1
|
Sharma S, Naldrett MJ, Gill MJ, Checco JW. Affinity-Driven Aryl Diazonium Labeling of Peptide Receptors on Living Cells. J Am Chem Soc 2024; 146:13676-13688. [PMID: 38693710 PMCID: PMC11149697 DOI: 10.1021/jacs.4c04672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.
Collapse
Affiliation(s)
- Sheryl Sharma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Makayla J Gill
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
2
|
Zeng W, Xue J, Geng H, Liu X, Yang J, Shen W, Yuan Y, Qiang Y, Zhu Q. Research progress on chemical modifications of tyrosine residues in peptides and proteins. Biotechnol Bioeng 2024; 121:799-822. [PMID: 38079153 DOI: 10.1002/bit.28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 02/20/2024]
Abstract
The chemical modifications (CMs) of protein is an important technique in chemical biology, protein-based therapy, and material science. In recent years, there has been rapid advances in the development of CMs of peptides and proteins, providing new approaches for peptide and protein functionalization, as well as drug discovery. In this review, we highlight the methods for chemically modifying tyrosine (Tyr) residues in different regions, offering a comprehensive exposition of the research content related to Tyr modification. This review summarizes and provides an outlook on Tyr residue modification, aiming to offer readers assistance in the site-selective modification of macromolecules and to facilitate application research in this field.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianyuan Xue
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Geng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xia Liu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jin Yang
- Department of Biotechnology and the Quality Management, Zhejiang Pharmaceutical Industry Co. Ltd., Hangzhou, China
| | - Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuqing Yuan
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Qiang
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Zhu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Behera S, Aziz ST, Singla N, Mondal B. The synergy between electrochemical substrate oxidation and the oxygen reduction reaction to enable aerobic oxidation. Chem Commun (Camb) 2023; 59:11528-11531. [PMID: 37672289 DOI: 10.1039/d3cc02428h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Aerobic substrate oxidation reactions catalyzed by a heterogeneous catalyst can be looked upon as two independent half-cell reactions, viz. anodic substrate oxidation and the cathodic oxygen reduction reaction (ORR). In this context, Fe PANI/C, a well-known catalyst for the ORR, is chosen to validate this hypothesis, wherein the anodic reaction is hydrazine oxidation. Fe PANI/C shows excellent activity in terms of the electrochemical ORR and hydrazine oxidation in both alkaline aqueous and non-aqueous media and taken together the aerobic oxidation efficacy of hydrazine-like small organic molecules is correlated with the electrochemical outcomes.
Collapse
Affiliation(s)
- Snehanjali Behera
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Sk Tarik Aziz
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Nisha Singla
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Biswajit Mondal
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
4
|
Keyes ED, Mifflin MC, Austin MJ, Alvey BJ, Lovely LH, Smith A, Rose TE, Buck-Koehntop BA, Motwani J, Roberts AG. Chemoselective, Oxidation-Induced Macrocyclization of Tyrosine-Containing Peptides. J Am Chem Soc 2023; 145:10071-10081. [PMID: 37119237 DOI: 10.1021/jacs.3c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Inspired by nature's wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C-N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C-N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic peptides bearing the integrin-binding RGDf epitope.
