1
|
Garrute FV, Pacheco ABF, Lu GJ, Machado JC. A Bioengineered Cathepsin B-sensitive Gas Vesicle Nanosystem That Responds With Increased Gray-level Intensity of Ultrasound Biomicroscopic Images. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:120-127. [PMID: 39394005 DOI: 10.1016/j.ultrasmedbio.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE This work aimed to promote the interaction of a modified gas vesicle (GV) with cathepsin B (CTSB) protease and analysed their backscattered signal by ultrasound (US). METHODS We modified the sequence of the gene coding for GvpC to contain a CTSB cleavage and expressed the protein in an Escherichia coli recombinant system. The protein was purified and added to GVs preparations in which the original GvpC was removed (ΔGV), constituting the modified GV (GV*). Western blot testing was used to compare GVs with GvpC and engineered GvpC at starting (T0) and after 24 h (T24) reacting with CTSB. A 21 MHz US B-mode and non-linear contrast mode (5% total power) imaged US phantoms having samples of GVwt, ΔGV (stripped GV), GV* and CTSB + GV*. Also, a 21 MHz US B-mode imaged US phantoms having a tumour cell line extracellular fraction (TCEF) and the TCEF + GV* sample. A 100% total US power was applied to collapse the GV structure. RESULTS On Western blotting, we detected a decrease in engineered GvpC levels 24 h after the incubation of GV* with CTSB, compared with the concentration at T0, suggesting that CTSB cleaved the engineered GvpC. Regions-of-interest over image of phantom cross-sections were determined and the B-mode image mean grey-level intensity resulted in a significant (p < 0.05) increase comparing CTSB + GV* with PBS (control), GVwt, ΔGV and GV*. Non-linear mode image grey-level intensity from CTSB + GV* increased by 11.79, 7.86 and 14.75 dB from samples containing GVwt, ΔGV and GV*, respectively. GV preparations incubated with TCEF and the TCEF + GV* sample showed an increase of 81% in signal compared with TCEF + GVwt. CONCLUSION The increased US backscattered signal intensity suggests GVs as a potential biosensor for protease activity, possibly aiding the detection of protease-rich tissue regions.
Collapse
Affiliation(s)
- Felipe Vianna Garrute
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz F Pacheco
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - George J Lu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - João Carlos Machado
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Yip V, Saad OM, Leipold D, Li C, Kamath A, Shen BQ. Monomethyl auristatin E (MMAE), a payload for multiple antibody drug conjugates (ADCs), demonstrates differential red blood cell partitioning across human and animal species. Xenobiotica 2024; 54:511-520. [PMID: 38647387 DOI: 10.1080/00498254.2024.2345849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalisation and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalised by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labelled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterising the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ola M Saad
- BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
3
|
Wang Y, Xia B, Cao L, Yang J, Feng C, Jiang F, Li C, Gu L, Yang Y, Tian J, Cheng X, Furuuchi K, Fulmer J, Verdi A, Rybinski K, Soto A, Albone E, Uenaka T, Gong L, Liu T, Qin Q, Wei Z, Zhou Y. Preclinical studies of BB-1701, a HER2-targeting eribulin-containing ADC with potent bystander effect and ICD activity. Antib Ther 2024; 7:221-232. [PMID: 39036069 PMCID: PMC11259758 DOI: 10.1093/abt/tbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Several HER2-targeting antibody-drug conjugates (ADC) have gained market approval for the treatment of HER2-expressing metastasis. Promising responses have been reported with the new generation of ADCs in patients who do not respond well to other HER2-targeting therapeutics. However, these ADCs still face challenges of resistance and/or severe adverse effects associated with their particular payload toxins. Eribulin, a therapeutic agent for the treatment of metastatic breast cancer and liposarcoma, is a new choice of ADC payload with a distinct mechanism of action and safety profile. METHODS We've generated a novel HER2-tageting eribulin-containing ADC, BB-1701. The potency of BB-1701 was tested in vitro and in vivo against cancer cells where HER2-expressing levels vary in a large range. Bystander killing effect and toxin-induced immunogenic cell death (ICD) of BB-1701 were also tested. RESULTS In comparison with HER2-targeting ADCs with DM1 and Dxd payload, eribulin-containing ADC demonstrated higher in vitro cytotoxicity in HER2-low cancer cell lines. BB-1701 also effectively suppressed tumors in models resistant to DM1 or Dxd containing ADCs. Mode of action studies showed that BB-1701 had a significant bystander effect on HER2-null cells adjacent to HER2-high cells. In addition, BB-1701 treatment induced ICD. Repeated doses of BB-1701 in nonhuman primates showed favorable pharmacokinetics and safety profiles at the intended clinical dosage, route of administration, and schedule. CONCLUSIONS The preclinical data support the test of BB-1701 in patients with various HER2-expressing cancers, including those resistant to other HER2-targeting ADCs. A phase I clinical trial of BB-1701 (NCT04257110) in patients is currently underway.
