1
|
Huang XL, Zhang DL, Li Q, Xie ZB, Le ZG, Zhu ZQ. Visible-Light-Induced C-H Cyanoalkylation of Azauracils with Cycloketone Oxime Esters via Catalytic EDA Complex. Org Lett 2024; 26:3727-3732. [PMID: 38678575 DOI: 10.1021/acs.orglett.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoexcitation electron donor-acceptor (EDA) complexes provide an effective approach to produce radicals under mild conditions, while the catalytic version of EDA complex photoactivation remains scarce. Herein, we report a visible-light-induced organophotocatalytic pathway for the cyanoalkylation of azauracils using inexpensive and readily available 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalytic electron donor. This synthetic method exhibits exceptional compatibility with various functional groups and presents 34 examples in high yields. The efficient cyanoalkylation offers an environmentally friendly and sustainable route toward enhancing the structural and functional diversity of azauracils.
Collapse
Affiliation(s)
- Xiao-Long Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Dong-Liang Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
2
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
3
|
Kamzeeva PN, Aralov AV, Alferova VA, Korshun VA. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr Issues Mol Biol 2023; 45:6851-6879. [PMID: 37623252 PMCID: PMC10453654 DOI: 10.3390/cimb45080433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.
Collapse
Affiliation(s)
| | | | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (P.N.K.); (A.V.A.); (V.A.A.)
| |
Collapse
|
4
|
Kumar A, Wahan SK, Virendra SA, Chawla PA. Recent Advances on the Role of Nitrogen‐Based Heterocyclic Scaffolds in Targeting HIV through Reverse Transcriptase Inhibition. ChemistrySelect 2022. [DOI: 10.1002/slct.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankur Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| |
Collapse
|
5
|
Tan Y, Xuekun W, Han YP, Zhang Y, Zhang HY, Zhao J. Visible-Light-Induced Oxyalkylation of 1,2,4-Triazine-3,5(2 H, 4 H)-diones with Ethers via Oxidative Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:8551-8561. [PMID: 35731594 DOI: 10.1021/acs.joc.2c00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method to synthesize 6-oxyalkylated 1,2,4-triazine-3,5(2H, 4H)-diones has been developed via visible-light-induced cross-dehydrogenative coupling reaction between 1,2,4-triazine-3,5(2H, 4H)-diones and ethers with a wide range of functional group tolerance. The present transformation employs the cheap and low-toxic 2-tert-butylanthraquinone as a metal-free photocatalyst and air as a green oxidant at room temperature. Moreover, this reaction can also be driven by sunlight as a clean energy resource. The synthetic utility of this method is further demonstrated by gram-scale reaction and application in the preparation of key intermediates of bioactive molecules.
Collapse
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Wu Xuekun
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
6
|
Yoshida Y, Honma M, Kimura Y, Abe H. Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIV-1 Reverse Transcriptase Inhibitors (NRTIs). ChemMedChem 2021; 16:743-766. [PMID: 33230979 DOI: 10.1002/cmdc.202000695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by infection with the human immunodeficiency virus (HIV). Although treatments against HIV infection are available, AIDS remains a serious disease that causes many deaths annually. Although a variety of anti-HIV drugs have been synthesized and marketed to treat HIV-infected patients, nucleoside analogue reverse transcriptase inhibitors (NRTIs), which mimic nucleosides, are used extensively and remain a subject of interest to medicinal chemists. However, HIV has acquired drug resistance against NRTIs, and thus the struggle to find novel therapies continues. In this review, we trace the trajectory of NRTIs, focusing on the synthesis, mechanisms of action and applications of NRTIs that have been developed.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masakazu Honma
- Nucleic Acid Medicine Research Laboratories, Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Asahi-machi, Machida-shi, >, Tokyo, 194-8533, Japan
| | - Yasuaki Kimura
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Graduate School of Science, Department of Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|