1
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
2
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
3
|
Hamala V, Ondrášková K, Červenková Šťastná L, Krčil A, Müllerová M, Kurfiřt M, Hiršová K, Holčáková J, Gyepes R, Císařová I, Bernášková J, Hrstka R, Karban J. Improving the anticancer activity of fluorinated glucosamine and galactosamine analogs by attachment of a ferrocene or ruthenium tetrazene motif. Appl Organomet Chem 2024; 38. [DOI: 10.1002/aoc.7399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/01/2024] [Indexed: 01/06/2025]
Abstract
Acylated N‐acetyl hexosamine hemiacetals are known for their cytotoxicity. We have previously reported that cytotoxicity can be increased by replacing one or more acyloxy groups with fluorine. Herein, we present the synthesis of 4,6‐difluorinated d‐gluco‐ and 4‐fluorinated d‐galacto‐configured hexosamine‐derived glycoconjugates with organoruthenium or ferrocene complexes and their in vitro cytotoxicity against three cancer cell lines (A2780, SK‐OV‐3, and MDA‐MB‐231) and one noncancerous cell line (HEK‐293). The attachment of the organometallic moiety at the 2‐position significantly enhanced the cytotoxicity, especially against triple‐negative MDA‐MB‐231 and the cisplatin resistant SK‐OV‐3 cancer cells. We observed a clear significance of an unprotected and acetyl protected anomeric hydroxyl for the cytotoxicity. Glycoconjugates with a non‐hydrolysable organic or organometallic group at the anomeric position were generally nontoxic. A more detailed analysis revealed that, in particular, complexes with the ruthenium tetrazene complex induced apoptosis in both SK‐OV‐3 and MDA‐MB‐231 cells, as demonstrated by western blot analysis and Annexin V‐FITC/PI staining. The structures of the two most cytotoxic organoruthenium and ferrocene glycoconjugates were confirmed by X‐ray diffraction analysis.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
- Faculty of Chemical Technology University of Chemistry and Technology Praha Czech Republic
| | - Kateřina Ondrášková
- Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
- Department of Biochemistry, Faculty of Science Masaryk University Brno Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
| | - Aleš Krčil
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
- Faculty of Chemical Technology University of Chemistry and Technology Praha Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
| | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
- Faculty of Chemical Technology University of Chemistry and Technology Praha Czech Republic
| | - Kateřina Hiršová
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
- Faculty of Chemical Technology University of Chemistry and Technology Praha Czech Republic
| | - Jitka Holčáková
- Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
| | - Róbert Gyepes
- Department of Inorganic Chemistry Charles University Prague 2 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Charles University Prague 2 Czech Republic
| | - Jana Bernášková
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Praha Czech Republic
| |
Collapse
|
4
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
5
|
Peng T, Das T, Ding K, Hang HC. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci 2023; 32:e4618. [PMID: 36883310 PMCID: PMC10031814 DOI: 10.1002/pro.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Tandrila Das
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| | - Ke Ding
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Howard C. Hang
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
7
|
McBerney R, Dolan JP, Cawood EE, Webb ME, Turnbull WB. Bioorthogonal, Bifunctional Linker for Engineering Synthetic Glycoproteins. JACS AU 2022; 2:2038-2047. [PMID: 36186556 PMCID: PMC9516712 DOI: 10.1021/jacsau.2c00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Post-translational glycosylation of proteins results in complex mixtures of heterogeneous protein glycoforms. Glycoproteins have many potential applications from fundamental studies of glycobiology to potential therapeutics, but generating homogeneous recombinant glycoproteins using chemical or chemoenzymatic reactions to mimic natural glycoproteins or creating homogeneous synthetic neoglycoproteins is a challenging synthetic task. In this work, we use a site-specific bioorthogonal approach to produce synthetic homogeneous glycoproteins. We develop a bifunctional, bioorthogonal linker that combines oxime ligation and strain-promoted azide-alkyne cycloaddition chemistry to functionalize reducing sugars and glycan derivatives for attachment to proteins. We demonstrate the utility of this minimal length linker by producing neoglycoprotein inhibitors of cholera toxin in which derivatives of the disaccharide lactose and GM1os pentasaccharide are attached to a nonbinding variant of the cholera toxin B-subunit that acts as a size- and valency-matched multivalent scaffold. The resulting neoglycoproteins decorated with GM1 ligands inhibit cholera toxin B-subunit adhesion with a picomolar IC50.