Collapse
Affiliation(s)
- Yang Wang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Bing Xia
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Lixia Cao
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Jianfeng Yang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Cui Feng
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Fangdun Jiang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Chen Li
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Lixia Gu
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Yifan Yang
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Jing Tian
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Xin Cheng
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Keiji Furuuchi
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - James Fulmer
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Arielle Verdi
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Katherine Rybinski
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Allis Soto
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Earl Albone
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Toshimitsu Uenaka
- Epochal Precision Anti-Cancer Therapeutics (EPAT), Cell Lineage and Differentiation (CLD) Domain, Eisai Inc., Exton, PA 19341, United States
| | - Likun Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuping Qin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziping Wei
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| | - Yuhong Zhou
- Bliss Biopharmaceutical (Hangzhou) Co., Ltd, Hexiang Technology Center, Hangzhou 310018, China
| |
Collapse
|
4
|
Guo Y, Shen Z, Zhao W, Lu J, Song Y, Shen L, Lu Y, Wu M, Shi Q, Zhuang W, Qiu Y, Sheng J, Zhou Z, Fang L, Che J, Dong X. Rational Identification of Novel Antibody-Drug Conjugate with High Bystander Killing Effect against Heterogeneous Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306309. [PMID: 38269648 PMCID: PMC10987111 DOI: 10.1002/advs.202306309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Zheyuan Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Wenbin Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018P. R. China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yi Song
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Qiuqiu Shi
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yueping Qiu
- The Department of PharmacyZhejiang Cancer HospitalHangzhou310022P. R. China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310002P. R. China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018P. R. China
| | - Luo Fang
- The Department of PharmacyZhejiang Cancer HospitalHangzhou310022P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Department of PharmacySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009P. R. China
| |
Collapse
|
5
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
6
|
Lu Y, You L, Li L, Kilgore JA, Liu S, Wang X, Dai Y, Wei Q, Shi H, Han L, Sun L, Chen ZJ, Zhang X, Williams NS, Chen C. Orthogonal Hydroxyl Functionalization of cGAMP Confers Metabolic Stability and Enables Antibody Conjugation. ACS CENTRAL SCIENCE 2023; 9:2298-2305. [PMID: 38161369 PMCID: PMC10755847 DOI: 10.1021/acscentsci.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.
