1
|
Ibrahim HS, Guo M, Hilscher S, Erdmann F, Schmidt M, Schutkowski M, Sheng C, Sippl W. Probing class I histone deacetylases (HDAC) with proteolysis targeting chimera (PROTAC) for the development of highly potent and selective degraders. Bioorg Chem 2024; 153:107887. [PMID: 39423771 DOI: 10.1016/j.bioorg.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Class I HDACs are considered promising targets for cancer due to their role in epigenetic modifications. The main challenges in developing a new, potent and non-toxic class I HDAC inhibitor are selectivity and appropriate pharmacokinetics. The PROTAC technique (Proteolysis Targeting Chimera) is a new method in drug development for the production of active substances that can degrade a protein of interest (POI) instead of inhibiting it. This technique will open the era to produce selective and potent drugs with a high margin of safety. Previously, we reported different inhibitors targeting class I HDACs functionalized with aminobenzamide or hydroxamate groups. In the current research work, we will employ PROTAC technique to develop class I HDAC degraders based on our previously reported inhibitors. We synthesized two series of aminobenzamide-based PROTACs and hydroxamate-based PROTACs and tested them in vitro against class I HDACs. To ensure their degradation, all of them were screened against HDAC2 as representative example of class I. The best candidates were evaluated at different concentrations at various HDAC subtypes. This resulted in the PROTAC (32a) (HI31.1) that degrades HDAC8 with a DC50 of 8.9 nM with a proper margin of selectivity against other isozymes. Moreover, PROTAC 32a is able to degrade HDAC6 with DC50 = 14.3 nM. Apoptotic study on leukemic cells (MV-4-11) displayed more than 50 % apoptosis took place at 100 nM. PROTAC 32a (HI31.1) showed a good margin of safety against normal cell line and proper chemical stability.
Collapse
Affiliation(s)
- Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Menglu Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Sebatian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Baselious F, Hilscher S, Hagemann S, Tripathee S, Robaa D, Barinka C, Hüttelmaier S, Schutkowski M, Sippl W. Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity. Arch Pharm (Weinheim) 2024; 357:e2400486. [PMID: 38996352 DOI: 10.1002/ardp.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sunita Tripathee
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Fischer MA, Mustafa AHM, Hausmann K, Ashry R, Kansy AG, Liebl MC, Brachetti C, Piée-Staffa A, Zessin M, Ibrahim HS, Hofmann TG, Schutkowski M, Sippl W, Krämer OH. Novel hydroxamic acid derivative induces apoptosis and constrains autophagy in leukemic cells. J Adv Res 2024; 60:201-214. [PMID: 37467961 PMCID: PMC11156613 DOI: 10.1016/j.jare.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.
Collapse
Affiliation(s)
- Marten A Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Ramy Ashry
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Egypt.
| | - Anita G Kansy
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Magdalena C Liebl
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | | | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt.
| | - Thomas G Hofmann
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Cheshmazar N, Hamzeh-Mivehroud M, Hemmati S, Abolhasani H, Heidari F, Charoudeh HN, Zessin M, Schutkowski M, Sippl W, Dastmalchi S. Key structural requirements of benzamide derivatives for histone deacetylase inhibition: design, synthesis and biological evaluation. Future Med Chem 2024; 16:859-872. [PMID: 38623995 PMCID: PMC11188831 DOI: 10.4155/fmc-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Background: Histone deacetylase inhibitors (HDACIs) are important as anticancer agents. Objective: This study aimed to investigate some key structural features of HDACIs via the design, synthesis and biological evaluation of novel benzamide-based derivatives. Methods: Novel structures, designed using a molecular modification approach, were synthesized and biologically evaluated. Results: The results indicated that a subset of molecules with CH3/NH2 at R2 position possess selective antiproliferative activity. However, only those with an NH2 group showed HDACI activity. Importantly, the shorter the molecule length, the stronger HDACI. Among all, 7j was the most potent HDAC1-3 inhibitor and antiproliferative compound. Conclusion: The results of the present investigation could provide valuable structural knowledge applicable for the development of the HDACIs and benzamide-based antiproliferative agents in the future.