Collapse
|
8
|
Griffin ME, Hsieh-Wilson LC. Tools for mammalian glycoscience research. Cell 2022; 185:2657-2677. [PMID: 35809571 PMCID: PMC9339253 DOI: 10.1016/j.cell.2022.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Immunology, Scripps Research, La Jolla, CA 92037, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Mondal J, Sivaramakrishna A. Functionalized Triazines and Tetrazines: Synthesis and Applications. Top Curr Chem (Cham) 2022; 380:34. [PMID: 35737142 DOI: 10.1007/s41061-022-00385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022]
Abstract
The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.
Collapse
Affiliation(s)
- Joydip Mondal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
10
|
Moon S, Javed A, Hard ER, Pratt MR. Methods for Studying Site-Specific O-GlcNAc Modifications: Successes, Limitations, and Important Future Goals. JACS AU 2022; 2:74-83. [PMID: 35098223 PMCID: PMC8791055 DOI: 10.1021/jacsau.1c00455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 06/14/2023]
Abstract
O-GlcNAcylation is a dynamic post-translational modification which affects myriad proteins, cellular functions, and disease states. Its presence or absence modulates protein function via differential protein- and site-specific mechanisms, necessitating innovative techniques to probe the modification in highly selective manners. To this end, a variety of biological and chemical methods have been developed to study specific O-GlcNAc modification events both in vitro and in vivo, each with their own respective strengths and shortcomings. Together, they comprise a potent chemical biology toolbox for the analysis of O-GlcNAcylation (and, in theory, other post-translational modifications) while highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Precise protein conjugation technology for the construction of homogenous glycovaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:69-75. [PMID: 34895642 DOI: 10.1016/j.ddtec.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The introduction of vaccines for the treatment and prevention of bacterial or viral diseases in the early 19th century marked a crucial turning point in medical history. Since then, extensive immunization campaigns have eradicated smallpox and drastically reduced the number of diphtheria, tetanus, pertussis and measles cases worldwide. Although a broad selection of vaccines is available, there remains a need to develop additional vaccine candidates against a range of dangerous infectious diseases, preferably based on precise syntheses that lead to homogenous formulations. Different strategies for the construction of this type of vaccine candidates are being pursued. Glycoconjugate vaccines are successful in the fight against bacterial and viral infectious diseases. However, their exact mechanism of action remains largely unknown and the large-scale production of chemically defined constructs is challenging. In particular, the conjugation of the carbohydrate antigen to the protein carrier has proved to be crucial for the properties of these vaccines. This review highlights some of the latest findings and developments in the construction of glycoconjugate vaccines by means of site-specific chemical reactions.
Collapse
|
12
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
13
|
Upadhya R, Kosuri S, Tamasi M, Meyer TA, Atta S, Webb MA, Gormley AJ. Automation and data-driven design of polymer therapeutics. Adv Drug Deliv Rev 2021; 171:1-28. [PMID: 33242537 PMCID: PMC8127395 DOI: 10.1016/j.addr.2020.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Polymers are uniquely suited for drug delivery and biomaterial applications due to tunable structural parameters such as length, composition, architecture, and valency. To facilitate designs, researchers may explore combinatorial libraries in a high throughput fashion to correlate structure to function. However, traditional polymerization reactions including controlled living radical polymerization (CLRP) and ring-opening polymerization (ROP) require inert reaction conditions and extensive expertise to implement. With the advent of air-tolerance and automation, several polymerization techniques are now compatible with well plates and can be carried out at the benchtop, making high throughput synthesis and high throughput screening (HTS) possible. To avoid HTS pitfalls often described as "fishing expeditions," it is crucial to employ intelligent and big data approaches to maximize experimental efficiency. This is where the disruptive technologies of machine learning (ML) and artificial intelligence (AI) will likely play a role. In fact, ML and AI are already impacting small molecule drug discovery and showing signs of emerging in drug delivery. In this review, we present state-of-the-art research in drug delivery, gene delivery, antimicrobial polymers, and bioactive polymers alongside data-driven developments in drug design and organic synthesis. From this insight, important lessons are revealed for the polymer therapeutics community including the value of a closed loop design-build-test-learn workflow. This is an exciting time as researchers will gain the ability to fully explore the polymer structural landscape and establish quantitative structure-property relationships (QSPRs) with biological significance.