Collapse
Affiliation(s)
- Yong Lu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lin You
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Liping Li
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Jessica A. Kilgore
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Shun Liu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xiaoyu Wang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Yuanwei Dai
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Qi Wei
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Heping Shi
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lei Han
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lijun Sun
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Zhijian J. Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xuewu Zhang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Noelle S. Williams
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Chuo Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| |
Collapse
|
7
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
8
|
Giese M, Davis PD, Woodman RH, Hermanson G, Pokora A, Vermillion M. Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjug Chem 2021; 32:2257-2267. [PMID: 34587447 DOI: 10.1021/acs.bioconjchem.1c00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated prodrugs leverage the increased activity of proteases in the tumor microenvironment and the tight regulation in healthy tissues to provide selective activation of cytotoxins in the tumor while minimizing toxicity to normal tissues. One of the largest classes of protease-activated prodrugs are composed of therapeutic agents conjugated to macromolecular carriers via peptide motifs that are substrates for cathepsin B, and antibody-drug conjugates are one of the most successful designs within this class. However, many of these peptide motifs are also cleaved by extracellular enzymes such as elastase and carboxylesterase 1C. Additionally, some peptide sequences have little selectivity for other lysosomal cathepsins, which have also been found to have extracellular activity in normal physiological processes. A lack of selectivity or oversensitivity to other extracellular enzymes can lead to off-target release of the cytotoxic payload and subsequent toxicities. In this report, we describe an approach for modulating cathepsin-mediated release of the cytotoxic payload through steric shielding provided by the synergistic effects of appropriately designed hydrophilic linkers and the conjugated carrier. We prepared a fluorogenic model payload with a Val-Cit cleavable trigger and attached the trigger-payload to a variety of PEG-based linker architectures with different numbers of PEG arms (y), different numbers of ethylene oxide units in each arm (n), and different distances between the cleavable trigger and PEG branch point (D'). These linker-payloads were then used to prepare DAR2 conjugates with the cleavable triggers at three different distances (D) from the antibody, and cathepsin-mediated payload release was monitored with in vitro assays. The results show that structural variables of the linker architectures can be manipulated to effectively shield enzymatically labile trigger-payloads from enzymes with readily accessible binding sites, and may offer an additional strategy for balancing off-target and tumor-targeted payload release.
Collapse
Affiliation(s)
- Matthew Giese
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Paul D Davis
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Robert H Woodman
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Greg Hermanson
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Alex Pokora
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Melissa Vermillion
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| |
Collapse
|
9
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Li Y, Zhao Z, Lin CY, Liu Y, Staveley-OCarroll KF, Li G, Cheng K. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Am J Cancer Res 2021; 11:2182-2200. [PMID: 33500719 PMCID: PMC7797682 DOI: 10.7150/thno.53102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Dense desmoplastic stroma is a fundamental characteristic of pancreatic ductal adenocarcinoma (PDAC) and comprises up to 80% of the tumor mass. Type I collagen is the major component of the extracellular matrix (ECM), which acts as a barrier to impede the delivery of drugs into the tumor microenvironment. While the strategy to deplete PDAC stroma has failed in clinical trials, normalization of the stroma to allow chemotherapy to kill the tumor cells in the “nest” could be a promising strategy for PDAC therapy. We hypothesize that silencing the poly(rC)-binding protein 2 (αCP2, encoded by the PCBP2 gene) leads to the destabilization and normalization of type I collagen in the PDAC stroma. Methods: We develop a micro-flow mixing method to fabricate a peptide-based core-stabilized PCBP2 siRNA nanocomplex to reverse the accumulation of type I collagen in PDAC tumor stroma. Various in vitro studies were performed to evaluate the silencing activity, cellular uptake, serum stability, and tumor penetration of the PCBP2 siRNA nanocomplex. We also investigated the penetration of small molecules in stroma-rich pancreatic cancer spheroids after the treatment with the PCBP2 siRNA nanocomplex. The anti-tumor activity of the PCBP2 siRNA nanocomplex and its combination with gemcitabine was evaluated in an orthotopic stroma-rich pancreatic cancer mouse model. Results: Silencing the PCBP2 gene using siRNA reverses the accumulation of type I collagen in human pancreatic stellate cells (PSCs) and mouse NIH 3T3 fibroblast cells. The siRNA nanocomplex significantly reduces ECM production and enhances drug penetration through desmoplastic tumor stroma. The combination of gemcitabine with the PCBP2 siRNA nanocomplex markedly suppresses the tumor progression in a desmoplastic PDAC orthotopic mouse model. Conclusion: This approach provides a new therapeutic avenue to improve the antitumor efficacy of PDAC therapies by normalizing tumor stroma using the PCBP2 siRNA nanocomplex.