Collapse
Affiliation(s)
- Narges Cheshmazar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Salar Hemmati
- Drug applied research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Hoda Abolhasani
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Heidari
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138, Nicosia, North Cyprus, Mersin, 10, Turkey
| |
Collapse
|
5
|
Moreno-Yruela C, Fierz B. Revealing chromatin-specific functions of histone deacylases. Biochem Soc Trans 2024; 52:353-365. [PMID: 38189424 DOI: 10.1042/bst20230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Histone deacylases are erasers of Nε-acyl-lysine post-translational modifications and have been targeted for decades for the treatment of cancer, neurodegeneration and other disorders. Due to their relatively promiscuous activity on peptide substrates in vitro, it has been challenging to determine the individual targets and substrate identification mechanisms of each isozyme, and they have been considered redundant regulators. In recent years, biochemical and biophysical studies have incorporated the use of reconstituted nucleosomes, which has revealed a diverse and complex arsenal of recognition mechanisms by which histone deacylases may differentiate themselves in vivo. In this review, we first present the peptide-based tools that have helped characterize histone deacylases in vitro to date, and we discuss the new insights that nucleosome tools are providing into their recognition of histone substrates within chromatin. Then, we summarize the powerful semi-synthetic approaches that are moving forward the study of chromatin-associated factors, both in vitro by detailed single-molecule mechanistic studies, and in cells by live chromatin modification. We finally offer our perspective on how these new techniques would advance the study of histone deacylases. We envision that such studies will help elucidate the role of individual isozymes in disease and provide a platform for the development of the next generation of therapeutics.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Drug Design and Pharmacology (ILF), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Abdelsalam M, Zmyslia M, Schmidtkunz K, Vecchio A, Hilscher S, Ibrahim HS, Schutkowski M, Jung M, Jessen-Trefzer C, Sippl W. Design and synthesis of bioreductive prodrugs of class I histone deacetylase inhibitors and their biological evaluation in virally transfected acute myeloid leukemia cells. Arch Pharm (Weinheim) 2024; 357:e2300536. [PMID: 37932028 DOI: 10.1002/ardp.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.
Collapse
Affiliation(s)
- Mohamed Abdelsalam
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg, Freiburg i. Br., Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg i. Br., Germany
| | - Anita Vecchio
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Sebastian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle/Saale, Germany
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg i. Br., Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg i. Br., Germany
| | | | - Wolfgang Sippl
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
7
|
Baselious F, Hilscher S, Robaa D, Barinka C, Schutkowski M, Sippl W. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. Int J Mol Sci 2024; 25:1358. [PMID: 38279359 PMCID: PMC10816272 DOI: 10.3390/ijms25021358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic;
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| |
Collapse
|
8
|
Tavares MT, Krüger A, Yan SLR, Waitman KB, Gomes VM, de Oliveira DS, Paz F, Hilscher S, Schutkowski M, Sippl W, Ruiz C, Toledo MFZJ, Hassimotto NMA, Machado-Neto JA, Poso A, Cameron MD, Bannister TD, Palmisano G, Wrenger C, Kronenberger T, Parise-Filho R. 1,3-Diphenylureido hydroxamate as a promising scaffold for generation of potent antimalarial histone deacetylase inhibitors. Sci Rep 2023; 13:21006. [PMID: 38030668 PMCID: PMC10687260 DOI: 10.1038/s41598-023-47959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.
Collapse
Affiliation(s)
- Maurício T Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sun L Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Karoline B Waitman
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Daffiny Sumam de Oliveira
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Franciarli Paz
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sebastian Hilscher
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Mike Schutkowski
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Wolfgang Sippl
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Claudia Ruiz
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Mônica F Z J Toledo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Michael D Cameron
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil.
