD developed a mild to moderate disease for the first few days assessed by a clinical score and modest weight loss. The untreated control animals, by contrast, became severely ill and had to be sacrificed by day 6/7 and lung histology revealed extensive pulmonary alveolar hemorrhage and mononuclear infiltrates. At 6 days, mortality was totally prevented in the treated group, lung histopathology was improved and viral titers markedly reduced. This demonstrates for the first time in vivo the preventative/ therapeutic potential of a novel soluble ACE2 protein in a preclinical animal model.
Collapse
|
8
|
Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Horx P, Geyer A. Defining the mobility range of a hinge-type connection using molecular dynamics and metadynamics. PLoS One 2020; 15:e0230962. [PMID: 32282813 PMCID: PMC7153902 DOI: 10.1371/journal.pone.0230962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
A designed disulfide-rich β-hairpin peptide that dimerizes spontaneously served as a hinge-type connection between proteins. Here, we analyze the range of dynamics of this hinge dimer with the aim of proposing new applications for the DNA-encodable peptide and establishing guidelines for the computational analysis of other disulfide hinges. A recent structural analysis based on nuclear magnetic resonance spectroscopy and ion mobility spectrometry revealed an averaged conformation in the hinge region which motivated us to investigate the dynamic behavior using a combination of molecular dynamics simulation, metadynamics and free energy surface analysis to characterize the conformational space available to the hinge. Principal component analysis uncovered two slow modes of the peptide, namely, the opening and closing motion and twisting of the two β-hairpins assembling the hinge. Applying a collective variable (CV) that mimics the first dominating mode, led to a major expansion of the conformational space. The description of the dynamics could be achieved by analysis of the opening angle and the twisting of the β-hairpins and, thus, offers a methodology that can also be transferred to other derivatives. It has been demonstrated that the hinge peptide’s lowest energy conformation consists of a large opening angle and strong twist but is separated by small energy barriers and can, thus, adopt a closed and untwisted structure. With the aim of proposing further applications for the hinge peptide, we simulated its behavior in the sterically congested environment of a four-helix bundle. Preliminary investigations show that one helix is pushed out and a three-helix bundle forms. The insights gained into the dynamics of the tetra-disulfide peptide and analytical guidelines developed in this study may contribute to the understanding of the structure and function of more complex hinge-type proteins, such as the IgG antibody family.
Collapse
Affiliation(s)
- Philip Horx
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Horx P, Geyer A. Comparing the Hinge-Type Mobility of Natural and Designed Intermolecular Bi-disulfide Domains. Front Chem 2020; 8:25. [PMID: 32047741 PMCID: PMC6997481 DOI: 10.3389/fchem.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023] Open
Abstract
A pair of intermolecular disulfide bonds connecting two protein domains restricts their relative mobility in a systematic way. The bi-disulfide hinge cannot rotate like a single intermolecular disulfide bond yet is less restrained than three or more intermolecular disulfides which restrict the relative motion to a minimum. The intermediate mobility of bi-disulfide linked domains is characterized by their dominating opening and closing modes comparable to the mechanics of a door hinge on the macroscopic scale. Here we compare the central hinge region of Immunoglobulin G1 (IgG1) which is highly conserved among different species, with a recently designed hinge-type motif CHWECRGCRLVC from our lab, that was successfully used for the dimerization of the IgG1/κ-ab CL4 monocolonal antibody (mab). The minimal length of these synthetic hinges comprises only 12 amino acids, rendering them ideal models for computational studies. Well-tempered metadynamics was performed to adequately describe the available conformational space defined by the different hinges. In spite of the differences in amino acid composition and ring sizes, there are characteristic similarities of designed and natural hinges like the dependent mobility of the individual strands of each hinge domain.
Collapse
Affiliation(s)
- Philip Horx
- Faculty of Organic Chemistry, Philipps-University, Marburg, Germany
| | - Armin Geyer
- Faculty of Organic Chemistry, Philipps-University, Marburg, Germany
| |
Collapse
|
11
|
Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09890-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of Milk-Derived Antibacterial Peptides in Modern Food Biotechnology: Their Synthesis, Applications and Future Perspectives. Biomolecules 2018; 8:biom8040110. [PMID: 30301185 PMCID: PMC6316258 DOI: 10.3390/biom8040110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Milk-derived antibacterial peptides (ABPs) are protein fragments with a positive influence on the functions and conditions of a living organism. Milk-derived ABPs have several useful properties important for human health, comprising a significant antibacterial effect against various pathogens, but contain toxic side-effects. These compounds are mainly produced from milk proteins via fermentation and protein hydrolysis. However, they can also be produced using recombinant DNA techniques or organic synthesis. This review describes the role of milk-derived ABPs in modern food biotechnology with an emphasis on their synthesis and applications. Additionally, we also discuss the mechanisms of action and the main bioproperties of ABPs. Finally, we explore future perspectives for improving ABP physicochemical properties and diminishing their toxic side-effects.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, 99354 WA, USA.
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Maryam Pirzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, 73451-173 Sarvestan, Iran.
| | - Carola Yvette Förster
- Department of Anesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Sergey Shityakov
- Department of Anesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel state University Named After I.S. Turgenev, 302026 Orel, Russia.
| |
Collapse
|