Collapse
Affiliation(s)
| | | | | | | | - Supriya Atta
- Rutgers, The State University of New Jersey, USA
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | | |
Collapse
|
14
|
Groenevelt JM, Corey DJ, Fehl C. Chemical Synthesis and Biological Applications of O-GlcNAcylated Peptides and Proteins. Chembiochem 2021; 22:1854-1870. [PMID: 33450137 DOI: 10.1002/cbic.202000843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Abstract
All human cells use O-GlcNAc protein modifications (O-linked N-acetylglucosamine) to rapidly adapt to changing nutrient and stress conditions through signaling, epigenetic, and proteostasis mechanisms. A key challenge for biologists in defining precise roles for specific O-GlcNAc sites is synthetic access to homogenous isoforms of O-GlcNAc proteins, a result of the non-genetically templated, transient, and heterogeneous nature of O-GlcNAc modifications. Toward a solution, this review details the state of the art of two strategies for O-GlcNAc protein modification: advances in "bottom-up" O-GlcNAc peptide synthesis and direct "top-down" installation of O-GlcNAc on full proteins. We also describe key applications of synthetic O-GlcNAc peptide and protein tools as therapeutics, biophysical structure-function studies, biomarkers, and as disease mechanistic probes to advance translational O-GlcNAc biology.
Collapse
Affiliation(s)
- Jessica M Groenevelt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Daniel J Corey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
15
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
16
|
Lin L, Qiao M, Zhang X, Linhardt RJ. Site-selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development. Carbohydr Polym 2020; 230:115643. [DOI: 10.1016/j.carbpol.2019.115643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
|
17
|
Xu L, Raabe M, Zegota MM, Nogueira JCF, Chudasama V, Kuan SL, Weil T. Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org Biomol Chem 2020; 18:1140-1147. [PMID: 31971218 DOI: 10.1039/c9ob02687h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An inverse electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO) holds great promise for protein modification and manipulation. Herein, we report the design and synthesis of a tetrazine-based disulfide rebridging reagent, which allows the site-selective installation of a tetrazine group into disulfide-containing peptides and proteins such as the hormone somatostatin (SST) and the antigen binding fragment (Fab) of human immunoglobulin G (IgG). The fast and efficient conjugation of the tetrazine modified proteins with three different TCO-containing substrates to form a set of bioconjugates in a site-selective manner was successfully demonstrated for the first time. Homogeneous, well-defined bioconjugates were obtained underlining the great potential of our method for fast bioconjugation in emerging protein therapeutics. The formed bioconjugates were stable against glutathione and in serum, and they maintained their secondary structure. With this work, we broaden the scope of tetrazine chemistry for site-selective protein modification to prepare well-defined SST and Fab conjugates with preserved structures and good stability under biologically relevant conditions.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maksymilian M Zegota
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
18
|
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 2019; 18:881-895. [PMID: 31475596 DOI: 10.1080/14760584.2019.1657012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.
Collapse
Affiliation(s)
- Francesca Micoli
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | - Renzo Alfini
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | | | | |
Collapse
|
19
|
Berti F, Adamo R. Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches for protein modification. Chem Soc Rev 2018; 47:9015-9025. [PMID: 30277489 DOI: 10.1039/c8cs00495a] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycoconjugate vaccines obtained by chemical linkage of a carbohydrate antigen to a protein are part of routine vaccinations in many countries. Licensed antimicrobial glycan-protein conjugate vaccines are obtained by random conjugation of native or sized polysaccharides to lysine, aspartic or glutamic amino acid residues that are generally abundantly exposed on the protein surface. In the last few years, the structural approaches for the definition of the polysaccharide portion (epitope) responsible for the immunological activity has shown potential to aid a deeper understanding of the mode of action of glycoconjugates and to lead to the rational design of more efficacious and safer vaccines. The combination of technologies to obtain more defined carbohydrate antigens of higher purity and novel approaches for protein modification has a fundamental role. In particular, methods for site selective glycoconjugation like chemical or enzymatic modification of specific amino acid residues, incorporation of unnatural amino acids and glycoengineering, are rapidly evolving. Here we discuss the state of the art of protein engineering with carbohydrates to obtain glycococonjugates vaccines and future perspectives.