Collapse
Affiliation(s)
- E Dalles Keyes
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Maxwell J Austin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brighton J Alvey
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Lotfa H Lovely
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andriea Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tristin E Rose
- 1200 Pharma LLC, 6100 Bristol Parkway, Culver City, California 90230, United States
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jyoti Motwani
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
6
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
7
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Wang ZQ, Yu JX, Bai SQ, Liu B, Wang CY, Li JH. Oxidative Dehydrogenation of Hydrazobenzenes toward Azo Compounds Catalyzed by tert-Butyl Nitrite in EtOH. ACS OMEGA 2020; 5:28856-28862. [PMID: 33195938 PMCID: PMC7659151 DOI: 10.1021/acsomega.0c04348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/07/2020] [Indexed: 05/02/2023]
Abstract
We describe a tert-butyl nitrite-catalyzed oxidative dehydrogenation of hydrazobenzenes for producing azobenzenes. This method proceeds at ambient temperature and under an atmospheric environment by employing eco-friendly EtOH as the medium, representing a mild, general route to the synthesis of various symmetrical and nonsymmetrical azobenzenes in excellent yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
| | - Jiang-Xi Yu
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
| | - Shan-Qin Bai
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
| | - Bang Liu
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
| | - Cheng-Yong Wang
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
| | - Jin-Heng Li
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Key Laboratory of Functional Organometallic Materials, University
of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
9
|
Alvarez Dorta D, Deniaud D, Mével M, Gouin SG. Tyrosine Conjugation Methods for Protein Labelling. Chemistry 2020; 26:14257-14269. [DOI: 10.1002/chem.202001992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
| | - David Deniaud
- CNRS, CEISAM UMR, 6230 Université de Nantes 44000 Nantes France
| | - Mathieu Mével
- CHU de Nantes, INSERM UMR 1089 Université de Nantes 44200 Nantes France
| | | |
Collapse
|
10
|
|
11
|
Li B, Wu Y, Zhang W, Zhang S, Shao N, Zhang W, Zhang L, Fei J, Dai Y, Liu R. Efficient synthesis of amino acid polymers for protein stabilization. Biomater Sci 2019; 7:3675-3682. [DOI: 10.1039/c9bm00484j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly-l-glutamate exerts substantial protein stabilization during lyophilization by preventing protein aggregation.
Collapse
|
12
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
13
|
Allan C, Kosar M, Burr CV, Mackay CL, Duncan RR, Hulme AN. A Catch-and-Release Approach to Selective Modification of Accessible Tyrosine Residues. Chembiochem 2018; 19:2443-2447. [PMID: 30212615 DOI: 10.1002/cbic.201800532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 01/25/2023]
Abstract
The tyrosine side chain is amphiphilic leading to significant variations in the surface exposure of tyrosine residues in the folded structure of a native sequence protein. This variability can be exploited to give residue-selective functionalization of a protein substrate by using a highly reactive diazonium group tethered to an agarose-based resin. This novel catch-and-release approach to protein modification has been demonstrated for proteins with accessible tyrosine residues, which are compared with a control group of proteins in which there are no accessible tyrosine residues. MS analysis of the modified proteins showed that functionalization was highly selective, but reactivity was further attenuated by the electrostatic environment of any individual residue. Automated screening of PDB structures allows identification of potential candidates for selective modification by comparison with the accessibility of the tyrosine residue in a benchmark peptide (GYG).
Collapse
Affiliation(s)
- Christopher Allan
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Miroslav Kosar
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Christina V Burr
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Rory R Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, David Brewster Building, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
14
|
Site-selective covalent reactions on proteinogenic amino acids. Curr Opin Biotechnol 2017; 48:220-227. [DOI: 10.1016/j.copbio.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
|
15
|
Liu M, Ji Z, Zhang M, Xia J. Versatile Site-Selective Protein Reaction Guided by WW Domain–Peptide Motif Interaction. Bioconjug Chem 2017; 28:2199-2205. [DOI: 10.1021/acs.bioconjchem.7b00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miao Liu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zeyang Ji
- Division
of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Mingjie Zhang
- Division
of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiang Xia
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
16
|
|
17
|
Gober IN, Waters ML. Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to Histone Deacetylase Assays. J Am Chem Soc 2016; 138:9452-9. [DOI: 10.1021/jacs.6b02836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Isaiah N. Gober
- Department
of Chemistry,
CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry,
CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Yu Y, Xia J. Affinity-guided protein conjugation: the trilogy of covalent protein labeling, assembly and inhibition. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Nguyen THL, Gigant N, Delarue-Cochin S, Joseph D. Palladium-Catalyzed Oxidative Synthesis of Unsymmetrical Azophenols. J Org Chem 2016; 81:1850-7. [DOI: 10.1021/acs.joc.5b02614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Thi Hong Long Nguyen
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Nicolas Gigant
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Sandrine Delarue-Cochin
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Delphine Joseph
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| |
Collapse
|
20
|
Zhang J, Men Y, Lv S, Yi L, Chen JF. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation. Org Biomol Chem 2015; 13:11422-5. [DOI: 10.1039/c5ob02053k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an efficient reagent 1 for direct and covalent introduction of tetrazines onto the surface of proteins and viruses under mild conditions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuwen Men
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shanshan Lv
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|