1
|
Omelchuk O, Tevyashova A, Efimova S, Grammatikova N, Bychkova E, Zatonsky G, Dezhenkova L, Savin N, Solovieva S, Ostroumova O, Shchekotikhin A. A Study on the Effect of Quaternization of Polyene Antibiotics' Structures on Their Activity, Toxicity, and Impact on Membrane Models. Antibiotics (Basel) 2024; 13:608. [PMID: 39061290 PMCID: PMC11274224 DOI: 10.3390/antibiotics13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects. Recently, there has been a renewed interest in the development of new antifungal drugs based on polyenes, particularly due to the emergence of highly dangerous pathogenic strains of fungi, such as Candida auris, and the increased incidence of mucormycosis. Considerable understanding has been established regarding the structure-biological activity relationships of polyene antifungals. Yet, no previous studies have examined the effect of introducing quaternized fragments into their molecular structure. In this study, we present a series of amides of amphotericin B, nystatin, and natamycin bearing a quaternized group in the side chain, and discuss their biological properties: antifungal activity, cytotoxicity, and effects on lipid bilayers that mimic fungal and mammalian cell membranes. Our research findings suggest that the nature of the introduced quaternized residue plays a more significant role than merely the introduction of a constant positive charge. Among the tested polyenes, derivatives 4b, 5b, and 6b, which contain a fragment of N-methyl-4-(aminomethyl)pyridinium in their structure, are particularly noteworthy due to their biological activity.
Collapse
Affiliation(s)
- Olga Omelchuk
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Anna Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Svetlana Efimova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Natalia Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Elena Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - George Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Lyubov Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 4 p.1 Leninsky Pr., Moscow 119049, Russia
| | - Svetlana Solovieva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Olga Ostroumova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Andrey Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| |
Collapse
|
2
|
Efimova SS, Ostroumova OS. Antibiotic Loaded Phytosomes as a Way to Develop Innovative Lipid Formulations of Polyene Macrolides. Pharmaceutics 2024; 16:665. [PMID: 38794328 PMCID: PMC11124810 DOI: 10.3390/pharmaceutics16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. OBJECTIVE The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. METHODS To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. KEY RESULTS The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I-V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. CONCLUSIONS AND PERSPECTIVES The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.
Collapse
Affiliation(s)
- Svetlana S. Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
3
|
Nikaein D, Shirani D, Sharifzadeh A, Alavi A, Khosravi AR. Antifungal susceptibility profile of yeasts isolated from the oral cavity of cats. Vet Med Sci 2023; 9:2414-2419. [PMID: 37847594 PMCID: PMC10650235 DOI: 10.1002/vms3.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Microorganisms living in the oral cavity play an important role in health and disease of the host. Cats are susceptible to oral infections, and it is documented that fungi in the oral cavity could impact these infections. Antifungal resistance has been increasing in recent years. OBJECTIVES This study was designed to identify yeast isolates from the oral cavity of healthy cats and to evaluate their antifungal susceptibility pattern. METHODS Oral specimens were collected from 60 cats and cultured at 37°C for 10 days. Yeasts were isolated and identified. Their antifungal susceptibility pattern was determined according to CLSI M44-A. RESULTS Three yeast genera were isolated, including Candida spp (55.5%), Rhodotorula spp (33.3%) and Hanseniaspora spp (11.1%). Antifungal susceptibility profiling showed that, apart from a dose-dependent effect of itraconazole, Hanseniaspora spp was susceptible to all seven drugs studied. The Candida species were susceptible to all drugs except ketoconazole (sensitivity 80%) and caspofungin (sensitivity 40%). In R. glutinis and R. minuta, 100% sensitivity was observed for amphotericin B, posaconazole, ketoconazole and voriconazole. CONCLUSIONS The results suggest that, in comparison with humans and other animals, cats have a different oral mycoflora in terms of species, number and diversity. However, these isolates have similar susceptibility patterns to those seen in isolates from other animals and humans. More studies should be done to further characterize the oral mycobiota of cats and its role in oral infections.