Collapse
|
20
|
Selby LI, Aurelio L, Yuen D, Graham B, Johnston APR. Quantifying Cellular Internalization with a Fluorescent Click Sensor. ACS Sens 2018; 3:1182-1189. [PMID: 29676153 DOI: 10.1021/acssensors.8b00219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to determine the amount of material endocytosed by a cell is important for our understanding of cell biology and in the design of effective carriers for drug delivery. To quantify internalization by fluorescence, the signal from material remaining on the cell surface must be differentiated from endocytosed material. Sensors for internalization offer advantages over traditional methods for achieving this as they exhibit improved sensitivity, allow for multiple fluorescent markers to be used simultaneously, and are amenable to high-throughput analysis. We have developed a small fluorescent internalization sensor, similar in size to a standard fluorescent dye, that can be conjugated to proteins and uses the rapid and highly specific bio-orthogonal reaction between a tetrazine and a trans-cyclooctene group to switch off the surface signal. The sensor can be attached to a variety of materials using simple chemistry and is compatible with flow cytometry and fluorescence microscopy, making it a useful tool to study the uptake of material into cells.
Collapse
Affiliation(s)
- Laura I. Selby
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 697] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
22
|
Abstract
Genetic code expansion is commonly used to introduce bioorthogonal reactive functional groups onto proteins for labeling. In recent years, the inverse electron demand Diels-Alder reaction between tetrazines and strained trans-cyclooctenes has increased in popularity as a bioorthogonal ligation for protein labeling due to its fast reaction rate and high in vivo stability. We provide methods for the facile synthesis of a tetrazine containing amino acid, Tet-v2.0, and the site-specific incorporation of Tet-v2.0 into proteins via genetic code expansion. Furthermore, we demonstrate that proteins containing Tet-v2.0 can be quickly and efficiently reacted with strained alkene labels at low concentrations. This chemistry has enabled the labeling of protein surfaces with fluorophores, inhibitors, or common posttranslational modifications such as glycosylation or lipidation.
Collapse
|
23
|
Brabham R, Fascione MA. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications. Chembiochem 2017; 18:1973-1983. [DOI: 10.1002/cbic.201700148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Robin Brabham
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| | - Martin A. Fascione
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington Road York YO10 5DD UK
| |
Collapse
|
24
|
Liu X, Liu B, Gao S, Wang Z, Tian Y, Wu M, Jiang S, Niu Z. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B 2017; 5:2078-2085. [PMID: 32263681 DOI: 10.1039/c7tb00100b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant viruses have been applied broadly in nanomedical applications profiting from their monodisperse structure, biocompatibility, easy modification, and non-pathogenicity in animals. Here we report a tobacco mosaic virus (TMV) based drug delivery system bearing carbohydrates as targeting ligands. Mannose (Man) and lactose (Lac) moieties were separately conjugated to the exterior surface of TMV (TMV-Man and TMV-Lac) through an efficient copper(i)-catalyzed azide-alkyne cycloaddition. Cisplatin (CDDP), an anticancer drug, was directly loaded into the TMV cavity (CDDP@TMV, CDDP@TMV-Man and CDDP@TMV-Lac) via a metal coordination bond. Through the specific recognition between carbohydrates and glycoproteins in cell membranes, these TMV based vectors show specificity in different cell lines: in the galectin-rich MCF-7 cell line, CDDP@TMV-Man shows enhanced endocytosis and apoptosis efficiency; in the asialoglycoprotein receptor (ASGPR)-overexpressing HepG2 cell line, CDDP@TMV-Lac shows superiority in endocytosis and apoptosis. This research provides a new strategy for tumor-targeted cisplatin delivery.