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Zessin M, Meleshin M, Hilscher S, Schiene-Fischer C, Barinka C, Jung M, Schutkowski M. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int J Mol Sci 2023; 24:ijms24087416. [PMID: 37108579 PMCID: PMC10138348 DOI: 10.3390/ijms24087416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
11
|
Klimešová K, Petržílková H, Bařinka C, Staněk D. SART3 associates with a post-splicing complex. J Cell Sci 2023; 136:jcs260380. [PMID: 36620952 DOI: 10.1242/jcs.260380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
Collapse
MESH Headings
- RNA Splicing/genetics
- Spliceosomes/genetics
- Spliceosomes/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Klára Klimešová
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hana Petržílková
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Zessin M, Meleshin M, Sippl W, Schutkowski M. Continuous Histone Deacylase Activity Assays. Methods Mol Biol 2023; 2589:411-428. [PMID: 36255640 DOI: 10.1007/978-1-0716-2788-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein lysine acylation represents one of the most common post-translational modifications. Obviously, highly reactive metabolic intermediates, like thioesters and mixed anhydrides between phosphoric acid and organic acids, modify lysine residues spontaneously. Additionally, enzymes using acyl-CoAs as co-substrates transfer the acyl residue specifically to defined sequences within proteins. The counteracting enzymes are called histone deacetylases (HDACs), releasing the free lysine side chain. Such enzymatic activities are involved in different cellular processes like tumor progression, immune response, regulation of metabolism, and aging. Modulators of such enzymatic activities represent valuable tools in drug discovery. Therefore, direct and continuous assays to monitor enzymatic activity of HDACs are needed. Here we describe different assay formats allowing both monitoring of Zn2+-dependent HDACs via UV-Vis-spectroscopy and NAD+-dependent HDACs (sirtuins) by fluorescence-based assay formats. Additionally, we describe methods enabling efficient screening of HDAC-inhibitors via fluorescence displacement assays.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany.
| |
Collapse
|
13
|
Sun P, Wang J, Khan KS, Yang W, Ng BWL, Ilment N, Zessin M, Bülbül EF, Robaa D, Erdmann F, Schmidt M, Romier C, Schutkowski M, Cheng ASL, Sippl W. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J Med Chem 2022; 65:16313-16337. [PMID: 36449385 DOI: 10.1021/acs.jmedchem.2c01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Histone deacetylases (HDACs) are epigenetic regulators and additionally control the activity of non-histone substrates. We recently demonstrated that inhibition of HDAC8 overexpressed in various of cancers reduces hepatocellular carcinoma tumorigenicity in a T cell-dependent manner. Here, we present alkylated hydrazide-based class I HDAC inhibitors in which the n-hexyl side chain attached to the hydrazide moiety shows HDAC8 selectivity in vitro. Analysis of the mode of inhibition of the most promising compound 7d against HDAC8 revealed a substrate-competitive binding mode. 7d marked induced acetylation of the HDAC8 substrates H3K27 and SMC3 but not tubulin in CD4+ T lymphocytes, and significantly upregulated gene expressions for memory and effector functions. Furthermore, intraperitoneal injection of 7d (10 mg/kg) in C57BL/6 mice increased interleukin-2 expression in CD4+ T cells and CD8+ T cell proportion with no apparent toxicity. This study expands a novel chemotype of HDAC8 inhibitors with T cell modulatory properties for future therapeutic applications.