Collapse
|
11
|
Liu X, Mohanty RP, Maier EY, Peng X, Wulfe S, Looney AP, Aung KL, Ghosh D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J Control Release 2020; 328:1-12. [DOI: 10.1016/j.jconrel.2020.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
|
12
|
CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells. Biomaterials 2020; 230:119651. [DOI: 10.1016/j.biomaterials.2019.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
13
|
Andris S, Seidel J, Hubbuch J. Kinetic reaction modeling for antibody-drug conjugate process development. J Biotechnol 2019; 306:71-80. [DOI: 10.1016/j.jbiotec.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/02/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
|
14
|
Borbély A, Figueras E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, Frese M, Gallinari P, Steinkühler C, Sewald N. Synthesis and Biological Evaluation of RGD⁻Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics 2019; 11:E151. [PMID: 30939768 PMCID: PMC6523311 DOI: 10.3390/pharmaceutics11040151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvβ₃, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)⁻cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvβ₃ expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Simone Esposito
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Giulio Auciello
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Edith Monteagudo
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | | | - Vincenzo Summa
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Paola Cordella
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Raffaella Perego
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Paola Gallinari
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Christian Steinkühler
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| |
Collapse
|
15
|
Marcucci F, Caserta CA, Romeo E, Rumio C. Antibody-Drug Conjugates (ADC) Against Cancer Stem-Like Cells (CSC)-Is There Still Room for Optimism? Front Oncol 2019; 9:167. [PMID: 30984612 PMCID: PMC6449442 DOI: 10.3389/fonc.2019.00167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Chung SW, Cho YS, Choi JU, Kim HR, Won TH, Kim SY, Byun Y. Highly potent monomethyl auristatin E prodrug activated by caspase-3 for the chemoradiotherapy of triple-negative breast cancer. Biomaterials 2018; 192:109-117. [PMID: 30447398 DOI: 10.1016/j.biomaterials.2018.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Despite the emergence of advanced therapeutics such as targeted therapy and immunotherapy in the modern oncology, cytotoxic chemotherapy still remains as the first-line treatment option in a wide range of cancers attributing to its potency. Many endeavors have been made to overcome the toxicity issues of cytotoxic chemotherapy by improving the specific delivery to the tumor, with active tumor targeting being one of the most popular approaches. However, such an approach has been challenged by the intratumor heterogeneity and the lack of valid molecular target in many types of cancer. Here, we introduce a novel albumin-binding prodrug MPD02 that could specifically deliver highly potent cytotoxin monomethyl auristatin E (MMAE) to the tumor as an important component of chemoradiotherapy for the treatment of triple-negative breast cancer (TNBC). MPD02 was synthesized by conjugating MMAE to the C-terminus of the KGDEVD peptide via self-eliminating linker and introducing a maleimide group to the Lys side chain of the peptide. MPD02 was able to bind albumin after administration via maleimide group for an extended circulation time and metabolized into MMAE in tumor-specific manner by reacting with the caspase-3 upregulated in tumor by radiotherapy, exerting a highly potent anticancer effect with good safety profile in two different TNBC xenograft models.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
| |
Collapse
|
17
|
Serra S, Alouane A, Le Saux T, Huvelle S, Plasson R, Schmidt F, Jullien L, Labruère R. A chemically encoded timer for dual molecular delivery at tailored ranges and concentrations. Chem Commun (Camb) 2018; 54:6396-6399. [PMID: 29872786 DOI: 10.1039/c8cc03253j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatiotemporal control of molecular distribution is much in demand in many fields of chemistry. To address this goal, we exploit a low molecular weight branched self-immolative architecture, which acts as a triggerable chemically encoded timer for autonomous sequential release of two chemicals. Using a light-activated model liberating two distinct fluorophores, we generated a tunable spatially contrasted molecular distribution.