Collapse
Affiliation(s)
- Xiangxiang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Meyer JP, Adumeau P, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: The First 10 Years. Bioconjug Chem 2016; 27:2791-2807. [PMID: 27787983 DOI: 10.1021/acs.bioconjchem.6b00561] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.
Collapse
Affiliation(s)
| | - Pierre Adumeau
- Department of Chemistry, Hunter College of the City University of New York , 413 East 69th Street, New York, New York 10028, United States
| | - Jason S Lewis
- Department of Radiology, Weill Cornell Medical College , 520 East 70th Street, New York, New York 10065, United States
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York , 413 East 69th Street, New York, New York 10028, United States.,Department of Radiology, Weill Cornell Medical College , 520 East 70th Street, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
26
|
Hu QY, Berti F, Adamo R. Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 2016; 45:1691-719. [PMID: 26796469 DOI: 10.1039/c4cs00388h] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioconjugates represent an emerging class of medicines, which offer therapeutic opportunities overtaking those of the individual components. Many novel bioconjugates have been explored in order to address various emerging medical needs. The last decade has witnessed the exponential growth of new site-selective bioconjugation techniques, however very few methods have made the way into human clinical trials. Here we discuss various applications of site-selective conjugation in biomedicines, including half-life extension, antibody-drug conjugates, conjugate vaccines, bispecific antibodies and cell therapy. The review is intended to highlight both the progress and challenges, and identify a potential roadmap to address the gap.
Collapse
Affiliation(s)
- Qi-Ying Hu
- Novartis Institutes for Biomedical Research (NIBR), 100 Technology Square, Cambridge, MA 02139, USA.
| | - Francesco Berti
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| | - Roberto Adamo
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
27
|
Saliba RC, Pohl NL. Designing sugar mimetics: non-natural pyranosides as innovative chemical tools. Curr Opin Chem Biol 2016; 34:127-134. [PMID: 27621102 DOI: 10.1016/j.cbpa.2016.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
The importance of oligosaccharides in myriad biological processes is becoming increasingly clear. However, these carbohydrate-mediated processes are often challenging to dissect due to the often poor affinity, stability and selectivity of the oligosaccharides involved. To circumvent these issues, non-natural carbohydrates-carbohydrate mimics-are being designed as innovative tools to modify biomolecules of interest or to understand biological pathways using fluorescence microscopy, X-ray or nuclear magnetic resonance spectroscopy (NMR). This review focuses on key examples of recently developed non-natural sugars to answer specific biological needs.
Collapse
Affiliation(s)
- Regis C Saliba
- Department of Chemistry, Indiana University, Bloomington, IN 47401, United States.
| | - Nicola Lb Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47401, United States.
| |
Collapse
|
28
|
Machida T, Winssinger N. One-Step Derivatization of Reducing Oligosaccharides for Rapid and Live-Cell-Compatible Chelation-Assisted CuAAC Conjugation. Chembiochem 2016; 17:811-5. [DOI: 10.1002/cbic.201600003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Takuya Machida
- Department of Organic Chemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
29
|
Bi X, Pasunooti KK, Tareq AH, Takyi-Williams J, Liu CF. Genetic incorporation of 1,2-aminothiol functionality for site-specific protein modification via thiazolidine formation. Org Biomol Chem 2016; 14:5282-5. [DOI: 10.1039/c6ob00854b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thiazolidine ligation was used to modify site-specifically proteins harbouring a 1,2-aminothiol moiety introduced by amber codon suppression technology.
