1
|
Ma B, Lee YH, Ruszczycky MW, Ren D, Engstrom A, Liu HW, Tao L. EPR Characterization of the BlsE Substrate Radical Offers Insight into the Determinants of Reaction Outcome that Distinguish Radical SAM Dioldehydratases from Dehydrogenases. J Am Chem Soc 2025; 147:4111-4119. [PMID: 39862188 DOI: 10.1021/jacs.4c13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
A small but growing set of radical SAM (S-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway. The substrate radical is found to have a dihedral angle between the electron spin carrier p-orbital and the C-O bond to be cleaved that appears to be sufficient to support elimination despite lying outside the strictly periplanar region. A more significant contributor to the gating of dehydration activity, however, appears to be establishment of a proper hydrogen bonding configuration in order to stabilize the accumulation of negative charge on the eliminated hydroxyl group.
Collapse
Affiliation(s)
- Baixu Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Hsuan Lee
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daan Ren
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Amelia Engstrom
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Li Y, Yu T, Feng X, Zhao B, Chen H, Yang H, Chen X, Zhang XH, Anderson HR, Burns NZ, Zeng F, Tao L, Zeng Z. Biosynthesis of GMGT lipids by a radical SAM enzyme associated with anaerobic archaea and oxygen-deficient environments. Nat Commun 2024; 15:5256. [PMID: 38898040 PMCID: PMC11186832 DOI: 10.1038/s41467-024-49650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.
Collapse
Affiliation(s)
- Yanan Li
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ting Yu
- Department of Systems Biology and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bo Zhao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huahui Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, USA
| | - Fuxing Zeng
- Department of Systems Biology and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Cheek LE, Zhu W. Structural features and substrate engagement in peptide-modifying radical SAM enzymes. Arch Biochem Biophys 2024; 756:110012. [PMID: 38663796 DOI: 10.1016/j.abb.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.
Collapse
Affiliation(s)
- Lilly E Cheek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Ma B, Britt RD, Tao L. Radical SAM Enzyme PylB Generates a Lysyl Radical Intermediate in the Biosynthesis of Pyrrolysine by Using SAM as a Cofactor. J Am Chem Soc 2024; 146:6544-6556. [PMID: 38426740 DOI: 10.1021/jacs.3c11266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyrrolysine, the 22nd amino acid encoded by the natural genetic code, is essential for methanogenic archaea to catabolize methylamines into methane. The structure of pyrrolysine consists of a methylated pyrroline carboxylate that is linked to the ε-amino group of the l-lysine via an amide bond. The biosynthesis of pyrrolysine requires three enzymes: PylB, PylC, and PylD. PylB is a radical S-adenosyl-l-methionine (SAM) enzyme and catalyzes the first biosynthetic step, the isomerization of l-lysine into methylornithine. PylC catalyzes an ATP-dependent ligation of methylornithine and a second l-lysine to form l-lysine-Nε-methylornithine. The last biosynthetic step is catalyzed by PylD via oxidation of the PylC product to form pyrrolysine. While enzymatic reactions of PylC and PylD have been well characterized by X-ray crystallography and in vitro studies, mechanistic understanding of PylB is still relatively limited. Here, we report the first in vitro activity of PylB to form methylornithine via the isomerization of l-lysine. We also identify a lysyl C4 radical intermediate that is trapped, with its electronic structure and geometric structure well characterized by EPR and ENDOR spectroscopy. In addition, we demonstrate that SAM functions as a catalytic cofactor in PylB catalysis rather than canonically as a cosubstrate. This work provides detailed mechanistic evidence for elucidating the carbon backbone rearrangement reaction catalyzed by PylB during the biosynthesis of pyrrolysine.
Collapse
Affiliation(s)
- Baixu Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Kubiak X, Polsinelli I, Chavas LMG, Fyfe CD, Guillot A, Fradale L, Brewee C, Grimaldi S, Gerbaud G, Thureau A, Legrand P, Berteau O, Benjdia A. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme. Nat Chem Biol 2024; 20:382-391. [PMID: 38158457 DOI: 10.1038/s41589-023-01493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.