Collapse
Affiliation(s)
- Donya Nikaein
- Mycology Research Center, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Dariush Shirani
- Department of Small Animal Internal Medicine, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Aghil Sharifzadeh
- Mycology Research Center, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ava Alavi
- Mycology Research Center, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ali Reza Khosravi
- Mycology Research Center, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
4
|
Semisynthetic Amides of Amphotericin B and Nystatin A 1: A Comparative Study of In Vitro Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes. Antibiotics (Basel) 2023; 12:antibiotics12010151. [PMID: 36671352 PMCID: PMC9854944 DOI: 10.3390/antibiotics12010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties. We present the synthesis of new amphotericin and nystatin amides and a comparative study of the effects of identical modifications of AmB and Nys on the relationship between their structure and properties. Generally, increases in the activity/toxicity ratio were in good agreement with increasing ratios of selective permeabilization of ergosterol- vs. cholesterol-containing membranes. We also show that the introduced modifications had an effect on the sensitivity of mutant yeast strains with alterations in ergosterol biosynthesis to the studied polyenes, suggesting a varying affinity towards intermediate ergosterol precursors. Three new water-soluble nystatin derivatives showed a prominent improvement in safety and were selected as promising candidates for drug development.
Collapse
|
5
|
Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery. Sci Rep 2022; 12:21114. [PMID: 36476955 PMCID: PMC9729229 DOI: 10.1038/s41598-022-25222-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT's concentration obtained via UV-visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms' percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms' percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C-N and N-C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.
Collapse
|
6
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
7
|
Yu Y, Chen P, Gao M, Lan W, Sun S, Ma Z, Sultani R, Cui Y, Umar MN, Khan SW, Cai X, Liang Z, Tan H. Amphotericin B Tamed by Salicylic Acid. ACS OMEGA 2022; 7:14690-14696. [PMID: 35557655 PMCID: PMC9088917 DOI: 10.1021/acsomega.1c07201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Although Amphotericin B (AmB) is considered as the "gold standard" treatment for deep fungal infections, owing to its excellent antifungal effect, it often causes severe hemolytic toxicity and nephrotoxicity, which limits its clinical use. We designed and synthesized AmB derivatives by attaching salicylic acid (SA) to the carboxyl group and confirmed their structures using 1H NMR, 13C NMR, HR-MS, and IR. We evaluated its biological activity in vitro and measured its ultraviolet-visible (UV-vis) absorption spectrum. The AmB-SA conjugates exhibited good antifungal effects against Candida albicans, Candida glabrata, and Cryptococcus neoformans compared with AmB, and the renal cytotoxicity toward HEK 293T cells in vitro was significantly reduced, with almost no nephrotoxicity in the therapeutic window of the drug. At the same time, the hemolytic toxicity was significantly reduced. Therefore, modification of AmB by introducing SA is an effective strategy to maintain the broad antifungal activity of AmB and reduce its cytotoxicity. These AmB derivatives could be applied in clinical therapy in the future.
Collapse
Affiliation(s)
- Yuming Yu
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
- Department
of Neurosurgery, The First Affiliated Hospital
of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518026, China
| | - Peng Chen
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Ming Gao
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Wei Lan
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Shijun Sun
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Ziwei Ma
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Rome Sultani
- State
Key Laboratory of Chemistry and Utilization of Carbon-Based Energy
Resources; College of Chemistry, Xinjiang
University, Urumqi 830017, Xinjiang, P. R. China
| | - Yincang Cui
- Physics and
Chemistry Detect Center, Xinjiang University, Urumqi 830017, Xinjiang P. R. China
| | - Muhammad Naveed Umar
- Department
of Chemistry, University of Malakand, Chakdara, Dir (L), Khyber
Pakhtunkhwa 18800, Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
Sheringal, Dir (U), Khyber Pakhtunkhwa 18800, Pakistan
| | - Xiaodong Cai
- Department
of Neurosurgery, The First Affiliated Hospital
of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518026, China
| | - Zhenjiang Liang
- Pneumology
Department, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Hui Tan
- Pneumology
Department, Shenzhen Children’s Hospital, Shenzhen 518026, China
| |
Collapse
|
8
|
Skwarecki AS, Martynow D, Milewska MJ, Milewski S. Molecular Umbrella as a Nanocarrier for Antifungals. Molecules 2021; 26:molecules26185475. [PMID: 34576946 PMCID: PMC8465315 DOI: 10.3390/molecules26185475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
A molecular umbrella composed of two O-sulfated cholic acid residues was applied for the construction of conjugates with cispentacin, containing a “trimethyl lock” (TML) or o-dithiobenzylcarbamoyl moiety as a cleavable linker. Three out of five conjugates demonstrated antifungal in vitro activity against C. albicans and C. glabrata but not against C. krusei, with MIC90 values in the 0.22–0.99 mM range and were not hemolytic. Antifungal activity of the most active conjugate 24c, containing the TML–pimelate linker, was comparable to that of intact cispentacin. A structural analogue of 24c, containing the Nap-NH2 fluorescent probe, was accumulated in Candida cells, and TML-containing conjugates were cleaved in cell-free extract of C. albicans cells. These results suggest that a molecular umbrella can be successfully applied as a nanocarrier for the construction of cleavable antifungal conjugates.