Collapse
Affiliation(s)
- Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China
| | - Khadija S Khan
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China.,School of Pharmacy, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China
| | - Billy Wai-Lung Ng
- School of Pharmacy, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China
| | - Nikita Ilment
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Emre F Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077 Hong Kong SAR, China
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
14
|
N4-(2-Amino-4-fluorophenyl)-N1-(3-{2-[2-(3-{[2-(2,6-dioxo-3-piperidyl)-1,3-dioxoisoindolin-4-yl]amino}propoxy)ethoxy]ethoxy}propyl)terephthalamide. MOLBANK 2022. [DOI: 10.3390/m1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The design of proteolysis targeting chimeras (PROTACs) has become a promising technology for modifying a protein of interest (POI) through protein degradation. Herein, we describe the synthetic pathway to develop N4-(2-amino-4-fluorophenyl)-N1-(3-{2-[2-(3-{[2-(2,6-dioxo-3-piperidyl)-1,3-dioxoisoindolin-4-yl]amino}propoxy)ethoxy]ethoxy}propyl)terephthalamide, which was designed to work as a selective degrader of histone deacetylase-3 (HDAC3). The newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR and HRMS. The title compound was tested in vitro against human class-I HDACs isoforms and showed IC50 = 3.4 µM against HDAC3; however, it did not show degradation for the targeted HDACs.
Collapse
|
15
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
16
|
Zessin M, Meleshin M, Praetorius L, Sippl W, Bařinka C, Schutkowski M. Uncovering Robust Delactoylase and Depyruvoylase Activities of HDAC Isoforms. ACS Chem Biol 2022; 17:1364-1375. [PMID: 35639992 DOI: 10.1021/acschembio.1c00863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) and sirtuins (SIRT) represent two different classes of enzymes which are responsible for deacylation of modified lysine side chains. The repertoire of acyl residues on lysine side chains identified in vivo is rapidly growing, and very recently lysine lactoylation was described to be involved in metabolic reprogramming. Additionally, lysine pyruvoylation represents a marker for aging and liver cirrhosis. Here, we report a systematic analysis of acyl-specificity of human zinc-dependent HDAC and sirtuin isoforms. We identified HDAC3 as a robust delactoylase with several-thousand-fold higher activity as compared to SIRT2, which was claimed to be the major in vivo delactoylase. Additionally, we systematically searched for enzymes, capable of removing pyruvoyl residues from lysine side chains. Using model peptides, we uncovered high depyruvoylase activity for HDAC6 and HDAC8. Interestingly, such substrates have extremely low KM values for both HDAC isoforms, pointing to possible in vivo functions.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Lucas Praetorius
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| |
Collapse
|
17
|
Cheshmazar N, Hemmati S, Hamzeh-Mivehroud M, Sokouti B, Zessin M, Schutkowski M, Sippl W, Nozad Charoudeh H, Dastmalchi S. Development of New Inhibitors of HDAC1-3 Enzymes Aided by In Silico Design Strategies. J Chem Inf Model 2022; 62:2387-2397. [PMID: 35467871 DOI: 10.1021/acs.jcim.1c01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Histone deacetylases (HDACs) are overexpressed in cancer, and their inhibition shows promising results in cancer therapy. In particular, selective class I HDAC inhibitors such as entinostat are proposed to be more beneficial in breast cancer treatment. Computational drug design is an inevitable part of today's drug discovery projects because of its unequivocal role in saving time and cost. Using three HDAC inhibitors trichostatin, vorinostat, and entinostat as template structures and a diverse fragment library, all synthetically accessible compounds thereof (∼3200) were generated virtually and filtered based on similarity against the templates and PAINS removal. The 298 selected structures were docked into the active site of HDAC I and ranked using a calculated binding affinity. Top-ranking structures were inspected manually, and, considering the ease of synthesis and drug-likeness, two new structures (3a and 3b) were proposed for synthesis and biological evaluation. The synthesized compounds were purified to a degree of more than 95% and structurally verified using various methods. The designed compounds 3a and 3b showed 65-80 and 5% inhibition on HDAC 1, 2, and 3 isoforms at a concentration of 10 μM, respectively. The novel compound 3a may be used as a lead structure for designing new HDAC inhibitors.