Collapse
Affiliation(s)
- Xavier Kubiak
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Ivan Polsinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | - Cameron D Fyfe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Laura Fradale
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Clémence Brewee
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | | | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| |
Collapse
|
6
|
Zhu W, Iavarone AT, Klinman JP. Hydrogen-Deuterium Exchange Mass Spectrometry Identifies Local and Long-Distance Interactions within the Multicomponent Radical SAM Enzyme, PqqE. ACS CENTRAL SCIENCE 2024; 10:251-263. [PMID: 38435514 PMCID: PMC10906245 DOI: 10.1021/acscentsci.3c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
Interactions among proteins and peptides are essential for many biological activities including the tailoring of peptide substrates to produce natural products. The first step in the production of the bacterial redox cofactor pyrroloquinoline quinone (PQQ) from its peptide precursor is catalyzed by a radical SAM (rSAM) enzyme, PqqE. We describe the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the structure and conformational dynamics in the protein-protein and protein-peptide complexes necessary for PqqE function. HDX-MS-identified hotspots can be discerned in binary and ternary complex structures composed of the peptide PqqA, the peptide-binding chaperone PqqD, and PqqE. Structural conclusions are supported by size-exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS). HDX-MS further identifies reciprocal changes upon the binding of substrate peptide and S-adenosylmethionine (SAM) to the PqqE/PqqD complex: long-range conformational alterations have been detected upon the formation of a quaternary complex composed of PqqA/PqqD/PqqE and SAM, spanning nearly 40 Å, from the PqqA binding site in PqqD to the PqqE active site Fe4S4. Interactions among the various regions are concluded to arise from both direct contact and distal communication. The described experimental approach can be readily applied to the investigation of protein conformational communication among a large family of peptide-modifying rSAM enzymes.
Collapse
Affiliation(s)
- Wen Zhu
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Judith P. Klinman
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Rush K, Eastman KAS, Kincannon WM, Blackburn NJ, Bandarian V. Peptide Selenocysteine Substitutions Reveal Direct Substrate-Enzyme Interactions at Auxiliary Clusters in Radical S-Adenosyl-l-methionine Maturases. J Am Chem Soc 2023; 145:10167-10177. [PMID: 37104670 PMCID: PMC10177961 DOI: 10.1021/jacs.3c00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 04/29/2023]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes leverage the properties of one or more iron- and sulfide-containing metallocenters to catalyze complex and radical-mediated transformations. By far the most populous superfamily of radical SAM enzymes are those that, in addition to a 4Fe-4S cluster that binds and activates the SAM cofactor, also bind one or more additional auxiliary clusters (ACs) of largely unknown catalytic significance. In this report we examine the role of ACs in two RS enzymes, PapB and Tte1186, that catalyze formation of thioether cross-links in ribosomally synthesized and post-translationally modified peptides (RiPPs). Both enzymes catalyze a sulfur-to-carbon cross-link in a reaction that entails H atom transfer from an unactivated C-H to initiate catalysis, followed by formation of a C-S bond to yield the thioether. We show that both enzymes tolerate substitution of SeCys instead of Cys at the cross-linking site, allowing the systems to be subjected to Se K-edge X-ray spectroscopy. The EXAFS data show a direct interaction with the Fe of one of the ACs in the Michaelis complex, which is replaced with a Se-C interaction under reducing conditions that lead to the product complex. Site-directed deletion of the clusters in Tte1186 provide evidence for the identity of the AC. The implications of these observations in the context of the mechanism of these thioether cross-linking enzymes are discussed.