Collapse
Affiliation(s)
- Xiaobao Bi
- Division of Structural Biology and Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 637551
- Singapore
| | - Kalyan Kumar Pasunooti
- Division of Structural Biology and Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 637551
- Singapore
| | - Ahmad Hussen Tareq
- Division of Structural Biology and Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 637551
- Singapore
| | - John Takyi-Williams
- Division of Structural Biology and Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 637551
- Singapore
| | - Chuan-Fa Liu
- Division of Structural Biology and Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 637551
- Singapore
| |
Collapse
|
30
|
Stefanetti G, Saul A, MacLennan CA, Micoli F. Click Chemistry Applied to the Synthesis of Salmonella Typhimurium O-Antigen Glycoconjugate Vaccine on Solid Phase with Sugar Recycling. Bioconjug Chem 2015; 26:2507-13. [PMID: 26549104 DOI: 10.1021/acs.bioconjchem.5b00521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A solid-phase conjugation method was developed and applied to the synthesis of an O-antigen based glycoconjugate vaccine against Salmonella Typhimurium, with CRM197 as the carrier protein. Copper-free click chemistry was used as the conjugation chemistry, after derivatizing the sugar and the protein components with alkyne and azido linkers, respectively. This chemistry has the advantage of not deactivating functional groups during the conjugation step, thereby allowing the recycling of unreacted components. The activated carrier protein was adsorbed to an anion exchange matrix and quantitatively conjugated to the O-antigen. The resulting conjugate was eluted from the resin free of unconjugated sugar which was previously removed by simple washing steps. Unreacted O-antigen was recycled by addition to a new batch of resin-CRM197 resulting in further quantitative protein conjugation. This process has advantages in relation to reduction of costs for production of conjugate vaccines, allowing unreacted sugar recovery and simplifying the purification of the glycoconjugate.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford, OX3 7DQ, United Kingdom.,Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
31
|
Imaging and manipulating proteins in live cells through covalent labeling. Nat Chem Biol 2015; 11:917-23. [PMID: 26575238 DOI: 10.1038/nchembio.1959] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
The past 20 years have witnessed the advent of numerous technologies to specifically and covalently label proteins in cellulo and in vivo with synthetic probes. These technologies range from self-labeling proteins tags to non-natural amino acids, and the question is no longer how we can specifically label a given protein but rather with what additional functionality we wish to equip it. In addition, progress in fields such as super-resolution microscopy and genome editing have either provided additional motivation to label proteins with advanced synthetic probes or removed some of the difficulties of conducting such experiments. By focusing on two particular applications, live-cell imaging and the generation of reversible protein switches, we outline the opportunities and challenges of the field and how the synergy between synthetic chemistry and protein engineering will make it possible to conduct experiments that are not feasible with conventional approaches.
Collapse
|
32
|
Stefanetti G, Hu Q, Usera A, Robinson Z, Allan M, Singh A, Imase H, Cobb J, Zhai H, Quinn D, Lei M, Saul A, Adamo R, MacLennan CA, Micoli F. Sugar–Protein Connectivity Impacts on the Immunogenicity of Site‐Selective
Salmonella
O‐Antigen Glycoconjugate Vaccines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Giuseppe Stefanetti
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy)
| | - Qi‐Ying Hu
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Aimee Usera
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Zack Robinson
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Martin Allan
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Alok Singh
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Hidetomo Imase
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Jennifer Cobb
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Huili Zhai
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Douglas Quinn
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Ming Lei
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Allan Saul
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy)
| | | | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Francesca Micoli
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy)
| |
Collapse
|
33
|
Stefanetti G, Hu QY, Usera A, Robinson Z, Allan M, Singh A, Imase H, Cobb J, Zhai H, Quinn D, Lei M, Saul A, Adamo R, MacLennan CA, Micoli F. Sugar-Protein Connectivity Impacts on the Immunogenicity of Site-Selective Salmonella O-Antigen Glycoconjugate Vaccines. Angew Chem Int Ed Engl 2015; 54:13198-203. [PMID: 26350581 PMCID: PMC4648054 DOI: 10.1002/anie.201506112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O-antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site-selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH-controlled transglutaminase-catalyzed modification of lysine, respectively. Importantly, conjugation at the C186-201 bond resulted in significantly higher anti O-antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy)
| | - Qi-Ying Hu
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA).
| | - Aimee Usera
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Zack Robinson
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Martin Allan
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Alok Singh
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Hidetomo Imase
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Jennifer Cobb
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Huili Zhai
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Douglas Quinn
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Ming Lei
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139 (USA)
| | - Allan Saul
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy)
| | | | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Francesca Micoli
- Sclavo Behring Vaccines Institute For Global Health S.r.l., A GSK Company, Via Fiorentina 1, 53100 Siena (Italy).
| |
Collapse
|