Collapse
Affiliation(s)
- Narges Cheshmazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Mike Schutkowski
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | | | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran.,Faculty of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
18
|
Kutil Z, Meleshin M, Baranova P, Havlinova B, Schutkowski M, Barinka C. Characterization of the class IIa histone deacetylases substrate specificity. FASEB J 2022; 36:e22287. [PMID: 35349187 DOI: 10.1096/fj.202101663r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
Class IIa histone deacetylases (HDACs) play critical roles in vertebrate development and physiology, yet direct evidence of their intrinsic deacetylase activity and on substrate specificity regarding the peptide sequence is still missing. In this study, we designed and synthesized a combinatorial peptide library allowing us to profile class IIa HDACs sequence specificity at positions +3 through -3 from the central lysine modified by the well-accepted trifluoroacetyl function. Our data revealed a strong preference for bulky aromatic acids directly flanking the central trifluoroacetyllysine, while all class IIa HDACs disfavor positively charged residues and proline at the +1/-1 positions. The chemical nature of amino acid residues N-terminally to the central trifluoroacetyllysine has a more profound effect on substrate recognition as compared to residues located C-terminally. These findings were validated by designing selected favored and disfavored peptide sequences, with the favored ones are accepted with catalytic efficacy of 75 000 and 525 000 M-1 s-1 for HDAC7 and HDAC5, respectively. Results reported here could help in developing class IIa HDACs inhibitors and also in the search for new natural class IIa HDACs substrates.
Collapse
Affiliation(s)
- Zsofia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Petra Baranova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
19
|
Ibrahim HS, Abdelsalam M, Zeyn Y, Zessin M, Mustafa AHM, Fischer MA, Zeyen P, Sun P, Bülbül EF, Vecchio A, Erdmann F, Schmidt M, Robaa D, Barinka C, Romier C, Schutkowski M, Krämer OH, Sippl W. Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. Int J Mol Sci 2021; 23:ijms23010369. [PMID: 35008795 PMCID: PMC8745332 DOI: 10.3390/ijms23010369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.
Collapse
Affiliation(s)
- Hany S. Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Al-Hassan M. Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Marten A. Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Patrik Zeyen
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Emre F. Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Anita Vecchio
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic;
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Université de Strasbourg, CEDEX, 67404 Illkirch, France;
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Correspondence: (O.H.K.); (W.S.)
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Correspondence: (O.H.K.); (W.S.)
| |
Collapse
|
20
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
21
|
Padilla-Coley S, Rudebeck EE, Smith BD, Pfeffer FM. Intracellular fluorescence competition assay for inhibitor engagement of histone deacetylase. Bioorg Med Chem Lett 2021; 47:128207. [PMID: 34146703 DOI: 10.1016/j.bmcl.2021.128207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
An intracellular fluorescence competition assay was developed to assess the capability of inhibitor candidates to engage histone deacetylase (HDAC) inside living cells and thus diminish cell uptake and staining by the HDAC-targeted fluorescent probe APS. Fluorescence cell microscopy and flow cytometry showed that pre-incubation of living cells with candidate inhibitors led to diminished cell uptake of the fluorescent probe. The assay was effective because the fluorescent probe (APS) possessed the required performance properties, including bright fluorescence, ready membrane diffusion, selective intracellular HDAC affinity, and negligible acute cytotoxicity. The concept of an intracellular fluorescence competition assay is generalizable and has broad applicability since it obviates the requirement to use the isolated biomacromolecule target for screening of molecular candidates with target affinity.
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
22
|
Troelsen KS, Bæk M, Nielsen AL, Madsen AS, Rajabi N, Olsen CA. Mitochondria-targeted inhibitors of the human SIRT3 lysine deacetylase. RSC Chem Biol 2021; 2:627-635. [PMID: 34458804 PMCID: PMC8341665 DOI: 10.1039/d0cb00216j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/24/2021] [Indexed: 11/21/2022] Open
Abstract
Sirtuin 3 (SIRT3) is the major protein lysine deacetylase in the mitochondria. This hydrolase regulates a wide range of metabolically involved enzymes and has been considered as a potential drug target in certain cancers. Investigation of pharmacological intervention has been challenging due to a lack of potent and selective inhibitors of SIRT3. Here, we developed a strategy for selective inhibition of SIRT3 in cells, over its structurally similar isozymes that localize primarily to the nucleus (SIRT1) and the cytosol (SIRT2). This was achieved by directing the inhibitors to the mitochondria through incorporation of mitochondria-targeting peptide sequences into the inhibitor structures. Our inhibitors exhibited excellent mitochondrial localization in HeLa cells as indicated by fluorophore-conjugated versions, and target engagement was demonstrated by a cellular thermal shift assay of SIRT3 using western blotting. The acetylation state of documented SIRT3 target MnSOD was shown to be increased in cells with little effect on known targets of SIRT1 and SIRT2, showing that our lead compound exhibits selectivity for SIRT3 in cells. We expect that the developed inhibitor will now enable a more detailed investigation of SIRT3 as a potential drug target and help shed further light on the diverse biology regulated by this enzyme.