Collapse
Affiliation(s)
- Andrzej S. Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (A.S.S.); (D.M.)
| | - Dorota Martynow
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (A.S.S.); (D.M.)
| | - Maria J. Milewska
- Department of Organic Chemistry and BioTechMed Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (A.S.S.); (D.M.)
- Correspondence: ; Tel.: +48-58-347-2107
| |
Collapse
|
9
|
Regen SL. Improving the Cellular Selectivity of a Membrane-Disrupting Antimicrobial Agent by Monomer Control and by Taming. Molecules 2021; 26:molecules26020374. [PMID: 33450850 PMCID: PMC7828373 DOI: 10.3390/molecules26020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial resistance represents a significant world-wide health threat that is looming. To meet this challenge, new classes of antimicrobial agents and the redesign of existing ones will be required. This review summarizes some of the studies that have been carried out in my own laboratories involving membrane-disrupting agents. A major discovery that we made, using a Triton X-100 as a prototypical membrane-disrupting molecule and cholesterol-rich liposomes as model systems, was that membrane disruption can occur by two distinct processes, depending on the state of aggregation of the attacking agent. Specifically, we found that monomers induced leakage, while attack by aggregates resulted in a catastrophic rupture of the membrane. This discovery led us to design of a series of derivatives of the clinically important antifungal agent, Amphotericin B, where we demonstrated the feasibility of separating antifungal from hemolytic activity by decreasing the molecule’s tendency to aggregate, i.e., by controlling its monomer concentration. Using an entirely different approach (i.e., a “taming” strategy), we found that by covalently attaching one or more facial amphiphiles (“floats”) to Amphotericin B, its aggregate forms were much less active in lysing red blood cells while maintaining high antifungal activity. The possibility of applying such “monomer control” and “taming” strategies to other membrane-disrupting antimicrobial agents is briefly discussed.
Collapse
Affiliation(s)
- Steven L Regen
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
Swift T, Caseley E, Pinnock A, Shepherd J, Shivshetty N, Garg P, Ian Douglas CW, MacNeil S, Rimmer S. Branched amphotericin functional poly( N- isopropyl acrylamide): an antifungal polymer. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201655. [PMID: 33614095 PMCID: PMC7890487 DOI: 10.1098/rsos.201655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Branched poly(N-isopropylacrylamide) was functionalized with Amphotericin B (AmB) at the chain ends to produce an antifungal material. The polymer showed antifungal properties against AmB-sensitive strains of Candida albicans, Fusarium keratoplasticum and Aspergillus flavus (minimal inhibitory concentration ranged from 5 to 500 µg ml-1) but was not effective against an AmB resistant strain of C. albicans nor against Candida tropicalis. The polymer end groups bound to the AmB target, ergosterol, and the fluorescence spectrum of a dye used as a solvatochromic probe, Nile red, was blue shifted indicating that segments of the polymer became desolvated on binding. The polymer was less toxic to corneal and renal epithelial cells and explanted corneal tissue than the free drug. Also, the polymer did not induce reactive oxygen species release from peripheral blood mononuclear cells, nor did it cause a substantial release of the proinflammatory cytokines, tumour necrosis factor-α and interleukin-1β (at 0.5 mg ml-1).