Collapse
Affiliation(s)
- Silvia Serra
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Univ Paris Sud, Université Paris-Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abdollahpour-Alitappeh M, Hashemi Karouei SM, Lotfinia M, Amanzadeh A, Habibi-Anbouhi M. A developed antibody-drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29523024 DOI: 10.1080/21691401.2018.1449119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rituximab is a chimeric monoclonal antibody directed against B-lymphocyte specific antigen CD20, which is used for the treatment of B-cell malignancies. However, the effectiveness of rituximab is limited partly due to treatment resistance. The aim of this study was to develop rituximab-based antibody drug conjugate (ADC) to enhance rituximab activity. In this study, monomethyl auristatin E (MMAE) was covalently conjugated to dithiothreitol -reduced rituximab via a valine-citrulline peptide linker (rituximab-vcMMAE). The conjugates were then characterized by using nonreducing sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) and cell-based enzyme-linked immunosorbent assay (ELISA). The cytotoxic activity of the ADC was evaluated against Raji (human B-cell lymphoma; CD20-positive) and MOLT-4 (T lymphoblast; acute lymphoblastic leukemia; CD20-negative) cell lines. In addition, the colony formation assay was used to identify the propagation ability of ADC-treated cells in vitro. Results from nonreducing SDS-PAGE revealed various species of rituximab-MC-Val-Cit-PABC-MMAE (rituximab-vcMMAE), as compared with unconjugated rituximab. The binding capacity of rituximab-vcMMAE to the CD20-positive cell was similar to that of the parental rituximab. Most importantly, our results revealed that rituximab-vcMMAE was highly potent against the CD20-positive cell line, but not against the CD20-negative cell. At the same time, rituximab-vcMMAE was able to inhibit colony formation in CD20-positive cells. These data indicate that rituximab-vcMMAE may be a highly effective and selective therapy for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Meghdad Abdollahpour-Alitappeh
- a Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b National Cell Bank of Iran , Pasteur Institute of Iran , Tehran , Iran
| | | | - Majid Lotfinia
- d Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Amanzadeh
- b National Cell Bank of Iran , Pasteur Institute of Iran , Tehran , Iran
| | | |
Collapse
|
19
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
20
|
Singh AP, Shah DK. Measurement and Mathematical Characterization of Cell-Level Pharmacokinetics of Antibody-Drug Conjugates: A Case Study with Trastuzumab-vc-MMAE. Drug Metab Dispos 2017; 45:1120-1132. [PMID: 28821484 PMCID: PMC5625284 DOI: 10.1124/dmd.117.076414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
The main objective of this work was to understand and mathematically characterize the cellular disposition of a tool antibody-drug conjugate (ADC), trastuzumab-valine-citrulline-monomethyl auristatin E (T-vc-MMAE). Toward this goal, three different analytical methods were developed to measure the concentrations of different ADC-related analytes in the media and cell lysate. A liquid chromatography-tandem mass spectrometry method was developed to quantify unconjugated drug (i.e., MMAE) concentrations, a forced deconjugation method was developed to quantify total drug concentrations, and an enzyme-linked immunosorbent assay method was developed to quantify total antibody (i.e., trastuzumab) concentrations. Cellular disposition studies were conducted in low-HER2-(GFP-MCF7) and high-HER2-expressing (N87) cell lines, following continuous or 2-hour exposure to MMAE and T-vc-MMAE. Similar intracellular accumulation of MMAE was observed between two cell lines following incubation with plain MMAE. However, when incubated with T-vc-MMAE, much higher intracellular exposures of unconjugated drug, total drug, and total antibody were observed in N87 cells compared with GFP-MCF7 cells. A novel single-cell disposition model was developed to simultaneously characterize in vitro pharmacokinetics of all three analytes of the ADC in the media and cellular space. The model was able to characterize all the data well and provided robust estimates of MMAE influx rate, MMAE efflux rate, and intracellular degradation rate for T-vc-MMAE. ADC internalization and degradation rates, HER2 expression, and MMAE efflux rate were found to be the key parameters responsible for intracellular exposure to MMAE, on the basis of a global sensitivity analysis. The single-cell pharmacokinetics model for ADCs presented here is expected to provide a better framework for characterizing bystander effect of ADCs.