Collapse
Affiliation(s)
- Kathrin S Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
23
|
Melesina J, Simoben CV, Praetorius L, Bülbül EF, Robaa D, Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021; 16:1336-1359. [PMID: 33428327 DOI: 10.1002/cmdc.202000934] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/15/2022]
Abstract
This review classifies drug-design strategies successfully implemented in the development of histone deacetylase (HDAC) inhibitors, which have many applications including cancer treatment. Our focus is on especially demanded selective HDAC inhibitors and their structure-activity relationships in relation to corresponding protein structures. The main part of the paper is divided into six subsections each narrating how optimization of one of six structural features can influence inhibitor selectivity. It starts with the impact of the zinc binding group on selectivity, continues with the optimization of the linker placed in the substrate binding tunnel as well as the adjustment of the cap group interacting with the surface of the protein, and ends with the addition of groups targeting class-specific sub-pockets: the side-pocket-, lower-pocket- and foot-pocket-targeting groups. The review is rounded off with a conclusion and an outlook on the future of HDAC inhibitor design.
Collapse
Affiliation(s)
- Jelena Melesina
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Conrad V Simoben
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Lucas Praetorius
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Emre F Bülbül
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| |
Collapse
|
24
|
Moreno-Yruela C, Bæk M, Vrsanova AE, Schulte C, Maric HM, Olsen CA. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat Commun 2021; 12:62. [PMID: 33397936 PMCID: PMC7782793 DOI: 10.1038/s41467-020-20250-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Histones control gene expression by regulating chromatin structure and function. The posttranslational modifications (PTMs) on the side chains of histones form the epigenetic landscape, which is tightly controlled by epigenetic modulator enzymes and further recognized by so-called reader domains. Histone microarrays have been widely applied to investigate histone-reader interactions, but not the transient interactions of Zn2+-dependent histone deacetylase (HDAC) eraser enzymes. Here, we synthesize hydroxamic acid-modified histone peptides and use them in femtomolar microarrays for the direct capture and detection of the four class I HDAC isozymes. Follow-up functional assays in solution provide insights into their suitability to discover HDAC substrates and inhibitors with nanomolar potency and activity in cellular assays. We conclude that similar hydroxamic acid-modified histone peptide microarrays and libraries could find broad application to identify class I HDAC isozyme-specific substrates and facilitate the development of isozyme-selective HDAC inhibitors and probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Adela-Eugenie Vrsanova
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Institute of Applied Biosciences & Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, D-76131, Karlsruhe, Germany.,Division of Proteomics of Stem Cells and Cancer, DKFZ German Cancer Research Center, Im Neuenhemier Feld 581, D-69120, Heidelberg, Germany
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany.
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
25
|
Rajabi N, Nielsen AL, Olsen CA. Dethioacylation by Sirtuins 1-3: Considerations for Drug Design Using Mechanism-Based Sirtuin Inhibition. ACS Med Chem Lett 2020; 11:1886-1892. [PMID: 33062169 DOI: 10.1021/acsmedchemlett.9b00580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of an unprecedented degree of cleavage of short-chain ε-N-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to monoalkylated thiourea-based chemotypes as being more stable in human serum.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alexander L. Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|