Collapse
Affiliation(s)
- Thomas Swift
- Polymer and Biomaterial Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Emily Caseley
- Polymer and Biomaterial Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Abbigail Pinnock
- School of Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Joanna Shepherd
- School of Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | | | - Prashant Garg
- LV Prasad Eye Institute, Banjara Hills, Hyderabad 500034, India
| | | | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Stephen Rimmer
- Polymer and Biomaterial Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
11
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic low molecular-weight carrier-drug conjugates. Bioorg Chem 2020; 104:104311. [PMID: 33142423 DOI: 10.1016/j.bioorg.2020.104311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 12/30/2022]
Abstract
Inefficient transportation of polar metabolic inhibitors through cell membranes of eukaryotic and prokaryotic cells precludes their direct use as drug candidates in chemotherapy. One of the possible solutions to this problem is application of the 'Trojan horse' strategy, i.e. conjugation of an active substance with a molecular carrier of organic or inorganic nature, facilitating membrane penetration. In this work, the synthetic strategies used in rational design and preparation of conjugates of bioactive agents with three types of organic low molecular-weight carriers have been reviewed. These include iron-chelating agents, siderophores and cell-penetrating peptides. Moreover, a less known but very promising "molecular umbrella" conjugation strategy has been presented. Special attention has been paid on appropriate linking strategies, especially these allowing intracellular drug release after internalisation of a conjugate.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
12
|
Alonso L, Mendanha SA, Dorta ML, Alonso A. Analysis of the Interactions of Amphotericin B with the Leishmania Plasma Membrane Using EPR Spectroscopy. J Phys Chem B 2020; 124:10157-10165. [DOI: 10.1021/acs.jpcb.0c07721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lais Alonso
- Instituto Federal Goiano, Trindade 76300-000, Goiás, Brazil
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | | | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| |
Collapse
|
13
|
Vahedi-Shahandashti R, Lass-Flörl C. Novel Antifungal Agents and Their Activity against Aspergillus Species. J Fungi (Basel) 2020; 6:E213. [PMID: 33050302 PMCID: PMC7711508 DOI: 10.3390/jof6040213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need for new antifungal agents, mainly due to increased incidence of invasive fungal infections (IFI), high frequency of associated morbidity and mortality and limitations of the current antifungal agents (e.g., toxicity, drug-drug interactions, and resistance). The clinically available antifungals for IFI are restricted to four main classes: polyenes, flucytosine, triazoles, and echinocandins. Several antifungals are hampered by multiple resistance mechanisms being present in fungi. Consequently, novel antifungal agents with new targets and modified chemical structures are required to combat fungal infections. This review will describe novel antifungals, with a focus on the Aspergillus species.
Collapse
Affiliation(s)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
14
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
15
|
Francis AP, Jayakrishnan A. Polymer–Drug Conjugates for Treating Local and Systemic Fungal Infections. ANTIMICROBIAL MATERIALS FOR BIOMEDICAL APPLICATIONS 2019. [DOI: 10.1039/9781788012638-00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In immunocompromised patients, fungal infections are the major cause of morbidity and mortality. Currently, three major classes of drugs—polyenes, azoles, and echinocandins—with different mechanisms of action are used as antifungals for systemic infections. However, these conventional drugs were reported to induce toxic effects due to their low specificity, narrow spectrum of activity and drug–drug interactions. Some of these limitations could be overcome by altering the properties of existing drugs through physical and chemical modifications. For example, modification of amphotericin B (AmB), a polyene antibiotic includes the micellar suspension of AmB in deoxycholic acid (Fungizone®), non-covalent AmB lipid complexes (ABLC™), liposomal AmB (AmBisome®), and AmB colloidal dispersion (Amphocil™). All these formulations ensure the smoother release of AmB accompanied by its restricted distribution in the kidney, thereby lowering its nephrotoxicity. Although various methods such as polymeric micelles, nanoparticles and dendrimers were explored for enhancing the efficacy of the antifungal drugs, polymer–drug conjugates of antifungal drugs have received more attention in recent years. Polymer–drug conjugates improve the aqueous solubility of water-insoluble drugs, are stable in storage and reduce the toxicity of highly toxic drugs and are capable of releasing the drug at the site of action. This chapter discusses the polymer conjugates of antifungal drugs, their merits, and demerits. Studies reported so far show that the polymer–drug conjugates have significant advantages compared to conventional dosage forms for antifungal therapy.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Biomaterials Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - A. Jayakrishnan
- Biomaterials Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
16
|
Krishnan RA, Pant T, Sankaranarayan S, Stenberg J, Jain R, Dandekar P. Protective nature of low molecular weight chitosan in a chitosan–Amphotericin B nanocomplex – A physicochemical study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:472-482. [DOI: 10.1016/j.msec.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
|
17
|
Omelchuk OA, Tevyashova AN, Shchekotikhin AE. Recent advances in antifungal drug discovery based on polyene macrolide antibiotics. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
19
|
Skwarecki AS, Skarbek K, Martynow D, Serocki M, Bylińska I, Milewska MJ, Milewski S. Molecular Umbrellas Modulate the Selective Toxicity of Polyene Macrolide Antifungals. Bioconjug Chem 2018; 29:1454-1465. [DOI: 10.1021/acs.bioconjchem.8b00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | | | - Irena Bylińska
- Department of Biomedical Chemistry, University of Gdańsk, 63 Wita Stwosza Str., 80-308 Gdańsk, Poland
| | | | | |
Collapse
|
20
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
21
|
|
22
|
Abstract
Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies - polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) - in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.