Collapse
Affiliation(s)
- Aman P Singh
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
21
|
Xu L, Packer LE, Li C, Abdul-Hadi K, Veiby P. A generic approach for simultaneous measurements of total antibody and cleavable antibody-conjugated drug by LC/MS/MS. Anal Biochem 2017; 537:33-36. [DOI: 10.1016/j.ab.2017.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
|
22
|
Malik P, Phipps C, Edginton A, Blay J. Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Pharm Res 2017; 34:2579-2595. [PMID: 28924691 DOI: 10.1007/s11095-017-2259-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/09/2017] [Indexed: 12/26/2022]
Abstract
Antibody-drug conjugates (ADCs) are ushering in the next era of targeted therapy against cancer. An ADC for cancer therapy consists of a potent cytotoxic payload that is attached to a tumour-targeted antibody by a chemical linker, usually with an average drug-to-antibody ratio (DAR) of 3.5-4. The theory is to deliver potent cytotoxic payloads directly to tumour cells while sparing healthy cells. However, practical application has proven to be more difficult. At present there are only two ADCs approved for clinical use. Nevertheless, in the last decade there has been an explosion of options for ADC engineering to optimize target selection, Fc receptor interactions, linker, payload and more. Evaluation of these strategies requires an understanding of the mechanistic underpinnings of ADC pharmacokinetics. Development of ADCs for use in cancer further requires an understanding of tumour properties and kinetics within the tumour environment, and how the presence of cancer as a disease will impact distribution and elimination. Key pharmacokinetic considerations for the successful design and clinical application of ADCs in oncology are explored in this review, with a focus on the mechanistic determinants of distribution and elimination.
Collapse
Affiliation(s)
- Paul Malik
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada
| | - Colin Phipps
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada.,DMPK & Translational Modeling, Abbvie Inc., North Chicago, Illinois, 60064, USA
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada.
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada
| |
Collapse
|
23
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Wang Y, Fan S, Zhong W, Zhou X, Li S. Development and Properties of Valine-Alanine based Antibody-Drug Conjugates with Monomethyl Auristatin E as the Potent Payload. Int J Mol Sci 2017; 18:ijms18091860. [PMID: 28841157 PMCID: PMC5618509 DOI: 10.3390/ijms18091860] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/07/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Antibody-drug conjugates (ADCs), designed to selectively deliver cytotoxic agents to antigen-bearing cells, are poised to become an important class of cancer therapeutics. Human epithelial growth factor receptor (HER2) is considered an effective target for cancer treatment, and a HER2-targeting ADC has shown promising results. Most ADCs undergoing clinical evaluation contain linkers that have a lysosomal protease-cleavable dipeptide, of which the most common is valine-citrulline (VC). However, valine-alanine (VA), another dipeptide comprising two human essential amino acids, has been used in next generation ADCs loading new toxins, but the druggable properties of ADCs loaded the most popular monomethyl auristatin E (MMAE) remain to be further explored. In this study, we generated VA-based ADCs that connected MMAE to an anti-HER2 antibody. We studied the differences in the preparation process, in vitro stability, cathepsin B activity and in vitro cytotoxicity of VA-based ADC compared to the ADC of VC. VA had comparable performance to VC, which preliminarily displays its practicability. Additional efficacy and safety studies in a xenograft model indicate this novel ADC exerted potent anti-tumor activity and negligible toxicity. The results of this study show the application potential of VA-based ADC with MMAE as the payload.
Collapse
Affiliation(s)
- Yanming Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Shiyong Fan
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Wu Zhong
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xinbo Zhou
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Song Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
25
|
Adamo M, Sun G, Qiu D, Valente J, Lan W, Song H, Bolgar M, Katiyar A, Krishnamurthy G. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis. J Chromatogr A 2017; 1481:44-52. [DOI: 10.1016/j.chroma.2016.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
|