Collapse
Affiliation(s)
- Katherine
W. Rush
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Department
of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, Oregon 97202, United States
| | - Karsten A. S. Eastman
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - William M. Kincannon
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ninian J. Blackburn
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
10
|
Experimental guidelines for trapping paramagnetic reaction intermediates in radical S-adenosylmethionine enzymes. Methods Enzymol 2022; 666:451-468. [DOI: 10.1016/bs.mie.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Balo AR, Tao L, Britt RD. Characterizing SPASM/twitch Domain-Containing Radical SAM Enzymes by EPR Spectroscopy. APPLIED MAGNETIC RESONANCE 2021; 53:809-820. [PMID: 35509369 PMCID: PMC9012708 DOI: 10.1007/s00723-021-01406-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 06/14/2023]
Abstract
Owing to their importance, diversity and abundance of generated paramagnetic species, radical S-adenosylmethionine (rSAM) enzymes have become popular targets for electron paramagnetic resonance (EPR) spectroscopic studies. In contrast to prototypic single-domain and thus single-[4Fe-4S]-containing rSAM enzymes, there is a large subfamily of rSAM enzymes with multiple domains and one or two additional iron-sulfur cluster(s) called the SPASM/twitch domain-containing rSAM enzymes. EPR spectroscopy is a powerful tool that allows for the observation of the iron-sulfur clusters as well as potentially trappable paramagnetic reaction intermediates. Here, we review continuous-wave and pulse EPR spectroscopic studies of SPASM/twitch domain-containing rSAM enzymes. Among these enzymes, we will review in greater depth four well-studied enzymes, BtrN, MoaA, PqqE, and SuiB. Towards establishing a functional consensus of the additional architecture in these enzymes, we describe the commonalities between these enzymes as observed by EPR spectroscopy.
Collapse
Affiliation(s)
- Aidin R. Balo
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
12
|
Stich TA. Characterization of Paramagnetic Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2353:259-280. [PMID: 34292554 DOI: 10.1007/978-1-0716-1605-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy is a powerful ally in characterizing the multitude of redox-active iron-sulfur cluster-containing ([Fe-S]) species present in biological samples. The technique detects only those clusters that are paramagnetic-having a nonzero total electron spin (S > 0)-thus, it can discriminate between clusters in different oxidation states. The low-temperature CW-EPR spectrum of an [Fe-S] yields the three magnetic g-values that serve as a fingerprint of its electronic structure. This chapter briefly describes the underlying theory that defines this electronic structure and provides a recipe for the acquisition and analysis of EPR spectra of [Fe-S] proteins.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
13
|
Benjdia A, Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front Chem 2021; 9:678068. [PMID: 34350157 PMCID: PMC8326336 DOI: 10.3389/fchem.2021.678068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| |
Collapse
|
14
|
Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB. Proc Natl Acad Sci U S A 2021; 118:2101571118. [PMID: 34001621 DOI: 10.1073/pnas.2101571118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The radical S-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon-carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys-Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+ state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys-Trp radical (Lys-Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys-Trp• intermediate by the redox-tuned [4Fe-4S]2+ AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon-carbon bond-forming reactions.
Collapse
|
15
|
Balty C, Guillot A, Fradale L, Brewee C, Lefranc B, Herrero C, Sandström C, Leprince J, Berteau O, Benjdia A. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. J Biol Chem 2020; 295:16665-16677. [PMID: 32972973 PMCID: PMC8188230 DOI: 10.1074/jbc.ra120.015371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.
Collapse
Affiliation(s)
- Clémence Balty
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Laura Fradale
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, Université de Normandie-Rouen, Rouen, France
| | | | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, Université de Normandie-Rouen, Rouen, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
16
|
Zhu W, Klinman JP. Biogenesis of the peptide-derived redox cofactor pyrroloquinoline quinone. Curr Opin Chem Biol 2020; 59:93-103. [PMID: 32731194 PMCID: PMC7736144 DOI: 10.1016/j.cbpa.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is a peptide-derived redox cofactor produced by prokaryotes that also plays beneficial roles in organisms from other kingdoms. We review recent developments on the pathway of PQQ biogenesis, focusing on the mechanisms of PqqE, PqqF/G, and PqqB. These advances may shed light on other, uncharacterized biosynthetic pathways.
Collapse
Affiliation(s)
- Wen Zhu
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, 94720-3220, USA
| | - Judith P Klinman
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, 94720-3220, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
17
|
Zhu W, Walker LM, Tao L, Iavarone AT, Wei X, Britt RD, Elliott SJ, Klinman JP. Structural Properties and Catalytic Implications of the SPASM Domain Iron-Sulfur Clusters in Methylorubrum extorquens PqqE. J Am Chem Soc 2020; 142:12620-12634. [PMID: 32643933 DOI: 10.1021/jacs.0c02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.
Collapse
Affiliation(s)
- Wen Zhu
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Lindsey M Walker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lizhi Tao
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Xuetong Wei
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Judith P Klinman
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|