Collapse
Affiliation(s)
- John R Perfect
- Duke University Medical Center, 200 Trent Drive, Durham, North Carolina 27710, USA
| |
Collapse
|
23
|
Yu Y, Sabulski MJ, Schell WA, Pires MM, Perfect JR, Regen SL. Simple Strategy for Taming Membrane-Disrupting Antibiotics. Bioconjug Chem 2016; 27:2850-2853. [PMID: 27801580 PMCID: PMC5184371 DOI: 10.1021/acs.bioconjchem.6b00629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A strategy has been devised for increasing the cellular selectivity of membrane-disrupting antibiotics based on the attachment of a facially amphiphilic sterol. Using Amphotericin B (AmB) as a prototype, covalent attachment of cholic acid bound to a series of α,ω-diamines has led to a dramatic reduction in hemolytic activity, a significant reduction in toxicity toward HEK293T cells, and significant retention of antifungal activity.
Collapse
Affiliation(s)
- Yuming Yu
- Department of Chemistry, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Mary J Sabulski
- Department of Chemistry, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Wiley A Schell
- Department of Medicine, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Marcos M Pires
- Department of Chemistry, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - John R Perfect
- Department of Medicine, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Steven L Regen
- Department of Chemistry, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
24
|
Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier–drug conjugates. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2215-2240. [DOI: 10.1016/j.nano.2016.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
|
25
|
Pianalto KM, Alspaugh JA. New Horizons in Antifungal Therapy. J Fungi (Basel) 2016; 2:jof2040026. [PMID: 29376943 PMCID: PMC5715934 DOI: 10.3390/jof2040026] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Recent investigations have yielded both profound insights into the mechanisms required by pathogenic fungi for virulence within the human host, as well as novel potential targets for antifungal therapeutics. Some of these studies have resulted in the identification of novel compounds that act against these pathways and also demonstrate potent antifungal activity. However, considerable effort is required to move from pre-clinical compound testing to true clinical trials, a necessary step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal infections mandates continued efforts to identify new strategies for antifungal therapy. Moreover, these life-threatening infections often occur in our most vulnerable patient populations. In addition to finding completely novel antifungal compounds, there is also a renewed effort to redirect existing drugs for use as antifungal agents. Several recent screens have identified potent antifungal activity in compounds previously indicated for other uses in humans. Together, the combined efforts of academic investigators and the pharmaceutical industry is resulting in exciting new possibilities for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Kaila M Pianalto
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Medicine/Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
26
|
The Role of Signaling via Aqueous Pore Formation in Resistance Responses to Amphotericin B. Antimicrob Agents Chemother 2016; 60:5122-9. [PMID: 27381391 DOI: 10.1128/aac.00878-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a normal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibiotic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells.
Collapse
|
27
|
Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 2016; 13:1133-48. [DOI: 10.1080/17425247.2016.1178233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Serafim
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Rijo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
| | - Catarina Pinto Reis
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Caffrey P, De Poire E, Sheehan J, Sweeney P. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 2016; 100:3893-908. [PMID: 27023916 DOI: 10.1007/s00253-016-7474-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eimear De Poire
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Sheehan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Sweeney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Serafim C, Ferreira I, Rijo P, Pinheiro L, Faustino C, Calado A, Garcia-Rio L. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Int J Pharm 2016; 497:23-35. [DOI: 10.1016/j.ijpharm.2015.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/14/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
|
30
|
Abstract
Herein, we report the synthesis of an umbrella thread and its covalent dimer and their transmembrane transport properties under physiological conditions.
Collapse
Affiliation(s)
- Julie Kempf
- Département de Chimie
- Université de Montréal
- Montréal
- Canada
| | | |
Collapse
|